УДК 661.715.4/.7

КОЛЛОИДНЫЕ И НАНОРАЗМЕРНЫЕ КАТАЛИЗАТОРЫ В ОРГАНИЧЕСКОМ СИНТЕЗЕ: XXII.^{1.} ИССЛЕДОВАНИЕ ПРОЦЕССА ГИДРИРОВАНИЯ ЦИКЛООЛЕФИНОВ В ТРЕХФАЗНОЙ СИСТЕМЕ В ПРИСУТСТВИИ НАНЕСЕННЫХ НАНОЧАСТИЦ МЕТАЛЛОВ ПЕРЕМЕННОЙ ВАЛЕНТНОСТИ

© 2019 г. Д. Н. Небыков*, Ю. В. Попов, В. М. Мохов, С. Е. Латышова, К. В. Щербакова, Н. В. Немцева, Е. В. Шишкин

Волгоградский государственный технический университет, пр. Ленина 28, Волгоград, 400131 Россия *e-mail: nervwho@gmail.com

> Поступило в Редакцию 12 марта 2019 г. После доработки 12 марта 2019 г. Принято к печати 14 марта 2019 г.

Изучены процессы гидрирования непредельных циклических углеводородов в трехфазной системе газ-жидкость-твердый катализатор в присутствии наноструктурированных никелевых, кобальтовых и железных катализаторов в реакторе проточного типа при 130°C и атмосферном давлении. В качестве носителя были использованы активированный уголь RX3Extra, γ -Al₂O₃, цеолит NaX, катионообменная смола марки Purolite CT-175, в качестве восстановителя – NaBH₄ и NH₂NH₂·H₂O. Исследована каталитическая активность наночастиц, нанесенных на подложку, и их селективность относительно продукта исчерпывающего гидрирования.

Ключевые слова: наночастицы, никель, кобальт, железо, гидрирование, цеолит

DOI: 10.1134/S0044460X19100019

Циклические углеводороды находят широкое применение в различных областях химической промышленности: топливно-энергетической, нефтеперерабатывающей, парфюмерной, фармацевтической и полимерной. Так, например, тетрагидродициклопентадиен составляет основу высококалорийного ракетного и авиатоплива, а также является интермедиатом в производстве лекарственных средств на основе адамантана; циклооктан является экономически наиболее выгодным исходным веществом для синтеза пробковой кислоты, которая широко применяется в производстве синтетических волокон, пластмасс и лекарственных средств; пинан используется для синтеза гидроперекиси пинана, который, в свою очередь, является инициатором сополимеризации бутадиена со стиролом.

Данные соединения получают каталитическим гидрированием соответствующих непредельных циклических углеводородов (схема 1). В промышленности данные процессы проводят преимущественно в жидкой фазе в реакторах периодического действия при относительно жестких условиях. Например, дициклопентадиен 1 гидрируют при температуре $120-130^{\circ}$ С и давлении 15 атм [2]. Гидрирование 1,5-циклооктадиена 4 протекает на суспендированном катализаторе Pd/Al₂O₃ при 70°С и 10 атм [3].

Одно из современных направлений совершенствования технологий гидрирования цикленов направлено на применение нанокатализаторов, которые позволяют значительно интенсифицировать

¹ Сообщение XXI см. [1]

эти процессы. Наночастицы металлов в жидкофазных процессах применяют в виде стабилизированных коллоидных растворов [4], а в газофазных процессах – в виде наноразмерных частиц металлов, нанесенных на различные подложки [5-10]. Так, например, использование стабилизированных полиэтиленгликолем наночастиц палладия в автоклаве (в жидкой фазе) при 90°С и давлении 30 атм в течение 50 мин позволяет получить смесь циклооктена 5 и циклооктана 6 с селективностью 24 и 76% соответственно при полной конверсии исходного соединения 4 [11]. На наночастицах палладия возможно проводить гидрирование дициклопентадиена 1 при 50°С и давлении водорода 10 атм в течение 2 ч, при этом выход продукта исчерпывающего гидрирования 3 достигает 76% при конверсии исходного дициклопентадиена 1 86% [12].

Ранее нами были проведены исследования процессов газофазного гидрирования непредельных циклических углеводородов в температурном интервале 140–240°С в присутствии наночастиц никеля, нанесенных на различные подложки [13]. Однако в таких условиях при масштабировании процессов возрастает вероятность протекания побочных реакций, связанных с распадом цикла и перегруппировкой, что, в свою очередь, является причиной дезактивации катализатора при увеличении межрегенерационного цикла. Поэтому нами были изучены процессы гидрирования соответствующих циклоолефинов в условиях трехфазной системы, т.е. в условиях диффузии водорода сквозь жидкую пленку гидрируемого циклоалкена к активным центрам катализатора.

Исследование проводили в реакторе проточного типа (Parr 5400 TubularReactorSystem) в присутствии наночастии металлов переменной валентности (никеля, кобальта и железа) нанесенных на различные носители: активированный уголь RX3Extra, γ -Al₂O₃, цеолит NaX, катионообменную смолу марки Purolite СТ-175. Для сравнения эффективности изучаемых катализаторов все эксперименты проводили в идентичных условиях: температуре 130°С, атмосферном давлении, 2-кратном мольном избытке водорода на одну двойную связь углерод-углерод, загрузке катализатора 2 г и расходе жидкого реагента 0.0036 л/ч без растворителя. Состав реакционной массы анализировали методом спектроскопии ЯМР1Н, ГЖХ и хромато-масс-спектрометрии.

Катализаторы получали путем пропитки носителя водным раствором соответствующей соли металла в течение 24 ч с последующим восстановлением тетрагидроборатом натрия в воде при 20– 25° C (способ *a*) [14] или гидразинмоногидратом с добавлением NaOH при 80–100°C (способ *б*) [15]. Морфология поверхности полученных катализаторов имеет различия в форме, размеров частиц и их агломератов. В зависимости от используемого носителя и метода восстановления на поверхности образуются частицы металлов размером от 40 до 140 нм и их агломераты размером до 250 нм.

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 89 № 10 2019

Ma	Катализатор	Носитель	Восстановитель	Vora en ora 0/	Выход, %		
JN⊡				конверсия, %	2	3	
1	Ni	Purolite CT-175	NaBH ₄	98.9	1.9	97.0	
2	Ni	Цеолит NaX	NaBH ₄	98.7	1.0	97.7	
3	Ni	γ-Al ₂ O ₃	NaBH ₄	98.9	1.1	97.8	
4	Ni	RX3Extra	NaBH ₄	97.8	1.1	96.7	
5	Ni	Purolite CT-175	$NH_2NH_2 \cdot H_2O$	98.6	1.0	97.6	
6	Ni	Цеолит NaX	$NH_2NH_2 \cdot H_2O$	98.3	1.0	97.3	
7	Ni	γ-Al ₂ O ₃	$NH_2NH_2 \cdot H_2O$	99.6	0.8	98.8	
8	Ni	RX3Extra	$NH_2NH_2 \cdot H_2O$	11.7	11.1	0.6	
9	Co	Purolite CT-175	NaBH ₄	98.5	3.7	94.8	
10	Со	Цеолит NaX	NaBH ₄	97.7	3.35	94.35	
11	Со	γ-Al ₂ O ₃	NaBH ₄	97.5	1.3	96.2	
12	Co	RX3Extra	NaBH ₄	5.3	4.6	0.7	
15	Fe	γ-Al ₂ O ₃	$NH_2NH_2 \cdot H_2O$	15.2	12.2	3.0	

Таблица 1. Конверсия дициклопентадиена 1 и выходы продуктов гидрирования

Исследование процесса гидрирования дициклопентадиена 1 проводили при 4-кратном избытке водорода и условном времени пребывания субстрата 0.074 ч кг кат/моль. Наибольшую эффективность в данных условиях показали наночастицы кобальта (способ а) и никеля (способы а, б). Гидрирование дициклопентадиена 1 протекает с достаточно высокой селективностью по отношению к продукту исчерпывающего гидрирования 3 (табл. 1, оп. №№ 5-12). При этом максимальная конверсия диена 1 наблюдается в присутствии наночастиц никеля, нанесенных на γ-Al₂O₃ (табл. 1, оп. № 7) (99.6%), селективность по продукту гидрирования 3 составляет 99.2%. Стоит заметить, что непосредственное восстановление кобальта на поверхности носителя гидразинмоногидратом осуществить невозможно, и требуется дополнительная термическая обработка при 400°С в течение 4 ч, но и при этом полученный катализатор обладает весьма низкой активностью в изучаемых условиях.

При сравнении никелевых катализаторов, нанесенных на γ -Al₂O₃, цеолит NaX или катионообменную смолу, значительной разницы в активности и селективности не наблюдается, кроме катализаторов на основе активированного угля RX3 Extra (табл. 1, оп. №№ 4, 8).

Наночастицы железа в данном случае не проявляют значительной каталитической активности. Максимальная конверсия дициклопентадиена 1 составила 15.2% в присутствии наночастиц железа, восстановленных гидразинмоногидратом на поверхности γ-Al₂O₃.

Интересным оказался тот факт, что в процессе гидрирования 1,5-циклооктадиена 4 при 4-кратном избытке водорода и условном времени пребывания исходного соединения 0.068 ч·кг_{кат}/моль на всех изучаемых катализаторах был получен полупродукт гидрирования 5 с селективностью до 100% (табл. 2), что можно объяснить низкой скоростью гидрирования циклооктена 4 из-за трансаннулярных взаимодействий [16]. Никель- и кобальт-содержащие катализаторы оказались наиболее эфективными, но при этом ни в одном случае не наблюдалась полная конверсия субстрата (табл. 2).

Исследование процесса гидрирования α-пинена 7 проводили при 2-кратном избытке водорода и условном времени пребывания субстрата 0.087 ч·кг_{кат}/моль. Известно, что в зависимости от

N⁰	Катализатор	Носитель	Восстановитель	10 0/	Выход, %		
				Конверсия, %	5	6	
1	Ni	Purolite CT-175	NaBH ₄	96.5	96.5	0	
2	Ni	Цеолит NaX	NaBH ₄	97.2	97.2	0	
3	Ni	γ -Al ₂ O ₃	NaBH ₄	96.8	96.8	0	
4	Ni	RX3Extra	NaBH ₄	82.1	82.1	0	
5	Ni	Purolite CT-175	NH ₂ NH ₂ ·H ₂ O	94.7	94.7	0	
6	Ni	Цеолит NaX	$\rm NH_2 NH_2 \cdot H_2 O$	96.6	96.6	0	
7	Ni	γ-Al ₂ O ₃	NH ₂ NH ₂ ·H ₂ O	96.1	96.1	0	
8	Ni	RX3Extra	NH ₂ NH ₂ ·H ₂ O	31.3	31.3	0	
9	Со	Purolite CT-175	NaBH ₄	92.5	92.5	0	
10	Со	Цеолит NaX	NaBH ₄	93.6	93.6	0	
11	Co	γ -Al ₂ O ₃	NaBH ₄	96.2	96.2	0	

Таблица 2. Конверсия циклооктадиена 4 и выходы продуктов гидрирования

кислотности используемой подложки, наряду с реакцией гидрирования α-пинена, возможно протекание побочных реакций изомеризации. Однако в присутствии никелевых и кобальтовых катализаторов данные процессы протекают в меньшей степени, а селективность по продукту 8 достигает 99.7% (табл. 3). Исключение составляют наночастицы кобальта, нанесенные на цеолит NaX (табл. 3, оп. \mathbb{N}_{2} 9), в присутствии которых содержание продуктов изомеризации в катализате возрастает до

Таблица 3. Конверсия α-пинена 7 и выходы продуктов гидрирования

N⁰	16	II.e errore	D	16	Выход, %	
	катализатор	носитель	Восстановитель	конверсия, %	8	другое ^а
1	Ni	Purolite CT-175	NaBH ₄	99.7	98.6	1.1
2	Ni	Цеолит NaX	NaBH ₄	81.5	75.0	6.5
3	Ni	γ -Al ₂ O ₃	NaBH ₄	99.9	99.6	0.3
4	Ni	RX3Extra	NaBH ₄	99.7	99.5	0.2
5	Ni	Purolite CT-175	$NH_2NH_2 \cdot H_2O$	99.9	99.2	0.7
6	Ni	Цеолит NaX	$NH_2NH_2 \cdot H_2O$	99.5	96.6	2.9
7	Ni	γ -Al ₂ O ₃	$NH_2NH_2 \cdot H_2O$	99.7	98,6	1.1
8	Со	Purolite CT-175	NaBH ₄	97.7	71.9	25.8
9	Со	Цеолит NaX	NaBH ₄	98.5	59.8	38.7
10	Со	γ -Al ₂ O ₃	NaBH ₄	97.8	96.4	1.4
11	Fe	Purolite CT-175	NaBH ₄	95.3	16.7	78.6
12	Fe	Цеолит NaX	NaBH ₄	85.2	0.1	85.1
13	Fe	Цеолит NaX	$NH_2NH_2 \cdot H_2O$	96.5	18.6	77.9

а Продукты изомеризации и последующего гидрирования.

38.7%. В случае наночастиц железа процессы изомеризации протекают в большей степени и содержание пинана **8** в катализате не превышает 18.6%.

Также была изучена стабильность наиболее активных катализаторов. Было обнаружено, что никелевые катализаторы, нанесенные на катионообменную смолу и γ -Al₂O₃, проявляют более высокую стабильность: конверсия и выход целевых продуктов не снижается в течение 10 ч. В отношении других никелевых и кобальтовых катализаторов наблюдается снижение выхода целевых продуктов на 10–15% в течение 10 ч, но при этом активность катализатора восстанавливается при продувке его водородом в течение 1 ч.

Таким образом, установлено, что в трехфазных процессах гидрирования непредельных циклических углеводородов наибольшую каталитическую активность и стабильность проявляют наночастицы никеля, полученные восстановлением как боргидридом натрия, так и гидразинмоногидратом. По каталитической активности исследованные металлы можно расположить в следующейпоследовательности: Ni > Co > Fe. При этом наиболее оптимальным носителем для наночастиц никеля, получаемых химическим восстановлением, является катионообменная смола Purolite CT-175 и γ -Al₂O₃.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Анализ катализата осуществляли хромато-масс-спектрометрическим методом на приборе Saturn 2100 T/GC3900 (ЭУ, 70 эВ). Спектры ЯМР ¹Н получены на спектрометре Varian Mercury-300, рабочая частота – 300МГц. Количественный ГЖХанализ реакционной массы проводили на хроматографе Кристаллюкс-4000М ($t_{\rm H} = 100-210^{\circ}$ С, $t_{\rm исп} =$ 250°С, полярная колонка HP-5, $l_{\rm кол} = 50$ м, $d_{\rm кол} =$ 0.52 мкм, газ-носитель – азот, детектор – ПИД, $t_{\rm ПИД} = 250^{\circ}$ С, растворитель – *н*-гексан). Морфологию катализаторов анализировали методом сканирующей электронной микроскопии на приборе FEI Versa 3D DualBeam.

Методика получения катализатора. Катализатор получали путем пропитки носителя фракции 1–1.5 мм (2 г) водным раствором гексагидрата хлорида никеля(II), гексагидрата хлорида кобальта(II) или гептагидрата сульфата железа(II) (2 г в 5 мл воды) в течение 24 ч. После пропитки, филь-

трования и промывки дистиллированной водой, катализатор восстанавливали тетрагидроборатом натрия (0.1 г) в воде (10 мл) при 20–25°С в течение 20–30 мин (способ *a*) или гидразинмоногидратом (10 мл) в воде (10 мл) с добавлением NaOH (0.5 г) при температуре 80–100°С в течение 50–60 мин (способо δ).

Методика проведения процесса гидрирования. Для проведения процесса использовали лабораторную установку Parr 5400 Tubular Reactor System: реактор – стальная трубка (объем – 20 см³, длина – 0.5 м, внутренй диаметр –7 мм), помещенная в электрическую печь (высота зоны нагрева – 300 мм). Источником водорода являлся генератор водорода ГВ-7 с регулируемой подачей газа.

Катализатор загружали в реактор во влажном виде, сверху засыпали инертный носитель (кварцевая насадка той же фракции) слоем толщиной 100 мм, после чего осушали от воды в токе водорода при 130°С непосредственно перед реакцией течение 1–1.5 ч. После подготовки катализатора в реактор при заданной температуре дозировали исходное соединение и требуемое количество водорода прямотоком сверху вниз. Результаты проведенных исследований представлены в табл. 1–3, за исключением случаев, когда конверсия субстрата не достигала 5%.

Гидрирование дициклопентадиена 1. Процесс проводили на 2 г катализатора при 130°С, мольном соотношении водород:алкен = 4:1; расход реагентов: алкен – 0.027 моль/ч, водород – 0.108 моль/ч; условное время реакции – 0.074 ч.кг_{кат}/моль.

эндо-Тетрагидродициклопентадиен (3). Масс-спектр, *m/e* (*I*_{отн}, %): 136.9 (3.4) [*M*+1]⁺, 136 (30.9), 120.9 (45.9), 95.0 (66.6), 67.0 (99.9).

Дигидродициклопентадиен (2). Спектр ЯМР ¹H, δ, м.д.: 1.11–1.23 м (4H, CH₂), 1.35 к (2H, CH₂, *J* = 22.3 Гц), 2.03–2.18 м (4H, CH₂ + 2CH), 2.42 м (1H, CH). 2.89 м (1H, CH), 5.41 м (1H, CH=), 5.51 м (1H, CH=).

Гидрирование циклоооктадиена (4). Процесс проводили на 2 г катализатора при 130°С, мольном соотношении водород:алкен = 4:1; расход реагентов: алкен – 0.029 моль/ч, водород – 0.116 моль/ч; условное время реакции – 0.068 ч.кг_{кат}/моль. **Циклооктен (5).** Масс-спектр, *m/e* (*I*_{отн}, %): 109.8 (5.0) [*M* + 1]⁺, 109.0 (3.4) [*M*]⁺, 95 (11.3), 81.8 (26.0), 67.0 (86.4), 54.0 (46.4), 41.0 (19.4).

Гидрирование α-пинена (7). Процесс проводили на 2 г катализатора при 130°С, мольном соотношении водород:алкен = 2:1; расход реагентов: алкен – 0.023 моль/ч, водород – 0.046 моль/ч; условное время реакции – 0.087 ч·кг_{кат}/моль.

Пинан (8). Масс-спектр, *m/e* (*I*_{отн}, %): 138 (3) [*M*]⁺, 95 (91), 81 (93), 67(100), 55 (58), 41 (34).

ФОНДОВАЯ ПОДДЕРЖКА

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект № 18-33-00183).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Мохов В.М., Попов Ю.В., Небыков Д.Н., Нищик Е.В., Щербакова К.В., Зотов Ю.Л. // ЖОХ. 2019. Т. 89. Вып. 8. С. 1151.
- Zou J.-J., Zhang X., Jing Kong, Li Wang // Fuel. 2008. Vol. 87. P. 3655. doi 10.1016/j.fuel.2008.07.006
- Schmidt A., Schomacker R. // Ind. Eng. Chem. Res. 2007. Vol. 46.P. 1677. doi 10.1021/ie0611958
- Мохов В.М., Попов Ю.В., Небыков Д.Н. // ЖОХ. 2014. Т. 84. Вып. 4. С. 541; Mokhov V.M., Popov Yu.V., Nebykov D.N. // Russ. J. Gen. Chem. 2014. Vol. 84. N 4. P. 622. doi 10.1134/S1070363214040033
- Canning A.S., Jackson S.D., Monaghan A., Wright T. // Catal. Today. 2006. Vol. 116.N 1. P. 22. doi 10.1016/j. cattod.2006.04.002
- Marin-Astorga N., Pecchi G., Fierro J.L.G., Reyes P. // J. Mol. Catal. (A). 2005. Vol. 231. N 1–2. P. 67.doi 10.1016/j.molcata.2005.01.004

- Du W.Q., Rong Z.M., Liang Y., Wang Y., Lu X.Y., Wang Y.F., Lu L.H. // Chin. Chem. Lett. 2012. Vol. 23. N 7. P. 773. doi 10.1016/j.cclet.2012.05.002
- Cram D.J., Allinger N.L. // J. Am. Chem. Soc. 1956. Vol. 78. N 11. P. 2518. doi 10.1021/ja01592a051
- Chandrasekhar S., Narsihmulu Ch., Chandrashekar G., Shyamsunder T. // Tetrahedron Lett. 2004. Vol. 45. N 11. P. 2421. doi 10.1016/j.tetlet.2004.01.097
- Teixeira A.P.C., Purceno A.D., Barros A.S., Lemos B.R.S., Ardisson J.D., Macedo W.A.A., Nassor E.C.O., Amorim C.C., Moura F.C.C., Hernbndez-Terrones M.G., Portela F.M., Lago R.M. // Catal. Today. 2012. Vol.190. P. 133. doi 10.1016/j.cattod.2012.01.042
- Tian S.H., Yan H.W., Jing Y.J., Zi L.J.// Chin. Chem. Lett. 2008. Vol.19. P. 102. doi 10.1016/j.cclet.2007.10.042
- Behr A., Manz V., Lux A., Ernst A. // Catal. Lett. 2013.
 Vol. 143. N 3. P. 241. doi 10.1007/s10562-013-0960-3
- Попов Ю.В., Мохов В.М., Небыков Д.Н., Щербакова К.В., Донцова А.А. // ЖОХ. 2018. Т. 88. Вып. 1.
 С. 23; Ророv Yu.V., Mokhov V.M., Nebykov D.N., Shcherbakova K.V., Dontsova A.A. // Russ. J. Gen.
 Chem. 2018. Vol. 88. N 1. P. 20. doi 10.1134/S1070363218010048
- Попов Ю.В., Мохов В.М., Небыков Д.Н., Латышова С.Е., Панов А.О., Донцова А.А., Ширханян П.М., Щербакова К.В. // ЖОХ. 2016. Т. 86. Вып. 12. С. 1951; Ророv Ү.V., Mokhov V.M., Nebykov D.N., Latyshova S.E., Panov A.O., Dontsova A.A., Shirkhanyan P.M., Shcherbakova K.V. // Russ. J. Gen. Chem. 2016. Vol. 86. N 12. P. 2589. doi 10.1134/ S1070363216120033
- Попов Ю.В., Мохова В.М., Небыков Д.Н. // ЖОХ.
 2014. Т. 84. Вып. З. С. 385; *Popov Yu.V., Mokhov V.M., Nebykov D.N.* //Russ. J. Gen. Chem. 2014.
 Vol. 84. N 3. P. 444. doi 10.1134/S1070363214030062
- Fragale C., Gargano M., Ravasio N., Rossi M., Santo I. // J. Mol. Catal. 1984. Vol. 24. N 2. P. 211. doi 10.1016/0304-5102(84)85132-9

Colloid and Nanosized Catalysts in Organic Synthesis: XXII. Hydrogenation of Cycloolefines Catalyzed by Immobilized Transition Metals Nanoparticles in a Three-Phase System

D. N. Nebykov*, Yu. V. Popov, V. M. Mokhov, S. E. Latyshova, K. V. Shcherbakova, N. V. Nemtseva, and E. V. Shishkin

Volgograd State Technical University, pr. Lenina 28, Volgograd, 400131 Russia *e-mail: nervwho@gmail.com

Received March 12, 2019; revised March 12, 2019; accepted March 14, 2019

The processes of hydrogenation of unsaturated cyclic hydrocarbons in a three-phase gas–liquid–solid catalyst system in the presence of nanostructured nickel, cobalt, and iron catalysts in a flow reactor at 130°C and atmospheric pressure were studied. RX3Extra activated carbon, γ -Al₂O₃, NaX zeolite, and Purolite CT-175 cation exchange resin were used as a support; NaBH₄ and NH₂NH₂·H₂O were used as a reducing agent. The catalytic activity of supported nanoparticles and their selectivity relative to the product of exhaustive hydrogenation was investigated.

Keywords: nanoparticles, nickel, cobalt, iron, hydrogenation, zeolite