УДК 541.49:547.597:547.598:548.736

ЛЮМИНЕСЦИРУЮЩИЕ КОМПЛЕКСЫ Zn(II) И Cd(II) С ХИРАЛЬНЫМИ ЛИГАНДАМИ, СОДЕРЖАЩИМИ ФРАГМЕНТЫ 1,10-ФЕНАНТРОЛИНА И ПРИРОДНЫХ МОНОТЕРПЕНОИДОВ (+)-3-КАРЕНА ИЛИ (+)-ЛИМОНЕНА

© 2019 г. Т. Е. Кокина^{*a,b,* *}, Ю. П. Устименко^{*c*}, М. И. Рахманова^{*a*}, Л. А. Шелудякова^{*a,b*}, А. М. Агафонцев^{*c*}, П. Е. Плюснин^{*a,b*}, А. В. Ткачев^{*b,c*}, С. В. Ларионов^{*a,b*}

^а Институт неорганической химии имени А. В. Николаева Сибирского отделения Российской академии наук, пр. Академика Лаврентьева 3, Новосибирск, 630090 Россия

*e-mail: kokina@niic.nsc.ru

^b Новосибирский национальный исследовательский государственный университет, Новосибирск, Россия ^c Новосибирский институт органической химии имени Н. Н. Ворожиова

Сибирского отделения Российской академии наук, Новосибирск, Россия

Поступило в Редакцию 31 мая 2018 г. После доработки 31 мая 2018 г. Принято к печати 16 августа 2018 г.

Синтезированы хиральные лиганды – производные 1,10-фенантролина, содержащие фрагменты природных монотерпеноидов (+)-3-карена (L¹) и (+)-лимонена (L²) и получены комплексы $Zn(L^{1,2})Cl_2 nH_2O$, $Cd(L^{1,2})Cl_2 nH_2O$, $Zn(L^1)Br_2 2H_2O$, $Cd(L^1)Br_2 2H_2O$ на их основе. По данным ЯМР и ИК спектроскопии сделан вывод о полиядерном строении полученных соединений. Исследованы люминесцентные свойства полученных соединений. Определены времена жизни возбужденных состояний и значения квантовых выходов люминесценции (φ_f). Для свободных лигандов наблюдается голубая флуоресценция, для комплексов Zn(II) и Cd(II) проявляется свечение в зеленой области спектра.

Ключевые слова: терпены, комплексы, цинк, кадмий, люминесценция **DOI:** 10.1134/S0044460X19010165

Синтез и изучение строения комплексов металлов с хиральными лигандами относится к числу актуальных направлений координационной химии. С целью создания новых функциональных материалов исследуются разнообразные физические свойства синтезированных соединений. Большое внимание уделено синтезу и изучению хиральных люминесцирующих комплексов металлов, в том числе проявляющих циркулярно-поляризованную люминесценцию [1–4]. Ведутся исследования по поиску хиральных молекулярных магнитов [5, 6]. Перспективны возможности применения биологически активных хиральных комплексов [7].

При синтезе хиральных координационных соединений особое внимание обращено на использование в качестве лигандов оптически активных соединений природного происхождения. Изучаются комплексы металлов с хиральными

природными аминокислотами [8], сахаридами [9]. Значительный интерес представляет получение хиральных комплексов металлов с производными природных терпенов. Терпены, которые служат исходными веществами для синтеза этого типа хиральных лигандов, широко распространены в растительном мире и имеют высокую энантиомерную чистоту. Наибольшее число комплексов получено с лигандами на основе доступных апинена, β-пинена, (+)-3-карена и лимонена [10–14]. У ряда синтезированных комплексов обнаружены перспективные физические свойства. Так, хиральные комплексы Eu(III) и Dy(III) с 2,2'бипиридином, имеющим два фрагмента (+)-пинена или (–)-пинена, имеют ферроэлектрические свойства [15, 16]. Получены люминесцирующие хиральные комплексы лантанидов с N-гетероциклическими лигандами, содержащими фрагменты пинена [1, 17], камфоры [4, 18].

Синтезированы комплексы Zn(II) с лево- и правовращающими лигандами на основе 2,2'бипиридина, имеющими фрагменты (+)- и (-)пинена [19]. Соединение с левовращающим лигандом обладает сине-белой фотолюминесценцией ($\lambda_{max} = 470$ нм), которую авторы отнесли к фосфоресценции. На примере этих соединений впервые для комплексов Zn(II) были получены спектры циркулярно-поляризованной люмине-В дальнейшем синтезированы сценции. как одноядерный комплекс Zn(II), так и двухъядерный комплекс Cd(II) с пиразолинхинолином - производным терпеноида (+)-3-карена. В твердой фазе соединения Zn(II) и Cd(II) проявляют белую и синюю фотолюминесценцию соответственно (λ_{max} = 490 и 418нм) [20, 21]. Получены одноядерный комплекс Zn(II) и двухъядерный комплекс Cd(II) с хиральным дигидрофенантролином, производным природного (–)-а-пинена [22]. Соединения обладают синей фотолюминесценцией (λ_{max} =405 и 415 нм соответственно). Для комплекса Cd(II) квантовый выход фотолюминесценции равен 24%. Синтезированы комплексы Zn(II) и Cd(II) с бипиридином, содержащим фрагменты (-)-α-пинена [23]. В этом лиганде центральный цикл пятичленный, а не шестичленный как в хиральном дигидрофенантролине. Методом РСА показано, что комплекс Zn(II) одноядерный, а комплекс Cd(II) является 1D-координационным полимером. Для этих комплексов Zn(II) и Cd(II) также характерна фотолюминесценция ($\lambda_{max} = 505$ и 460 нм соответственно). Обнаружено проявление эффекта увеличения интенсивности фотолюминесценции, вызванного хелатированием (CHEF) [24]. Синтезированы одноядерные комплексы Zn(II) с 2,2'-бипиридилом, имеющим фрагмент (+)-пинена или (-)-пинена [25]. Комплекс Zn(II) с левовращающим лигандом в твердой фазе люминесцирует в синей области ($\lambda_{max} \sim 455$ нм).

Перспективен синтез новых люминесцирующих комплексов Zn(II) иCd(II) с гибридными N-гетероциклическими лигандами нового структурного типа, содержащими фрагменты 1,10-фенантролина и α-аминооксима терпена, связанные линкером – пиперазином. Наличие объемных терпеновых фрагментов в составе этих органических соединений позволит изучить влияние этих фрагментов на комплексообразующие свойства 1,10-фенантролинового ядра.

Цель настоящей работы – синтез, исследование строения и люминесцентных свойств комплексов Zn(II) и Cd(II) с представителями лигандов нового структурного типа – хиральными оксимами (1*R*,4*S*,6*S*,*E*)-4-[4-(1,10-фенантролин-2-ил)пиперазин-1-ил]-4,7,7-триметилбицикло[4.1.0]гептан-3-она (L¹) и (2*S*,5*R*,*E*)-2-[4-(1,10-фенантролин-2-ил)пиперазин-1-ил]-2-метил-5-(проп-1-ен-2-ил)циклогексанона (L²), содержащими фрагменты (+)-3-карена и (+)-лимонена соответственно.

Для разработки методик синтеза соединений этого типа исследовано взаимодействие пиперазина с 2-хлорфенантролином и подобраны условия его моноарилирования, а также условия для выделения и очистки продуктов реакции (схема 1). Далее была изучена реакция пиперазинового производного с нитрозохлоридами монотерпенов [(+)-лимонена и (+)-3-карена] (схема 2). Подобраны условия ее проведения, выделения и очистки целевых продуктов реакции. В результате

Схема 2.

синтезированы первые представители ряда гибридных хиральных лигандов L^1 и L^2 , содержащие два возможных центра координации – фрагмент 1,10-фенантролина и фрагмент α -аминооксима.

При взаимодействии хлоридов Zn(II) и Cd(II) с L^1 и L^2 в среде MeOH выделены соединения с соотношением металл:лиганд = 1:1: $ZnL^{1,2}Cl_2 = 1.5H_2O$ (1, 3), $Cd(L^{1,2})Cl_2 = nH_2O$ (2, 4). Выхолы составляют 20-40%. По-вилимому. невысокие выходы связаны с наличием в растворе других более растворимых комплексных форм. Для синтеза комплексов брали небольшой избыток MCl₂. В состав комплексов входят молекулы воды. Количество молекул воды от опыта к опыту варьируется в диапазоне n = 1-2 для комплексов Zn(II) и n = 4-6 для комплексов Cd(II). В экспериментальной части приведены средние значения данных элементного анализа для двух опытов. Исследование термических свойств соединений L^1 , L^2 , **1–4** в инертной атмосфере в интервале температур 25-300°С показало, что на ТГ-кривых отсутствуют ступени, четко соответствующие потере только молекул воды (см. рисунок). В интервале температур 100-175°С наблюдается ступень потери массы при нагревании

свободных лигандов, т. е. происходит разложение лигандов L^1 и L^2 , что подтверждается данными масс-спектрометрического анализа газообразных продуктов. Плавная потеря массы при нагревании комплексов **1–4** начинается уже от комнатной температуры. Удаление воды в интервале температур 100–175°С сопровождается частичным разложением комплексных соединений. В связи с этим установить точное содержание воды в комплексах затруднительно, вследствие одно-

Кривые термического анализа соединения $L^1(I)$ и комплексов **1** (2), **2** (3).

L ¹	1	2	L ²	3	4	Отнесение
3133	3396	3380	3168	3408, 3258 пл	3351, 3259 пл	OH, H ₂ O
1617, 1608	1627	1623	1615	1627	1622	C=N (NOH)
1589, 1551, 1511, 1489	1594, 1569, 1522, 1493	1594, 1569, 1522, 1493	1590, 1553, 1513, 1490	1594, 1568, 1525, 493	1593, 1561, 1521, 1492	C=C (кольцо) C=N (кольцо)
969, 948, 922	972, 940, 919	973, 922	968, 939	970, 929	971, 939	N-O
-	330, 310	278 пл, 262, 214	_	328, 306	301 пл, 278, 210	M–Cl
_	259	242, 229		256	245, 227	M–N

Таблица 1. Основные параметры (v, см⁻¹) ИК спектров лигандов L¹, L² и комплексов 1–4

временного протекания процессов дегидратации и разложения комплексов 1–4 при нагревании.

В ИК спектрах лигандов L¹,L² и комплексов 1-4 идентифицированы полосы, отвечающие колебаниям основных функциональных групп (табл. 1). В спектрах лигандов L^1 и L^2 при 3133 и 3168 см⁻¹ наблюдается полоса, отвечающая v(OH) оксимной группы. В спектрах комплексов 1-4 в области валентных колебаний воды в диапазоне 3408-3351 см⁻¹ проявляется широкая полоса, которая перекрывается с полосой v(OH) оксимной группы, смещенной в область высоких энергий относительно положения этой полосы в спектрах свободных лигандов. Полосы v(N-O) в спектрах комплексов практически не меняют своего положения по сравнению со спектрами лигандов L¹ и L², что предполагает отсутствие атома N оксимной группы в координационной сфере ионов металлов, а изменение положения полосы v(OH) связано с изменением при комплексообразовании системы водородных связей. По сравнению со спектрами свободных лигандов группа полос колебаний связей С=С и С=N валентных фенантролинового фрагмента в спектрах комплексов смещается в высокочастотную область спектра, что указывает на координацию ионами Zn²⁺ и Cd²⁺ атомов N фенантролинового фрагмента. В области колебаний связей металл-лиганд в ИК спектрах комплексов 1-4 обнаружены интенсивные расщепленные полосы v(M-Cl) (табл. 1). Одной из причин расщепления полосы может быть разный характер связи M-Cl. По-видимому, в комплексах 1-4 атомы Cl являются как мостиковыми, так и концевыми, или возможно их участие в межмолекулярных взаимодействиях. С целью доказательства правильности отнесения полос v(M-Cl) были записаны ИК спектры комплексов 5 и 6 в диапазоне 600-80 см⁻¹ и обнаружены полосы v(M-Br) с максимумами при 251, 232 и 198, 169 см⁻¹ соответственно. Для комплексов 1, 2 и 5, 6 найдены значения отношений частот v(Zn-Br)/v(Zn-Cl) = 0.75, 0.76 и v(Cd-Br)/v(Cd-Cl) = 0.76, 0.79, которые входят в интервал 0.74-0.77, что подтверждает отнесение полос v(M-Cl) [26]. В спектрах комплексов 1-4 выделены новые полосы, отсутствующие в спектрах лигандов L^1 и L^2 и относящиеся к v(M-N) (табл. 2), при чем полоса v(Cd-N) расщеплена. По данным ИК-спектроскопии для комплексов 1-4 в координационную сферу ионов Zn²⁺и Cd²⁺ входят атомы N фенантролинового фрагмента и атомы Cl, которые могут выполнять функцию как мости-кового, так и концевого лиганда, участвующего в Н-связях.

Комплексы 1-4 малорастворимы в воде и ряде органических растворителей (EtOH, *i*-PrOH, CHCl₃, CH₂Cl₂), но эти соединения удалось растворить в смеси CDCl₃-ДМСО и провести исследования методом ЯМР. Сравнение параметров спектров растворов свободного лиганда L¹ и ЯМР комплексов 1, 2 (табл. 2) показывает, что при переходе от лиганда к комплексам сигналы терпенового фрагмента меняются мало. Это позволяет заключить, что координация лиганда происходит по фенантролиновому фрагменту. Этот вывод согласуется с данными ИК спектроскопии. Можно предположить, что комплексы 1-4 имеют полиядерное строение, аналогичное строению четырехъядерного комплекса Cd(II) с производным пиразинофенантролина [27].

В спектрах возбуждения люминесценции твердых образцов L¹ и L² при 300 К имеется полоса в видимой ($\lambda_{max} = 410$ нм) и УФ области спектра ($\lambda_{max} = 360$ нм) соответственно. В спектре возбуж-

N⁰		L ¹ (CDCl ₃)	1 (CDCl ₃ + DMSO- d_6)	2 (CDCl ₃ + DMSO- <i>d</i> ₆)			
атома	δ _{Сі} , м. д.	δ _{н<i>i</i>} , м. д. (<i>J</i> _{нн} , Гц)	δ _{н<i>i</i>} , м. д. (<i>J</i> _{нн} , Гц)	δ _{Н<i>i</i>} , м. д. (<i>J</i> _{HH} , Гц)			
1	17.16	0.67 д. д. д (<i>J</i> _{HH} = 9.3, 9.3, 6.0)	0.61 д. д. д (<i>J</i> _{HH} = 9.4, 9.4, 5.9)	0.61 м (<i>W</i> _{1/2} =21 Гц)			
2	32.10	2.37 д. д (<i>J</i> _{HH} = 15.9, 9.3, <i>pro-S</i>)	2.28 д. д (<i>J</i> _{HH} = 15.9, 9.4, <i>pro-S</i>)	2.29 д. д (<i>J</i> _{HH} = 15.8, 9.6, <i>pro-S</i>)			
		1.23 д. д (<i>J</i> _{HH} = 15.9, 6.0, <i>pro-R</i>)	1.13 д. д (<i>J</i> _{HH} = 15.9, 5.9, <i>pro-R</i>)	1.09 д. д (J _{HH} = 15.8, 5.9, <i>pro-R</i>)			
3	59.02						
4	158.23						
5	18.41	2.30 д. д (<i>J</i> _{HH} = 17.9, 8.8, <i>pro-R</i>)	2.16 д. д (<i>J</i> _{HH} = 17.8, 8.9, <i>pro-R</i>)	2.19 м (<i>W</i> _{1/2} = 45 Гц)			
		3.05 д. д (<i>J</i> _{HH} = 17.8, 1.2, <i>pro-S</i>)	2.91 д. д (<i>J</i> _{HH} = 17.8, 1.1, <i>pro-S</i>)	2.54 м (<i>W</i> _{1/2} = 33 Гц)			
6	20.91	0.97 д. д. д (<i>J</i> _{HH} = 9.3, 8.8, 1.2)	0.88 д. д. д (<i>J</i> _{HH} = 9.4, 8.9, 1.1)	0.89 д. д (<i>J</i> _{HH} = 9.6, 9.6)			
7	18.39						
8	14.74	0.82 c	0.74 c	0.74 c			
9	28.05	1.00 c	0.96 c	0.95 c			
10	14.38	1.04 c	0.95 уш. с (<i>W</i> _{1/2} = 3 Гц)	0.93 уш. с (<i>W</i> _{1/2} = 7 Гц)			
11	46.19	2.58 д. т ($J_{\rm HH}$ = 11.3, 5.0) 2.82 д. т ($J_{\rm HH}$ = 11.3, 5.0)	2.61 м ($W_{1/2} = 23$ Гц) 2.83 м ($W_{1/2} = 23$ Гц)	2.75 м (<i>W</i> _{1/2} = 36 Гц) 2.87 м (<i>W</i> _{1/2} = 40 Гц)			
12	46.61	3.87 т (<i>J</i> _{HH} = 5.0)	3.98 м (<i>W</i> _{1/2} = 20 Гц)	3.87 м (<i>W</i> _{1/2} = 46 Гц)			
13	163.80						
14	109.85	7.10 д (<i>J</i> _{HH} = 9.1)	7.37 д (<i>J</i> _{HH} = 9.1)	7.24 д (<i>J</i> _{HH} = 9.1)			
15	137.28	7.94 д (<i>J</i> _{HH} = 9.1)	8.17 д (<i>J</i> _{HH} = 9.1)	8.02 д (<i>J</i> _{HH} = 9.1)			
16	121.91						
17	126.28	7.60 д (<i>J</i> _{HH} = 8.6)	7.81 д (<i>J</i> _{HH} = 8.7)	7.69 д (<i>J</i> _{HH} = 8.6)			
18	122.03	7.45 д (<i>J</i> _{HH} = 8.6)	7.72 д (<i>J</i> _{HH} = 8.7)	7.57 д (<i>J</i> _{HH} = 8.6)			
19	129.19						
20	135.97	8.15 д. д (<i>J</i> _{НН} = 8.1, 1.7)	8.55 д. д (<i>J</i> _{НН} = 8.2, 1.1)	8.38 д. д (<i>J</i> _{НН} = 8.1, 1.1)			
21	121.20	7.51 д. д (<i>J</i> _{HH} = 8.1, 4.3)	7.86 д. д (<i>J</i> _{HH} = 8.2, 4.8)	7.70 д. д (<i>J</i> _{НН} = 8.1, 4.7)			
22	149.29	9.10 д. д (<i>J</i> _{НН} = 4.3, 1.7)	8.95 д. д (<i>J</i> _{НН} = 4.8, 1.1)	9.11 м (<i>W</i> _{1/2} = 11 Гц)			
23	145.01						
24	145.31						
ОН		10.0 уш. с (<i>W</i> _{1/2} = 25 Гц)	10.02 c	9.93 c			

дения комплекса 1 наблюдается расщепленная полоса ($\lambda_{max} = 410$ нм), а в спектре комплекса 3 – широкая полоса с $\lambda_{max} \sim 400$ нм. В спектрах возбуждения комплексов 2 и 4 имеются широкие полосы с $\lambda_{max} \sim 400$ и 450 нм соответственно. Интересно, что положения полос в спектрах возбуждения комплексов Zn(II) и Cd(II) с лигандом L^2 заметно смещены в длинноволновую область по

сравнению со спектром L². Для получения спектров фотолюминесценции использовали длину волны возбуждающего света, при которой находится максимум наиболее интенсивной полосы в спектрах возбуждения соединений.

Спектры фотолюминесценции свободных лигандов L^1 и L^2 имеют полосы с λ_{max} = 450 и 440 нм

Соединение	λ _{ex} , нм	λ _{max} , нм	φ _f , %	τ ₁ , нс	$A_1 \tau_1, \%$	τ ₂ , нс	$A_2 \tau_2, \%$	τ ₃ , нс	$A_3 \tau_3, \%$
L ¹	410	450	_	9.2	46	43.0	32.0	3.10	22.0
1	400	550	0.15	2.5	26	25.0	14.0	0.42	61.0
2	400	510	0.40	6.5	84	326.0	4.8	7.20	11.0
L^2	360	440	0.60	0.3	83	1.8	14.0	8.10	3.2
3	400	530	0.70	6.6	12	1.3	75.0	93.00	12.0
4	450	550	4.40	7.6	62	26.0	15.0	1.30	23.0

Таблица 3. Максимумы полос, квантовые выходы и времена жизни люминесценции твердых образцов соединений L¹, L² и 1–4

 $(\lambda_{возб} = 410 \text{ и } 360 \text{ нм})$ соответственно. Время жизни возбужденных состояний ~10⁻⁹ с (табл. 3). Известно, что при комнатной температуре 1,10фенантролин (Phen), растворенный в CH₂Cl₂, обладает слабой флуоресценцией, $\lambda_{max} = 358$ нм [28, 29]. В спектре люминесценции твердого образца Phen H₂O при 77 К имеется полоса с λ_{max} = 420 нм ($\lambda_{возб}$ = 266 нм). Для увеличения квантового выхода флуоресценции используют введение в молекулу Phen заместителей в положения 2,9 и 4,7 [29]. Отмечается, что введение заместителей может приводить к батохромному смещению полосы в спектре фотолюминесценции. По-видимому, батохромный сдвиг полос фотолюминесценции для L^1 и L^2 по сравнению с положением полосы в спектре твердого Phen H₂O вызван введением заместителя, содержащего фрагмент терпеноида. в молекулы Phen. Комплексы положение 2 органических лигандов с ионами Zn²⁺и Cd²⁺. конфигурацию d^{10} . имеющими электронную проявляют лиганд-центрированную фотолюминесценции [30]. В спектрах фотолюминесценции комплексов 1 и 3 наблюдается широкая полоса с $\lambda_{\text{max}} = 550$ и 530 нм, а в спектрах 2 и 4 – полоса с $\lambda_{max} = 510$ и 550 нм соответственно. Эти спектры относятся к лиганд-центрированной флуоресценции, поскольку времена жизни возбужденного состояния комплексов находятся в интервале 10⁻⁶-10⁻⁹ с (табл. 3).

Для лиганда L^1 зафиксировать значение квантового выхода люминесценции (ϕ_f) не удалось. Низкая интенсивность люминесценции свободного лиганда L^1 , по-видимому, обусловлена его структурой, обеспечивающей эффективный фотоиндуцированный перенос электронов неподеленных электронных пар атомов N в π -систему фенантролинового фрагмента L^1 . Для лиганда L^2 значение ϕ_f составляет 0.6%. Следовательно, на примере замены фрагмента (+)-3-карена на фрагмент (+)-лимонена в составе терпеноидного лиганда обнаружено, что природа фрагмента существенно влияет на люминесцентные свойства. При переходе от свободных лигандов L^1 и L^2 к комплексам Zn(II), Cd(II) с ними значения ф повышаются (табл. 3). Таким образом, в случае комплексов наблюдается СНЕГ-эффект этих Значения квантовых выходов для [24, 31]. комплексов Cd(II) выше, чем для комплексов Zn(II). Найденные для полиядерных комплексов 1-4 значения ϕ_f меньше, чем значения ϕ_f для ранее одноядерных изученных и двухъядерных комплексов Zn(II) и Cd(II) соответственно с производными 2,2-бипиридина, полученными на основе терпенов [19, 22]. Особенностью синтезированных соединений является значительный батохромный сдвиг (на ~100 нм) положения полос в спектрах фотолюминесценции комплексов по сравнению с положением полос в спектрах свободных лигандов. Для свободных лигандов флуоресценция, наблюдается голубая для комплексов Zn(II) и Cd(II) проявляется свечение в зеленой области спектра.

Изучена кинетика затухания люминесценции твердых образцов соединений L¹, L², **1–4**. Для обработки кинетических кривых использовали трехэкспоненциальное приближение, которое наилучшим образом описывает экспериментальные кривые:

$$I(t) = A_1 e^{-(t/\tau_1)} + A_1 e^{-(t/\tau_2)} + A_3 e^{-(t/\tau_3)}.$$

Процентное содержание высвеченных квантов в каждой экспоненте определяется произведением $A_i \tau_i$. В табл. 3 представлены результаты обработки кинетических кривых (времена и проценты высвеченных квантов). Времена жизни

возбужденных состояний для свободных лигандов L^1 , L^2 лежат в диапазоне 0.3–43.5 нс, для комплексов Zn(II) – 0.42–92.8 нс, а для комплексов Cd(II) – 6.52–326 нс (табл. 3). Широкий диапазон времен, скорее всего, связан с неоднородностью высвечивающих центров. Некоторые из них могут находится на поверхности поликристаллов, другие – в глубине решетки или вблизи различных дефектов.

В результате проведенной работы получена и исследована новая группа комплексов Zn(II) и Cd(II), с хиральными лигандами L^1 и L^2 . содержащими фрагменты 1,10-фенантролина и αаминооксима терпена. связанные линкерной группой – пиперазином. Показано, что новые соединения обладают люминесценцией в видимой области спектра. Определены квантовые выходы люминесценции и времена жизни возбужденных состояний. Во всех случаях для соединений в твердом состоянии кинетика люминесценции сложная и хорошо описывается набором трех экспонент.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для синтеза использовали ZnCl₂, CdCl₂ 2.5H₂O, ZnBr₂ 2H₂O, CdBr₂ 4H₂O квалификации ЧДА. EtOH – ректификат, хлористый метилен, хлороформ, толуол, этилацетат, пиперазин, 1.10фенантролин 1-водный, карбонат калия, сульфат натрия безводный, метанол – марки XЧ, *i*-PrOH – ОСЧ, (+)-3-карен, полученный в Лаборатории терпеновых соединений (выделен из скипидара сосны обыкновенной, *ee* ≥ 99.5%), *R*-(+)-лимонен (Sigma-Aldrich, ee = 98%). Нитрозохлориды (+)-3карена и *R*-(+)-лимонена получали по стандартной методике, пропусканием газообразного хлористого нитрозила над раствором терпена [12]. 2-Хлор-1,10фенантролин получен по методике [32]. Для тонкослойной хроматографии использовали готовые пластинки Sorbfil.

Микроанализ на С, Н, N выполнен на анализаторе EuroEA 3000. ИК спектры регистрировали в области 4000–200 см⁻¹ на ИК Фурье-спектрометрах ScimitarFTS 2000 и Vertex 80. Образцы готовили прессованием с КВг и полиэтиленом. Температуру плавления определяли методом дифференциальной сканирующей калориметрии с использованием термоанализатора NETZSCH STA 409. Спектры ЯМР записаны на спектрометре Bruker DRX-500 [500.13 (¹H), 125.77 МГц (¹³C)] при 30°С для

растворов соединений L^1 , **1** и **2** в CDCl₃ или смеси СDСl₃-ДМСО-*d*₆ (Изотоп, Санкт-Петербург) с атомной долей дейтерия не менее 99.8%. Параметры спектров ЯМР приведены в табл. 2. Анализ сильносвязанных спиновых систем выполнен с использованием пакета программ SpinWorks 4.2.0 (© 2015, KirkMarat, University of Manitoba, Canada). Термический анализ в атмосфере гелия выполнен на микровесах TG 209 F1 Iris NETZSCH. Эксперименты проводили в интервале температур 20-300°С при скорости нагрева 10 град/мин, использовали тигли из Al₂O₃, скорость потока газа - 60 мл/мин. Обработку экспериментальных данных проводили С использованием стандартного пакета программ Proteus analysis. Спектры возбуждения люминесценции и люминесценции регистрировались с помошью фотолюминесцентного спектрометра Horiba Jobin Yvon Fluorolog 3, оснащенного ксеноновой лампой 450 Вт, интегральной сферой, двухрешеточной резонаторной и эмиссионной монохроматорами Черни-Тернера (1200 паз/мм) и детектором FL-1073 РМТ. Спектры возбуждения регистрировали от 300 до 600 нм и корректировали для спектрального распределения интенсивности лампы с использованием фотодиодного эталонного детектора. Спектры эмиссии регистрировали в интервале 400-750 нм и корректировали для сферического отклика монохроматоров и детектора с использованием типичных коррекционных производителем. спектров, предоставленных Квантовые выходы измерены с использованием интегрирующей сферы Quanta- ϕ . Кинетику затухания люминесценции регистрировали на **TCSPC** с использованием импульсных источников света NanoLED и контроллера NanoLED-C2.

2-(Пиперазин-1-ил)-1.10-фенантролин. Смесь 150 мл толуола, 4.28 г (20 ммоль) 2-хлор-1,10фенантролина и 1.03 г (120 ммоль) пиперазина кипятили до исчезновения исходного 2-хлор-1,10фенантролина. Контроль за ходом реакции осуществляли с помощью ТСХ (хлороформ: этилацетат = 1:1). Толуол отгоняли, остаток растворяли в хлороформе и хроматографировали на силикагеле, элюент – хлороформ-этилацетат (1:1), хлороформ-этанол (10:1). Выход 3.33 г (63%). Спектр ЯМР ¹Н (CDCl₃), б. м. д.: 9.04 д. д $(1H, H^9, J = 4.3, 1.6 \Gamma \mu), 8.08 д. д (1H, H^7, J = 8.1, 1.6 \Gamma \mu)$ 1.6 Гц), 7.90 д (1H, H⁴, J = 9.1 Гц), 7.55 д (1H, H⁵, J = 8.5 Гц), 7.45 д. д (1H, H⁸, J = 8.1, 4.3 Гц), 7.41 д (1H, H⁶, $J = 8.6 \Gamma \mu$), 7.02 μ (1H, H³, $J = 9.1 \Gamma \mu$), 3.90

т (4H, H¹⁵, J = 5.0 Гп), 2.98 т (4H, H¹⁶, J = 5.0 Гп). Спектр ЯМР ¹³С (CDCl₃), $\delta_{\rm C}$, м. д.: 156.60 (C²), 148.52 (C⁹), 144.33 (C¹³), 144.26 (C¹⁴), 137.25 (C⁴), 135.25 (C⁷), 128.57 (C¹²), 125.52 (C⁵), 121.64 (C¹¹), 121.53 (C⁶), 121.36 (C⁸), 108.76 (C³), 43.59 (C¹⁵), 43.05 (C¹⁶).

Синтез лигандов L^1 и L^2 . Смесь 70 мл метанола, 2.64 г (10 ммоль) 2-(пиперазин-1-ил)-1,10-фенантролин, 2.01 г (10 ммоль) соответствующего нитрозохлорида терпена и 1.38 г (10 ммоль) карбоната калия перемешивали при комнатной температуре до полного растворения нитрозохлорида (около 48 ч). По окончании реакции метанол отгоняли, к остатку добавляли 100 мл воды и 100 мл хлороформ. Водную и органическую фазу разделяли, водную фазу экстрагировали хлороформом (2×50) мл). Объединенный органический экстракт сушили безводным сульфатом натрия, затем отгоняли растворитель. Остаток хроматографировали на силикагеле, элюент – хлороформ-этилацетат (1:1), хлороформ-этанол (10:1).

Оксим (1*R*,4*S*,6*S*,*E*)-4-[4-(1,10-фенантролин-2ил)пиперазин-1-ил]-4,7,7-триметилбицикло[4.1.0]гептан-3-она (L¹). Выход 1.93 г (45%), т. пл. 167– 168°С (разл.), [α]²⁴₅₈₉ 115 (c = 0.33, CHCl₃). Массспектр, *m/z*: 429.2523 [M^+] (вычислено для С₂₆Н₃₁ON₅: 429.2519). Масс-спектр, *m/z* ($I_{\text{отн}}$, %): 371 (10), 264 (16), 263 (75), 222 (20), 208 (100), 179 (26).

Оксим (2S,5R,E)-2-[4-(1,10-фенантролин-2-ил)пиперазин-1-ил]-2-метил-5-(проп-1-ен-2-ил)цикло**гексанона** (L²). Выход 2.39 г (56%), т. пл. 204°С (разл), $[\alpha]_{589}^{24}$ 28 (c = 0.56, CHCl₃). Масс-спектр, m/z: 429.2523 [*М*⁺] (вычислено для C₂₆H₃₁ON₅: 429.2524). Масс-спектр, *m/z* (*I*_{отн}, %): 412 (12), 264 (16), 263 (56), 222 (9), 208 (100), 179 (14). Спектр ЯМР ¹Н (CDCl₃), б, м. д.: 10.20 уш. с (1Н, ОН), 9.15 д. д (1H, H²², J = 4.3, 1.7 Гц), 8.15 д. д (1H, H²⁰, J =8.1, 1.5 Γ u), 7.94 χ (1H, H¹⁵, J = 9.1 Γ u), 7.60 χ (1H, Н¹⁷, *J* = 8.6 Гц, 7.52 д (1Н, Н²¹, *J* = 7.8, 4.2 Гц), 7.45 д (1H, H¹⁸, J = 8.4 Гц), 7.10 д (1H, H¹⁴, J = 9.1 Гц, 4.72 м (2H, H⁸), 3.86 м (4H, H¹²), 3.28 д (1H, H^{3pro-S}) J = 10.1 Гц), 2.75 м и 2.56 м (4H, H¹¹), 2.17 м (1H, H^{6pro-S}, H^{5pro-S}, H^{3pro-R}), 1.91 д. д. д (1H, H⁴, J = 13.2, 12.1, 3.0, 3.0 Гц), 1.73 с (3H, 3H⁹), 1.47 д. д. д (1H, Н^{5pro-S}, J = 13.4, 3.4, 3.0 Гц), 1.38 д. д. д (1Н, Н^{6pro-S} J = 13.5, 13.5, 3.6 Гц), 1.11 с (3H, H¹⁰). Спектр ЯМР ¹³C (CDCl₃), $\delta_{\rm C}$, M. д.: 162.80 (C¹³), 158.20 (C⁴), 149.30 (C²²), 148.86 (C⁷), 145.27 (C²⁴), 144.93 (C²³), 137.29 (C¹⁵), 136.12 (C²⁰), 129.24 (C¹⁹), 126.34 (C¹⁷),

ЖУРНАЛ ОБЩЕЙ ХИМИИ ТОМ 89 № 1 2019

122.11 (C¹⁸), 122.03 (C¹⁶), 121.24 (C²¹), 109.96 (C¹⁴), 109.22 (C⁸), 60.63 (C¹), 46.23 (C¹²), 45.52 (C⁴), 44.99 (C¹¹), 37.15 (C⁶), 25.33 (C⁵), 25.04 (C³), 20.12 (C⁹), 14.29 (C¹⁰).

Синтез ZnL¹Cl₂·1.5H₂O (1). К раствору 0.022 г (0.050 ммоль) лиганда L¹ в 4 мл МеОН при перемешивании добавляли раствор 0.010 г (0.075 ммоль) ZnCl₂ в 3 мл МеОН. Постепенно образуется мелкий светло-желтый осадок. Растворитель упаривали до минимально возможного объема (1 мл). Осадок отфильтровывали с отсасыванием, промывали *i*-PrOH и сушили в вакуумном эксикаторе. Выход 0.010 г (34%). Найдено, %: С 52.3; H 5.5; N11.4. $C_{26}H_{36}Cl_2N_5O_{2.5}Zn$. Вычислено, %: C 52.5; H 6.1; N 11.8.

Синтез CdL¹Cl₂·4H₂O (2) получали аналогично из 0.022 г (0.050 ммоль) лиганда L¹ и 0.017 г (0.075 ммоль) CdCl₂·2.5H₂O. Выход 0.003 г (9%). Найдено, %: C 45.8; H 5.3; N 10.0. C₂₆H₄₁Cl₂N₅O₅Cd. Вычислено,%: C 53.3; H 6.0; N 10.2.

Синтез ZnL²**Cl**₂·**1.5H**₂**O** (**3**) получали аналогично из 0.022 г (0.050 ммоль) лиганда L² и 0.010 г (0.075 ммоль) ZnCl₂. Выход 0.013 г (44%). Найдено, %: C 52.3; H 5.5; N 11.4. C₂₆H₃₆Cl₂N₅O_{2.5}Zn. Вычислено,%: C 52.5; H 6.1; N 11.8.

Синтез CdL²Cl₂·5.5H₂O (4) получали аналогично из 0.022 г (0.050 ммоль) лиганда L² и 0.017 г (0.075ммоль) CdCl₂·2.5H₂O. Выход 0.008 г (22%). Найдено, %: C 43.7; H 4.7; N 9.5. C₂₆H₄₄Cl₂N₅O_{6.5}Cd. Вычислено,%: C 43.7; H 6.2; N 9.8.

Синтез ZnL¹Br₂·2H₂O (5) получали аналогично из 0.022 г (0.050 ммоль) лиганда L¹ и 0.013 г (0.050 ммоль) ZnBr₂·2H₂O. Выход 0.016 г (46%). Найдено, %: C 44.8; H 4.6; N 9.9. C₂₆H₃₇Br₂N₅O₃Zn. Вычислено,%: C 45.0; H 5.4; N 10.1.

Синтез CdL¹Br₂·2H₂O (6) получали аналогично из 0.022 г (0.050 ммоль) лиганда L¹ и 0.017 г (0.050 ммоль) CdBr₂·4H₂O. Выход 0.020 г (54%). Найдено, %: C 42.8; H 4.4; N 9.6. C₂₆H₃₇Br₂N₅O₃Cd. Вычислено,%: C42.2; H 5.0; N 9.5.

ФОНДОВАЯ ПОДДЕРЖКА

Работа выполнена при финансовой поддержке Федерального агентства по науке и образованию России, Российского фонда фундаментальных исследований (проект № 18-33-00243) и Правительства Новосибирской области (проект № 17-43-540857р а).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Muller G.// Dalton Trans. 2009. P. 9692. doi 10.1039/ B909430J.
- WuT., YouX.-Z., BounP. // Coord. Chem. Rev. 2015. Vol. 284. P. 1. doi 10.1016/j.ccr.2014.09.012
- Grassous J. // Chem. Soc. Rev. 2009. Vol. 38. N 3. P. 830. doi 10.1039/B806203J
- 4. Carr R., Evans N.H., Parcer D. // Chem. Soc. Rev. 2012. Vol. 41. N 23. P. 7673. doi 10.1039/c2cs35242g
- Magnetism: molecules to materials V / Eds J.S. Miller, M. Drillon. Weinheim (Federal Republic of Germany):WILEY-VCH Verlag GmbH, 2002. P. 42.
- Li X.-L., Chen K., Liu Y., Wang Z.-X., Wang T.-W., Zuo J.-L., Li Y.-Z., Wang Y., Zhu J.S., liu J.-M., Song Y., You X.-Z. // Angew. Chem. Int. Ed. 2007. Vol. 46. N 36. P. 6820. doi 10.1002/anie.200701802
- Sharma S., Chauhan M., Jamsheera A., Tabassum S., Arijmand F. // Inorg. Chim. Acta. 2017. Vol. 458. P. 8. doi 10.1016/j.ica.2016.12.011
- Болотин С.Н., Буков Н.Н., Волынкин В.А., Панюшкин В.Т. Координационная химия природных аминокислот. М.: Изд. ЛКИ, 2008. 240 с.
- Жданов Ю.А., Алексеев Ю.Е. // Усп. хим. 2002. Т. 71. № 11. С. 1090; Zhdanov Yu.A., Alekseev Yu.E. // Russ. Chem. Rev. 2002. Vol. 71. N 11. P. 969. doi 10.1070/ RC2002v071n11ABEH000758
- Von Zelewsky A., Mamula O. // J. Chem. Soc. Dalton Trans. 2000. N 3. P. 219. doi 10.1039/A908730C
- Mamula O., von Zelewsky A. // Coord. Chem. Rev. 2003. Vol. 242. N 1–2. P. 87. doi 10.1016/S0010-8545 (03)00062-6
- ТкачевА. В. // Рос. хим. ж. 1998. Vol. 42. N 1–2. Р. 42; *Tkachev A.V. //* Mendeleev Chem. J. 1998. Vol. 42. P. 42.
- Ларионов С.В., Ткачев А.В. // Рос. хим. ж. 2004.
 Vol. 48. N 4. С. 154; Larionov S.V., Tkachev A.V. // Mendeleev Chem. J. 2004. Vol. 48. P. 154.
- Ларионов С. В. // Коорд. хим. 2012. Vol. 38. N 1. Р. 3; Larionov S.V. // Russ. J. Coord. Chem. 2012. Vol. 38. P. 1. doi 10.1134/S1070328412010058
- Li D.-P., Wang T.-W., Li Ch.-H., Liu D.-Sh., Li Y.-Zh., You X.-Z. // Chem. Commun. 2010. Vol. 46. P. 2929. doi 10.1039/b924547b
- 16. Liu J., Zhang X.-P., Wu T., Ma B.-B., Wang T.-W., Li Ch.-H., Li Y.-Zh., You X.-Z. // Inorg. Chem. 2012. Vol. 51. P. 8649. doi 10.1021/ic3012475
- 17. Muller G., Bünzli J.-C.G., Riehl J.P., Suhr D., Von Zelewsky A., Mürner H. // Chem. Commun. 2002.

P. 1522. doi 10.1039/b203691f

- Lunkey J.L., Shirotani D., Yamanari K., Kaizaki S., Muller J. // Inorg. Chem. 2011. Vol. 50. N 24. P. 12724. doi 10.1021/ic201851r
- Oyler K. D., Coughlin F. J., Bernhard S.// J. Am. Chem. Soc. 2007. Vol. 129. N 1. P. 210. doi 10.1021/ ja067016v
- Ларионов С.В. Савельева З.А., Клевцова Р.Ф., Глинская Л.А., Усков Е.М., Попов С.А., Ткачев А.В. // ЖСХ. 2010. Т. 51. № 3. С. 537; Larionov S.V., Savels'eva Z.A., Klevtsova R.F., Glinskaya L.A., Uskov E. M., Popov S. A., TkachevA. V. // J. Struct. Chem. 2010. Vol. 51. N 3. P. 519. doi 10.1007/s10947-010-0075-2
- Ларионов С.В., Савельева З.А., Клевцова Р.Ф., Глинская Л.А., Усков Е.М., Рахманова М.И., Попов С.А., Ткачев А.В. // ЖСХ. 2011. Т. 52. № 3.
 С. 547; Larionov S.V., Savel'eva Z.A., Klevtsova R.F., Glinskaya L. A., Uskov E. M., Rakhmanova M. I., Popov S. A., Tkachev A. V. // J. Struct. Chem. 2011.
 Vol. 52. P. 531. doi 10.1134/S0022476611030127
- Kokina T.E., Glinskaya L.A., Tkachev A.V., Plyusnin V.F., Tsoy Yu.V., BagryanskayaI. Yu., Vasilyev E.S., Piryazev D.A., Sheludyakova L.A., Larionov S.V. // Polyhedron. 2016. Vol. 117. P. 437. doi 10.1016/ j.poly.2016.06.018
- Кокина Т.Е., Глинская Л.А., Васильев Е.С., Рахманова М.И., Макарова С.В., Пирязев Д.А., Корольков И.В., Ткачев А.В., Ларионов С.В. // ЖСХ. 2017. Т. 58. № 5. С. 1032; Kokina T.E., Glinskaya L.A., Vasiliev E.S., Rakhmanova M.I., Makarova S.V., Piryazev D.A., Korol'kov I.V., Tkachev A.V., Larionov S.V. // J. Struct. Chem. 2017. Vol. 58. P. 994. doi 10.1134/S0022476617050201
- 24. Williams N.J., Gan W., Reibenspies J.H., Hancock R.D. // Inorg. Chem. 2009. Vol. 48. N 9. P. 1407. doi 10.1021/ ic801403s
- Zhang X.-P., Qi X.-W., Zhang D.-S., Zhu L.-H., Wang X.-H., Shi Z.-F., Lin Q. // Polyhedron. 2017. Vol. 126. P. 111. doi 10.1016/j.poly.2017.01.020
- 26. *Беллами Л.* Инфракрасные спектры сложных молекул. М.: ИЛ, 1963. 590 с.
- Chen H.-F., Zhang M.-J., Wang M.-S., Yang W.-B., Guo X.-G., Lu C.-Z. // Inorg. Chem. Commun. 2012. Vol. 23. P. 123. doi 10.1016/j.inoche.2012.06.022
- Armaroli N., De Cola L., Balzani V., Sauvage J.-P., Dietrich-Buchecker C.O., Kern J.-M. // J. Chem. Soc. Faraday Trans. 1992. Vol. 88. N 4. P. 553. doi 10.1039/ FT9928800553
- 29. Accorci G., Listorti A., Yoosaf K., Armaroli N. // Chem. Soc. Rev. 2009. Vol. 38. P. 1690.doi 10.1039/b806408n
- Vogler A., Kunkely H. // Top. Curr. Chem. 2001. Vol. 213. P. 143. doi 10.1007/3-540-44447-5-3
- Kimura E., Koike T. // Chem. Soc. Rev.1998. Vol. 27. N 3. P. 179. doi 10.1039/A827179Z.
- 32. *Krapcho A.P., Lanza J.B.* // J. Org. Prep. Proc. Int. 2009. P. 603. doi 10.1080/00304940709458644

Luminescent Complexes of Zn(II) and Cd(II) with Chiral Ligands Containing 1,10-Phenanthroline and Natural Monoterpenoids (+)-3-Carene or (+)-Limonene Fragments

T. E. Kokina^{*a,b**}, Yu. P. Ustimenko^{*c*}, M. I. Rakhmanova^{*a*}, L. A. Sheludyakova^{*a,b*}, A. M. Agafontsev^{*c*}, P. E. Plusnin^{*a,b*}, A. V. Tkachev^{*b,c*}, and S. V. Larionov^{*a,b*}

^a A.V. Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences, ul. Akademika Lavrentieva 3, Novosibirsk, 630090 Russia *e-mail: kokina@niic.nsc.ru

^b Novosibirsk National Research State University, Novosibirsk, Russia

^c N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia

> Received May 31, 2018 Revised May 31, 2018 Accepted August 16, 2018

New chiral 1,10-phenanthroline-derived ligands containing fragments of (+)-3-carene (L¹) and (+)-limonene (L²) natural monoterpenoids and their complexes $Zn(L^{1,2})Cl_2 1.5H_2O$, $Cd(L^{1,2})Cl_2 nH_2O$, $Zn(L^1)Br_2 2H_2O$, $Cd(L^1)Br_2 2H_2O$, $Cd(L^1)$

Keywords: terpenes, complexes, zinc, cadmium, luminescence