УДК 541.124;544.015;549.73

МЕХАНИЗМЫ ТВЕРДОФАЗНОГО СИНТЕЗА СЛОИСТЫХ ПЕРОВСКИТОПОДОБНЫХ ФАЗ $Ln_2SrFe_2O_7$ (Ln = La, Nd, Gd, Dy)

© 2019 г. Е. А. Тугова*

Физико-технический институт имени А. Ф. Иоффе, ул. Политехническая 26, Санкт-Петербург, 194021 Россия *e-mail: katugova@inbox.ru

> Поступило в Редакцию 16 апреля 2019 г. После доработки 16 апреля 2019 г. Принято к печати 19 апреля 2019 г.

Определены механизмы формирования сложных ферритов со строением двухслойных фаз Руддлесдена–Поппера в системах Ln_2O_3 –SrO–Fe₂O₃ (Ln = La, Nd, Gd, Dy). Для твердофазного синтеза $Ln_2SrFe_2O_7$ (Ln = La, Nd) характерен механизм, включающий стадию образования промежуточных продуктов $LnFeO_3$ и $LnSrFeO_4$ с последующим их взаимодействием с образованием целевого продукта. В случае образования $Gd_2SrFe_2O_7$ реализуются два механизма, включающих реакции $GdFeO_3 + GdSrFeO_4$ и $Gd_2O_3 + Gd_{0.5}Sr_{0.5}FeO_{3-\alpha}$. Лимитирующей стадией образования феррита $Dy_2SrFe_2O_7$ является реакция Dy_2O_3 с $Dy_{0.5}Sr_{0.5}FeO_{3-\alpha}$.

Ключевые слова: ферриты редкоземельных элементов, механизмы формирования, твердофазные химические реакции

DOI: 10.1134/S0044460X19110210

Особенности синтеза двухслойных фаз Руддлесдена-Поппера общей формулы $Ln_2M^1M_2O_7$ (Ln = редкоземельный элемент; M^1 = щелочноземельный элемент; M^2 = Al или 3*d*-элемент) рассматривались в ряде работ [1–11]. Как показал обзор литературы, наиболее подробно исследованы процессы образования и термическая устойчивость двухслойных алюминатов Ln₂SrAl₂O₇ [8, 11–20]. Установлено, что твердофазный синтез сложных оксидов является многостадийным процессом и проходит через образование промежуточных соединений, состав и структура которых меняется в ряду лантаноидов La–Ho. При формировании оксидов, содержащих La, Nd, Sm, промежуточными продуктами являются соединения LnAlO₃ и LnSrAlO₄. Начиная с гадолиния, механизм образования $Ln_2SrAl_2O_7$ (Ln = Gd-Lu) становится иным вследствие термической неустойчивости фазы перовскита LnAlO₃ [15–17], и в качестве промежуточного продукта образуется SrAl₂O₄, не обладающий слоистой структурой.

Механизмы образования изоструктурных ферритов двухслойных фаз Руддлесдена-Поппера мало описаны в литературе [21-30]. Первые упоминания о получении слоистых железосодержащих соединений с удвоенным числом перовскитовых слоев возникли в 70-х годах прошлого века в работах Жубера и его коллег [23, 24], синтезировавших ряд соединений $Ln_2SrFe_2O_7$ (Ln = Nd, Sm, Eu, Gd, Tb) обжигом при 1400°С исходной смеси оксидов Ln_2O_3 , Fe_2O_3 и SrCO₃ на воздухе в течение нескольких дней. Более поздние работы [1, 9, 21, 25, 27–30] показали возможность расширения ряда двухслойных ферритов фаз Руддлесдена-Поппера Ln₂SrFe₂O₇ новым соединением Dy₂SrFe₂O₇, являющимся до настоящего времени последним представителем указанного ряда. Отметим, что в литературе существуют ограниченные сведения по синтезу $Ln_2BaFe_2O_7$ (Ln = La, Nd, Sm, Eu) [24-26], а данные, касающиеся получения сложных оксидов Ln₂CaFe₂O₇, вообще отсутствуют.

Изучение процессов формирования ряда железосодержащих двухслойных фаз Руддлесдена– Поппера позволит установить общие закономерности механизмов их образования, что актуально для разработки методов их получения и прогноза

Рис. 1. Рентгеновские дифрактограммы образцов смеси оксидов Nd_2O_3 , Fe_2O_3 и SrCO₃, соответствующей стехиометрии соединения $Nd_2SrFe_2O_7$, после термической обработки на воздухе при 1200 (*1*), 1300 (*2*), 1400°C (*3*) в течение 5 ч.

синтеза новых соединений. Интересным представляется также рассмотрение особенностей соединений со строением фаз Руддлесдена–Поппера, построенных чередованием блоков структурных типов перовскита (Р) и каменной соли (RS) в последовательности P–RS–P–RS... (в случае однослойных фаз) и P₂–RS–P₂–RS... – для двухслойных соединений, поскольку более устойчивыми могут оказаться фазы, построенные из большего числа перовскитоподобных слоев, в отличие от, например, фаз Ауривиллиуса [31–34].

Данная работа направлена на определение влияния природы редкоземельного элемента на механизмы формирования и устойчивость слоистых перовскитоподобных фаз $Ln_2SrFe_2O_7$ (Ln = La, Nd, Gd, Dy).

Результаты исследования механизма и кинетики формирования $La_2SrFe_2O_7$ были описаны ранее в [29]. Было показано двухстадийное формирование сложного феррита $La_2SrFe_2O_7$ через образование промежуточных перовскитоподобных соединений LaSrFeO₄ и LaFeO₃.

По данным рентгенофазового анализа (рис. 1), в образцах после обжига при 1200°С, наряду с небольшим количеством целевого продукта синтеза $Nd_2SrFe_2O_7$, фиксируются оксиды Nd_2O_3 , $NdFeO_3$, $SrFeO_{3-\delta}$ и $NdSrFeO_4$. Повышение температуры обработки до 1300°С приводит к практически пол-

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 89 № 11 2019

Рис. 2. Рентгеновские дифрактограммы образцов смеси оксидов Gd_2O_3 , Fe_2O_3 и $SrCO_3$, соответствующей стехиометрии соединения $Gd_2SrFe_2O_7$ после термической обработки на воздухе при 1200 (*1*), 1300 (*3*), 1400°С (*5*) в течение 5 ч, $Gd_{0.9}Sr_{0.1}FeO_{3-\alpha}$ (*2*) и $Gd_{0.5}Sr_{0.5}FeO_{3-\alpha}$ (*4*).

ному протеканию реакции, приводя, к формированию Nd₂SrFe₂O₇, о чем свидетельствуют данные рентгенофазового анализа (рис. 1).

После термообработки реакционной смеси оксидов гадолиния, железа(III) и карбоната стронция, соответствующей стехиометрии Gd₂SrFe₂O₇, при 1200°С в течение 5 ч, как следует из данных, приведенных на рис. 2, фиксируются рефлексы исходного оксида гадолиния и образование фазы переменного состава Gd_{1-r}Sr_rFeO_{3-q}. Сопоставление данных рентгеновской дифракции рассматриваемого образца и дополнительно синтезированной в аналогичных условиях серии твердых растворов $Gd_{1-x}Sr_xFeO_{3-\alpha}$ (x = 0-1) показали близкое совпадение характеристических линий для состава $Gd_{0.9}Sr_{0.1}FeO_{3-\alpha}$ (рис. 2). Данные сканирующей электронной микроскопии и микрорентгеноспектрального анализа (см. таблицу) образца $Gd_{0.9}Sr_{0.1}FeO_{3-\alpha}$ после синтеза при 1200°C позволяют судить о наличии двух сосуществующих фаз переменного состава: $Gd_{0.95}Sr_{0.05}FeO_{3-\alpha}$ и Gd_{0.45}Sr_{0.55}FeO_{3-а}. Указанный результат свидетельствует о наличии фазовой сегрегации в системе GdFeO₃-SrFeO_{3-б}, что было отмечено в работах [35, 36]. Повышение температуры термообработки до 1300°С приводит к формированию в реакционной смеси целевого продукта синтеза Gd₂SrFe₂O₇, как можно заключить из данных рентгенофазового и микрорентгеноспектрального анализа (рис. 2,

ТУГОВА

Образец	Элементный состав, мол%			depeny vi ecomon
	FeO _{1.5}	SrO	GdO _{1.5}	Фазовыи состав
Gd _{0.9} Sr _{0.1} FeO _{3-a}	48.17	2.37	49.46	$Gd_{0.89}Sr_{0.11}FeO_{3-\alpha}$
	45.66	27.27	27.06	$Gd_{0.50}Sr_{0.50}FeO_{3-\alpha}$
	43.90	34.15	21.95	$Gd_{0.39}Sr_{0.61}FeO_{3-\alpha}$
	47.62	1.60	50.78	$Gd_{0.97}Sr_{0.03}FeO_{3-\alpha}$
	47.26	2.25	50.49	$Gd_{0.96}Sr_{0.04}FeO_{3-\alpha}$
Gd ₂ SrFe ₂ O ₇	41.73	19.55	38.72	Gd ₂ SrFe ₂ O ₇
	2.79	1.77	95.44	Gd_2O_3
	1.80	0.95	97.25	
	50.73	25.70	23.57	$Gd_{0.47}Sr_{0.53}FeO_{3-\alpha}$
	49.90	24.52	25.58	$Gd_{0.51}Sr_{0.49}FeO_{3-\alpha}$
	47.87	27.00	25.13	$Gd_{0.48}Sr_{0.52}FeO_{3-\alpha}$
	41.94	20.36	37.70	$Gd_2SrFe_2O_7$
	41.93	19.72	38.35	

Данные элементного и фазового анализа состава образцов $Gd_{0.9}Sr_{0.1}FeO_{3-\alpha}$ и $Gd_2SrFe_2O_7^{a}$

а Полужирным шрифтом выделен состав по площади.

см. таблицу). Наряду с целевым продуктом синтеза в смеси фиксируются фаза, близкая по составу к $Gd_{0.5}Sr_{0.5}FeO_{3-\alpha}$, и оксиды Gd_2O_3 моноклинной и кубической модификаций (рис. 2). Исследование растворимости перовскитоподобных фаз в системе $GdFeO_3$ -SrFeO_{3- $\delta}$} комплексом методов: рент-

Рис. 3. Рентгеновские дифрактограммы образцов смеси оксидов Dy_2O_3 , Fe_2O_3 и $SrCO_3$, соответствующей стехиометрии соединения $Dy_2SrFe_2O_7$, после термической обработки на воздухе при 1200 (*1*), 1300 (*2*), 1400°C (*3*) в течение 5 ч.

геновской дифракции, мессбауэровской спектроскопии, микрорентгеноспектрального анализа сосуществующих фаз показало, что границы купола распада твердого раствора $Gd_{1-x}Sr_xFeO_{3-\alpha}$ при 1400°С находятся при $x \sim 0.05$ и 0.50. Таким образом, с большой уверенностью можно отметить, что формирование $Gd_2SrFe_2O_7$ проходит через стадию взаимодействия оксида гадолиния и фазы близкой по составу к $Gd_{0.50}Sr_{0.5}FeO_{3-\alpha}$, т. е. фазы, находящейся в однофазной области системы $GdFeO_3$ – $SrFeO_{3-\delta}$ в рассматриваемых условиях синтеза:

$$2Gd_{0.5}Sr_{0.5}FeO_{3-\alpha} + 1/2Gd_2O_3$$

= Gd_2SrFe_2O_7 + (1/4 - \alpha)O_2.

Согласно данным рентгеновской дифракции, проведенный синтез $Gd_2SrFe_2O_7$ путем термической обработки при 1200 и 1400°С смеси из предварительно синтезированных соединений GdFeO₃ и GdSrFeO₄, так и по результатам работы [28], формирование целевой фазы наблюдается после 24 ч обжига при 1400°С.

Рентгенофазовый анализ образцов $Dy_2SrFe_2O_7$, полученных термической обработкой смеси простых оксидов в аналогичных условиях, показал,

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 89 № 11 2019

что формирование целевой фазы $Dy_2SrFe_2O_7$ проходит через стадию взаимодействия фазы, близкой по составу к $Dy_{0.5}Sr_{0.5}FeO_{3-\alpha}$, с оксидом Dy_2O_3 (рис. 3). Формирование фазы $Dy_{0.5}Sr_{0.5}FeO_{3-\alpha}$ подтверждается литературными данными [37] о границах растворимости системы $DyFeO_3$ -SrFeO_{3- δ}.

Для иллюстрации процессов формирования Ln₂SrFe₂O₇ из простых оксидов лантана/неодима/гадолиния/диспрозия, железа(III) и карбоната стронция представлены схемы, базирующиеся на результатах синхронного термического анализа (ДТА/ТГ) [29], рентгеновской дифракции и микрорентгеноспектрального анализа и отражающие лимитирующие реакции твердофазного получения целевых фаз. Анализ приведенных на рис. 4 данных свидетельствует о наличии двух основных механизмов формирования в ряду Ln₂SrFe₂O₇ в условиях твердофазного синтеза из простых оксидов лантана/неодима/гадолиния/диспрозия, железа(III) и карбоната стронция.

На основании анализа представленных результатов и работ [28–30], можно заключить, что лимитирующей стадией твердофазного синтеза $Ln_2SrFe_2O_7$ (Ln = La, Nd) является взаимодействие предварительно образовавшихся перовскитоподобных фаз LnFeO₃ и LnSrFeO₄, являющихся структурными аналогами целевых фаз со строением P₂/RS (рис. 4). Таким образом, основные химические превращения в реакционной системе на заключительном этапе можно охарактеризовать, как переход компонентов системы $LnO_{1.5}$ -FeO_{1.5}-SrO в тройной разрез $LnO_{1.5}$ -FeO_{1.5}-SrFeO_{3- δ} (рис. 4). Формирование $Gd_2SrFe_2O_7$ можно представить проходящим по двум механизмам, а именно за счет взаимодействий $Gd_2O_3 + Gd_{0.5}Sr_{0.5}FeO_{3-\alpha}$ и $GdFeO_3 + GdSrFeO_4$ (рис. 4). В рассматриваемом случае основные химические превращения в реакционной системе на заключительном этапе синтеза целевой фазы $Gd_2SrFe_2O_7$ проходят в двух тройных разрезах: $GdO_{1.5}$ -FeO_{1.5}-SrFeO_{3- $\delta}$} и $GdO_{1.5}$ -GdFeO₃-SrFeO_{3- δ} (рис. 4).

Механизм формирования $Dy_2SrFe_2O_7$ отличен от механизмов образования $Ln_2SrFe_2O_7$ (Ln = La, Nd, Gd), идущих через формирование перовскитоподобных слоистых соединений с меньшей слойностью LnFeO₃ и LnSrFeO₄. При формировании $Dy_2SrFe_2O_7$ лимитирующей стадией является реакция оксида Dy_2O_3 с фазой, близкой по составу к $Dy_{0.5}Sr_{0.5}FeO_{3-\alpha}$ (рис. 4), проходящая в разрезе $DyO_{1.5}$ -DyFeO₃-SrFeO_{3- δ}. Отметим, что формирование фазы DySrFeO₄ в рассматриваемых условиях синтеза не фиксируется.

Смена механизма формирования в ряду сложных ферритов лантаноидов Ln₂SrFe₂O₇ может быть связана со снижением устойчивости сложных оксидов $LnSrFeO_4$ (Ln = La-Gd), являющихся промежуточными соединениями при получении целевых фаз Ln₂SrFe₂O₇. Отметим, что до настоящего времени гадолинийсодержащий оксид GdSrFeO₄ является последним известным представителем ряда соединений с общей формулой LnSrFeO₄ (Ln = редкоземельный элемент). Отсутствие данных об оксидах $LnSrFeO_4$ (Ln = Dy-Lu) может объясняться синтетическими сложностями, связанными со структурными и термодинамическими причинами, которые отмечались при анализе устойчивости $LnSrAlO_4$ (Ln = редкоземельный элемент) [38, 39]. Термодинамические причины объяснены в работе [39] образованием более устойчивых фаз, локализованных в рассматриваемых системах Ln_2O_3 -MO-Al_2O_3 (Ln = редкоземельный элемент; M = Mg, Ca, Sr, Ba), затрудняющих получение LnMAlO₄. Основываясь на сравнении данных о механизмах формирования $Ln_2SrM_2O_7$ (Ln = pegкоземельный элемент; М =Al, Fe) в условиях твердофазного синтеза в системах Ln₂O₃-SrO-Fe₂O₃ и Ln₂O₃-SrO-Al₂O₃, можно предположить, что начиная с Ln = Gd, более устойчивыми в рассматриваемых системах являются двухслойные фазы Руддлесдена-Поппера.

Таким образом, показано наличие двух основных механизмов формирования Ln₂SrFe₂O₇ в условиях твердофазного синтеза из простых оксилов лантана/неодима/гадолиния/диспрозия, железа(III) и карбоната стронция. Механизм формирования Dy₂SrFe₂O₇ отличен от механизмов образования $Ln_2SrFe_2O_7$ (Ln = La, Nd, Gd), идущих через формирование перовскитоподобных слоистых соединений с меньшей слойностью LnFeO₃ и LnSrFeO₄. Показано, что формирование Gd₂SrFe₂O₇ по второму механизму, как и процесс образования Dy₂SrFe₂O₇, проходит через стадию взаимодействия Ln_2O_3 (Ln = Gd, Dy) и фаз, близких по составу к $Ln_0 _5Sr_0 _5FeO_3$ (Ln = Gd, Dy), т. е. фаз, находящихся в однофазной области систем $LnFeO_3$ -SrFeO₃ (Ln = Gd, Dy) в рассматриваемых условиях синтеза.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез соединений $Ln_2SrM_2O_7$ (Ln = La, Nd. Gd. Dy) И твердых растворов $Gd_{1-x}Sr_{x}FeO_{3-\alpha}$ (0 < x < 1) был осуществлен методом твердофазных химических реакций на воздухе. Подготовительный этап синтеза, заключающийся в предварительном прокаливании исходных реагентов, был выполнен при 1000°С в течение 2 ч для оксидов Ln₂O₃ и при 300°C в течение 2 ч для оксидов SrCO₃ и Fe₂O₃. Поправка на декарбонизацию SrCO₃ была рассчитана по данным термогравиметрии, представленным в работах [28–30]. Термообработку смесей, спрессованных в форме таблеток диаметром 15 мм и толщиной 3-4 мм, проводили на воздухе в печах с платиновыми и платинородиевыми нагревателями в режиме изотермический отжиг-закалка при температурах 1200-1500°С и изотермических выдержках 5 и 24 ч.

Фазовый состав и последовательность фазовых превращений полученных образцов контролировали рентгенографически, съемку проводили на дифрактометрах Shimadzu XRD-7000 (Си K_{α} -излучение) и Rigaku Smart Lab. Выделение дифракционных пиков проводилась исходя из дублетной модели пика программой DRWin из программного комплекса PDWin 4.0.

Микроструктуру и элементный состав образцов определяли методами сканирующей электронной микроскопии и энергодисперсионного рентгеноспектрального элементного микроанализа на сканирующем электронном микроскопе Quanta 200, оснащенном микрозондовой приставкой EDAX. Погрешность определения содержания элементов данным методом варьируется в зависимости от атомного номера элемента, и в среднем составляет около 0.3 мас%. Калибровка микрозондовой приставки осуществлялась по спектрам La, Nd, Gd, Dy, Sr, Fe, O, снятым с образцов эталонной шайбы, поставляемой фирмой Oxford Instruments.

Автор выражает глубокую благодарность В.В. Гусарову (Физико-технический институт им. А.Ф. Иоффе) за ценные советы и помощь в обсуждении результатов и А.А. Красилину (Физико-технический институт им. А.Ф. Иоффе) за проведение электронно-микроскопических исследований.

ФОНДОВАЯ ПОДДЕРЖКА

Данная работа выполнена в рамках темы государственного задания № 9.10, реализуемой в Физико-техническом институте им. А.Ф. Иоффе.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Gurusinghe N. N.M., de la Figuera J., Marco J.F., Thomas M.F., Berry F.J., Greaves C., // Mater. Res. Bull. 2013. Vol. 48. P. 3537. doi 10.1016/j. materresbull.2013.05.058
- Kamegashira N., Satoh H., Meng Ji., Mikami T. // J. Alloys Compd. 2004. Vol. 374. P. 173. doi 10.1016/j. jallcom.2003.11.086
- Pacimasree K.P., Lai K.Yu, Fuentes A.F., Manthiram A. // Intern. J. Hydrogen Energy. 2019. Vol. 44. N 3. P. 1896. doi 10.1016/j.ijhydene.2018.11.129
- Kovalenko A.N., Tugova E.A. // Nanosystems: Phys. Chem. Math. 2018. Vol. 9. N 5. P. 641. doi 10.17586/2220-8054-2018-9-5-641-662
- Yi L., Liu X.Q., Li L., Chen X.M. // Int. J. Appl. Ceram. Technol. 2013. Vol. 10. P. 177. doi 10.1111/ijac.12106
- 6. *Rao C.N.R., Raveau B.* Transition Metal Oxides: Structure, properties and synthesis of ceramic oxides.

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 89 № 11 2019

New York: Wiley-VCH, 1998. P. 227.

- Чупахина Т.И., Базуев Г.В., Заболоцкая Е.В. // ЖНХ.
 2010. Т. 55. № 2. С. 281; Chupakhina T.I., Bazuev G.V., Zabolotskaya E.V. // Russ. J. Inorg. Chem. 2010.
 Vol. 45. N 2. P. 247. doi 10.1134/S0036023610020178
- Zvereva I., Smirnov Yu., Gusarov V.V., Popova V., Choisnet J. // J. Solid State Sci. 2003. Vol. 5. P. 343. doi 10.1016/S1293-2558(02)00021-3
- Khvostova L.V., Volkova N.E., Gavrilova L.Ya., Cherepanov V.A. // Mater. Lett. 2018, Vol. 213. P. 158. doi 10.1016/j.matlet.2017.11.041
- Dias A., Viegas J. I., Moreira R.L. // J. Alloys Compd. 2017. Vol. 725. P. 77. doi 10.1016/j.jallcom.2017.07.155
- Fava J., Le Flem G. // Mater. Res. Bull. 1975. Vol. 10. N 2. P. 75. doi 10.1016/0025-5408(75)90123-3
- Feng J., Wan Ch., Xiao B., Zhou R., Pan W., Clarke D.R. // Phys. Rev. (B). 2011. Vol. 84. P. 024302. doi 10.1103/ PhysRevB.84.024302
- Зверева И.А., Попова В.Ф., Тугова Е.А., Пылкина Н.С., Гусаров В.В. // Физика и химия стекла. 2005. Т. 31. № 6. С. 1112; Zvereva I.A., Pylkina N.S., Popova V.F., Tugova E.A., Gusarov V.V. // Glass Phys. Chem. 2005. Vol. 31. N 6. P. 808. doi 10.1007/s10720-005-0129-2
- Попова В.Ф., Тугова Е.А., Зверева И.А., Гусаров В.В. // Физика и химия стекла. 2004. Т. 30. № 6. С. 766; *Ророva V.F., Tugova E.A., Gusarov V.V., Zvereva I.A. //* Glass Phys. Chem. 2004. Vol. 30. N 6. P. 564. doi 10.1007/s10720-005-0014-z
- Зверева И.А., Попова В.Ф., Вагапов Д.А., Тойкка А.М., Гусаров В.В. // ЖОХ. 2001. Т. 71. № 8. С. 1254; Zvereva I.A., Popova V.F., Vagapov D.A., Toikka A.M., Gusarov V.V. // Russ. J. Gen. Chem. 2001. Vol. 71. N 8. P. 1181. doi 10.1023/A:1013248323047
- Зверева И.А., Смирнов Ю.Е., Шуане Ж. // ЖОХ.
 2004. Т. 74. № 5. С. 717; Zvereva I.A., Smirnov Y.E., Choisnet J. // Russ. J. Gen. Chem. 2004. Vol. 74. N 5.
 P. 655. doi 10.1023/B:RUGC.0000039072.46257.b6
- Зверева И.А., Попова В.Ф., Миссюль А.Б., Тойкка А.М., Гусаров В.В. // ЖОХ. 2003. Т. 73. № 5. С. 724. Zvereva I.A., Popova V.F., Missyul A.V., Toikka A.M., Gusarov V.V. // Russ. J. Gen. Chem. 2003. Vol. 73. N 5. P. 684. doi 10.1023/A:1026162214758
- Liu B., Liu X.Q., Chen X.M. // J. Alloys Compd. 2018.
 Vol. 758. P. 25. doi 10.1016/j.jallcom.2018.05.117
- Zvereva I.A., Tugova E.A., Popova V.F., Silyukov O.I., Minich I.A. // Chimica Techno Acta. 2018. Vol. 5. N 1. P. 80. doi 10.15826/chimtech.2018.5.1.05

ТУГОВА

- 20. Yi L., Liu X.Q., Chen X.M. // Int. J. Appl. Ceram. Technol. 2015. Vol. 12. N 3. P. 33. doi 10.1111/ ijac.12366
- Sharma I.B., Singh D., Magotra S.K. // J. Alloys Compd. 1998. Vol. 269. P. 13. doi S0925-8388(98)00153-4
- 22. Drofenik M., Kolar D., Golič L. // J. Cryst. Growth. 1973. Vol. 20. P. 75. doi 10.1016/0022-0248(73)90042-0
- Samaras D., Collomb A., Joubert J.C., Bertaut E.F. // J. Solid State Chem. 1975. Vol. 12. N 1–2. P. 127. doi 10.1016/0022-4596(75)90188-7
- 24. Joubert J.C., Samaras D., Collomb A., Le Flem G., Daoudi A. // Mater. Res. Bull. 1971. Vol. 6. P. 341. doi 10.1016/0025-5408(71)90167-X
- Rakshit S.K., Parida S.C., Dash S., Singh Z., Venugopal V. // Thermochim. Acta. 2006. Vol. 443. N 1. P. 98. doi 10.1016/j.tca.2005.12.020
- Drofenik M., Hanžel D., Zupan J. // Mat. Res. Bull. 1973. Vol. 8. P. 1337. doi 10.1016/0025-5408(73)90017-2
- Aksenova T.V., Vakhromeeva A.E., Elkalashy Sh.I., Urusova A.S., Cherepanov V.A. // J. Solid State Chem. 2017. Vol. 251. P. 70. doi 10.1016/j.jssc.2017.04.015
- Зверева И.А., Отрепина И.В., Семенов В.Г., Тугова Е.А., Попова В.Ф., Гусаров В.В. // ЖОХ. 2007.
 Т. 77. № 6. С. 881; Zvereva I.A., Otrepina I.V., Semenov V.G., Tugova E.A., Popova V.F., Gusarov V.V. // Russ. J. Gen. Chem. 2007. Vol. 77. N 6. P. 973. doi 10.1134/S1070363207060011
- Тугова Е.А., Попова В.Ф., Зверева И.А., Гусаров В.В. // ЖОХ. 2007. Т. 77. № 6. С. 887; Тидоva Е.А., Popova V.F., Zvereva I.А., Gusarov V.V. // Russ. J. Gen. Chem. 2007. Vol. 7. N. 6. P. 979. doi 10.1134/S1070363207060023
- 30. *Тугова Е.А., Попова В.Ф., Зверева И.А., Гусаров В.В. //* Физика и химия стекла. 2006. Т. 32, №6. С. 923;

Tugova E.A., Popova V.F., Zvereva I.A., Gusarov V.V. // Glass Phys. Chem. 2006. Vol. 32. N. 6. P. 674. doi 10.1134/S1087659606060137

- Lomanova N.A., Tomkovich M.V., Ugolkov V.L., Volkov M.P., Pleshakov I.V., Panchuk V.V. Semenov V.G. // Nanosystems: Phys. Chem. Math. 2018. Vol. 9. N. 5. P. 676. doi 10.17586/2220-8054-2018-9-5-676-687
- 32. Морозов М.И., Гусаров В.В. // Неорг. матер. 2002. Т. 38. № 7. С. 867; Morozov M.I., Gusarov V.V. // Inorg. Mater. 2002. Vol. 38. N 7. P. 723. doi 10.1023/a:1016252727831
- 33. Ломанова Н.А., Морозов М.И., Уголков В.Л., Гусаров В.В. // Неорг. матер. 2006. Т. 42. № 2. С. 225; Lomanova N.A., Morozov M.I., Ugolkov V.L., Gusarov V.V. // Inorg. Mater. 2006. Vol. 42. N 2. P. 189. doi 10.1134/s0020168506020142
- 34. Ломанова Н.А., Гусаров В.В. // ЖНХ. 2011. Т. 56. № 4. С. 661; Lomanova N.A., Gusarov V.V. // Russ. J. Inorg. Chem. 2011. Vol. 56. N 4. P. 616. doi 10.1134/ s0036023611040188
- Blasco Ja., Stankiewicz Jo., García Jo. // J. Solid State Chem. 2006. Vol. 178. P. 898. doi 10.1016/j. jssc.2005.12.023
- Kim Ch. S., Um Y.R., Park S.I., Ji S.H., Oh Y.J., Park J.Y., Lee S.J., Yo C.H. // IEEE Trans. Magn. 1994. Vol. 30. N 6. P. 4918. doi 10.1109/20.334265
- Yo Ch.H., Lee E.S., Pyon M.S. // J. Solid State Chem. 1988. Vol. 73. P. 411. doi 10.1016/0022-4596(88)90126-0
- Tugova E.A. // Acta Metallurgica Sinica (Engl. Lett.).
 2016. Vol. 29. N 5. P. 450. doi 10.1007/s40195-016-0407-0
- *Tyzo6a E.A.* // WOX. 2016. T. 86. № 11. C. 1766; *Tugova E.A.* // Russ. J. Gen. Chem. 2016. Vol. 86. N 11. P. 2410. doi 10.1134/S1070363216110025

Mechanisms of Solid State Synthesis of Ln₂SrFe₂O₇ (Ln = La, Nd, Gd, Dy) Layered Perovskite-Related Phases

E. A. Tugova*

Ioffe Institute, ul. Politekhnicheskaya 26, St. Petersburg, 194021 Russia *e-mail: katugova@inbox.ru

Received April 16, 2019; revised April 16, 2019; accepted April 19, 2019

The formation mechanisms of n = 2 Ruddlesden–Popper phases Ln₂SrFe₂O₇ (Ln = La, Nd, Gd, Dy) series in Ln₂O₃–SrO–Fe₂O₃ systems are determined. The solid state synthesis of Ln₂SrFe₂O₇ (Ln = La, Nd) is characterized by mechanism including the stage of LnFeO₃ and LnSrFeO₄ intermediate products formation with their subsequent interaction to form the target product. In the case of Gd₂SrFe₂O₇ formation, two mechanisms are realized, namely, those going through the interaction stages GdFeO₃ + GdSrFeO₄ and Gd₂O₃ + Gd_{0.5}Sr_{0.5}FeO_{3–α}.

Keywords: rare earth ferrites, formation mechanisms, solid-phase chemical reactions

1798