УДК 547.5:542.921.6:541.127

КИНЕТИКА ТЕРМИЧЕСКОГО РАЗЛОЖЕНИЯ 3,7-ДИНИТРО-1,3,5,7-ТЕТРААЗАБИЦИКЛО[3.3.1]НОНАНА

© 2019 г. Л. А. Круглякова^{*a*, *,} Р. С. Степанов^{*a*}, Ю. В. Кекин^{*b*}, К. В. Пехотин^{*a*}

^а Сибирский государственный университет науки и технологий имени академика М. Ф. Решетнева, пр. Газеты Красноярский рабочий 31, Красноярск, 660037 Россия *e-mail: lakruglyakova@sibsau.ru

^b Сибирский юридический институт Министерства внутренних дел России, Красноярск, Россия

Поступило в Редакцию 19 июля 2018 г. После доработки 19 июля 2018 г. Принято к печати 26 июля 2018 г.

Изучена кинетика термораспада 3,7-динитро-1,3,5,7-тетраазабицикло[3.3.1]нонана в твердой фазе и в растворе. Установлены механизм и кинетические закономерности распада. Определены активационные параметры лимитирующей стадии.

Ключевые слова: динитротетраазабицикло[3.3.1]нонан, циклические нитрамины, октоген, термораспад, активационные параметры

DOI: 10.1134/S0044460X19020045

3,7-Динитро-1,3,5,7-тетраазабицикло[3.3.1]нонан является промежуточным продуктом нитролиза уротропина до 1,3,5,7-тетранитро-1,3,5,7-тетраазациклооктана (октоген), и в значительной степени выход динитротетраазабицикло[3.3.1]нонан определяет выход октогена [1]. Заметим, что если исследования кинетики и механизма термораспада вторичных нитраминов насчитывают уже более 70 лет [2], то термораспад 3,7-динитротетраазабицикло[3.3.1]нонана изучен фрагментарно [3] и не позволяет судить о структурно-кинетических закономерностях, механизме реакции его разложения и безопасности применения. В этой связи в настоящей работе изучена кинетика термораспада 3,7-динитротетраазабицикло[3.3.1]нонана в разных агрегатных состояниях – твердой фазе и растворах в дибутилфталате и динитробензоле.

Термораспад 3,7-динитротетраазабицикло-[3.3.1]нонана в твердом агрегатном состоянии протекает с усклрением и описывается S-образными кинетическими кривыми (рис. 1). Изменение отношения величины поверхности реакционного сосуда к его объему (S/V) не влияет на скорость и закон распада, что свидетельствует об отсутствии гетерогенной реакции на стенках реакционного сосуда и цепных процессов. В то же время увеличение отношения массы вещества к объему сосуда (m/V) в 20 раз хотя и приводит к сокращению индукционного периода, однако практического влияния на скорость разложения в индукционном периоде не оказывает. Таким образом, реакция разложения динитротетраазабицикло[3.3.1]нонана протекает только в конденсированной фазе, а плавное увеличение скорости распада на стадии ускорения связано с автокаталитическим взаимодействием продуктов распада, в частности диоксида азота, с исходным веществом. На начальную скорость и величину периода индукции не влияет изменение размера кристаллов в пределах 0.01-0.2 мм (рис. 2). Это свидетельствует также о том, что топохимические эффекты практически не влияют на ускорение распада динитротетраазабицикло[3.3.1]нонана. В случае октогена (β-форма) 3, когда конечный объем газообразных продуктов распада больше, происходит еще и выделение внутрикристаллического растворителя, захваченного динитротетраазабицикло[3.3.1]нонаном при кристаллизации (рис. 2) [4].

Кинетические кривые термораспада 3,7динитротетраазабицикло[3.3.1]нонана в 2 мас%ных растворах дибутилфталата и динитробензола, отличающихся диэлектрической постоянной (є = 6.4 и 20.6 соответственно), имеют слабо выраженную S-образность, характерную для вторичных нитраминов. Скорость термораспада в растворах

Рис. 1. Кинетика термораспада 3,7-динитротетраазабицикло[3.3.1]нонана. *1* – 140, *2* – 150, *3* – 160, *4* – 170, *5* – 180°С.

дибутилфталата и динитробензола выше, чем в твердом состоянии (табл. 1) и в целом выше, чем у других циклических нитраминов, представленных для сравнения в табл. 1.

На первый взгляд, можно предполагать, что накопление нитраминных групп в цикле должно способствовать увеличению скорости распада

Рис. 2. Влияние размеров кристаллов на термическое разложение образцов динитротетраазабицикло[3.3.1] нонана при 160°С, $m/V = 4.2 \cdot 10^{-4}$ г/см³. *1* – измельченный (свежеприготовленный) образец, *2* – измельченный (выдержанный) образец; *3* – неизмельченный образец.

нитрамина, подобно тому, как это наблюдается в ароматических нитросоединениях. Однако, если обратиться к соединению **1** (табл. 1), то проявляется совершенно другая картина: скорость разложения не увеличивается при прочих равных условиях, а, наоборот, сильно уменьшается по сравнению с 3,7-динитротетраазабицикло[3.3.1]нонаном. Это уменьшение скорости для

Таблица 1. Кинетические параметры термораспада циклических нитраминов

		Твердая фаза				Раствор				
N⁰	Вещество	$E_{ m a},$ кДж/моль	lgA	$k_{180^{\circ}} \times 10^{5},$ c ⁻¹	Ссылка	$E_{ m a},$ кДж/моль	lgA	$k_{180^{\circ}} \times 10^{5},$ c ⁻¹	Растворитель	Ссылка
1	Октоген	158.6	11.20	0.082	[5]	187.9	15.00	0.22	Динитробензол	[5]
2	Октоген (б-форма)	158.9	11.30	0.095	[6]					
3	Октоген (β-форма)	150.6 280.3	10. 80 25.00	0.280 0.048	[7] [8]					
4	Октоген (α-форма)	171.5 159.0	12.60 10.80	0.067 0.029	[9] [6]					
5	<i>N</i> , <i>N</i> -Динитропиперазин					155.6	12.00	0.12	Нитробензол	[11]
6	Гексоген	165.3 167.4 217.6	11.70 11.30 19.10	0.043 0.010 0.103	[5] [6] [5]	166.1 167.5	14.30 14.62	1.42 2.04	Динитробензол Дибутилфталат	[5] [10]
7	Пентоген					155.9	13.60	4.23	Динитробензол	[11]
8	Бициклооктан	210.2	18.00	0.058	[12]	170.0 165.0	13.77 14.96	14.79 8.65	Динитробензол Дибутилфталат	[12] [12]
9	Динитротетраазабицикло- [3.3.1]нонан	172.9	15.64	5.08		151.6 150.6	13.71 13.62	17.06 18.10	Дибутилфталат Динитробензол	

ЖУРНАЛ ОБЩЕЙ ХИМИИ ТОМ 89 № 2 2019

Taxmanamma °C	Cranau reaseauaura 0/	Состав продуктов распада, мол%					
Температура, С	Степень превращения, %	N_2	N ₂ O	СО	CO ₂		
160	10	0.98	96.19	0.90	1.93		
160	20	0.69	96.47	0.83	2.01		
160	50	0.64	95.57	1.09	2.69		
160	75	0.66	93.94	1.29	4.11		
160	100	0.64	91.87	2.39	5.10		
150	10	0.68	96.32	0.83	2.18		
150	20	0.46	96.55	0.76	2.23		
170	100	0.95	88.22	2.87	7.94		

Таблица 2. Состав неконденсирующихся газообразных продуктов, образующихся при термическом разложении 3,7динитротетраазабицикло[3.3.1]нонана в твердом состоянии

соединения 1 в твердой фазе составляет примерно 62 раза. В то же время, восьмичленный циклический нитрамин октоген, который может существовать в кристаллической фазе в виде полиморфных модификаций, отличающихся конформацией цикла (соединения 1-4), является наиболее стабильным. Константы скорости распада изменяются примерно на порядок в зависимости от конформации цикла. Как видно из табл. 1, наиболее термически стабильной является плотно упакованная в-форма октогена, которая имеет конформацию скрученного кольца, где одна пара соседних нитрогрупп расположена по одну сторону от средней плоскости кольца, а другая – по другую сторону. Структура аналога октогена – 3,7динитротетраазабицикло[3.3.1]нонана – в кристалле подобна модификации октогена, при этом N-нитраминные группы в молекуле практически плоские [13, 14].

Теоретически возможны три конформации молекулы динитротетраазабицикло[3.3.1]нонана: кресло-кресло (А), кресло-ванна (Б) и ванна-ванна (В), отличающиеся характером угловых деформаций и невалентными взаимодействиями (схема 1). В кристалле реализуется конформация кресло-кресло А, в которой нитраминные группы имеют пирамидальное строение ($\gamma = 26^{\circ}-24^{\circ}$, отклонение аминного азота от плоскости его окружения), а углы СNС в циклах составляют 113°-118°, т. е. примерно такие же, как в α-форме гексогена, промежуточного продукта в синтезе октогена, и меньше, чем в молекуле октогена (121°-125°). В молекуле динитротетраазабицикло[3.3.1]нонана многие внутримолекулярные контакты

укорочены. Расстояния между атомами кислорода и соседними атомами углерода метиленовых групп составляют 2.62-2.69 Å [13], что меньше суммы ван-дер-ваальсовых радиусов атомов углерода и кислорода (3.16 Å). Кроме того, в структуре кристаллов динитротетраазабицикло[3.3.1]нонана имеется несколько коротких межмолекулярных контактов С···О (3.2-3.3 Å). В целом можно констатировать, что структура бицикло[3.3.1]значительно более жесткая, нонана чем циклооктана, и конверсия цикла значительно затруднена. Отметим, что в соответствии с конформационными расчетами, структуры типа креслованна и ванна-ванна существенно менее выгодны, а небольшие барьеры их образования делают такие конформации практически неустойчивыми. Суммируя вышеизложенное, можно понять низкую термостабильность 3,7-динитротетраазабицикло [3.3.1]нонана, константа скорости термораспада которого в ~18 раз больше, чем у β-конформера октогена.

ГЖХ-Анализ неконденсирующихся газообразных продуктов термораспада динитротетра-

Схема 2.

$$O_{2}N \bigvee_{N}^{N} \bigvee_{N}^{N} - NO_{2} \longrightarrow \left[O_{2}N \bigvee_{N}^{N} \bigvee_{N}^{N} \cdots NO_{2}\right]^{\neq} \longrightarrow O_{2}N \bigvee_{N}^{N} \bigvee_{N}^{N} \cdots + NO_{2}$$
(1)

$$CH_2 = N - NO_2 \longrightarrow CH_2O + N_2O$$
 (3)

$$CH_2 = N - CH_2 + NO_2 \longrightarrow CH_2 = N + CH_2O + NO$$
 (4)

$$O_{2}N \bigvee_{N}^{N} \bigvee_{N}^{N\bullet} + NO \longrightarrow O_{2}N - \bigvee_{N}^{N} \bigvee_{N}^{N-NO}$$
(5)

$$O_2 N - N \xrightarrow{N} N - NO \longrightarrow CH_2 = N + CH_2 = N - NO + CH_2 = N - CH_2 \xrightarrow{N} NO_2$$
(6)

$$CH_2 = N - NO \longrightarrow CH_2 = N + CH_2O + N_2$$
(7)

$$CH_2 = N - CH_2 - N - NO_2 \longrightarrow CH_2 = N + CH_2O + N_2O$$
(8)

$$CH_2 = N - CH_2 - N - NO_2 \longrightarrow CH_2 = N + CH_2 = N - NO_2$$
(9)

$$CH_2=N-NO_2 \longrightarrow CH_2=N+NO_2$$
 (10)

$$CH_2O + NO_2 \longrightarrow NO + CO_2 + CO + H_2O$$
(11)

азабицикло[3.3.1]нонана показал, что основным из них является закись азота, а азот образуется в количествах в 100–200 раз меньших (табл. 2), в то время как при термическом разложении гексогена и октогена закись азота и азот выделяются в сопоставимых количествах [15].

данным хромато-масс-спектро-Согласно метрического анализа динитротетраазабицикло-[3.3.1]нонана и конденсированных продуктов термораспада при конверсии 5 и 30%. интенсивность пика молекулярного иона в массспектре исходного динитротетраазабицикло[3.3.1]нонана низка (1.81%). Основными являются осколочные ионы с *m/z* 128 (100%) и 142 (64%). В конденсированных продуктах термораспада интенсивность этих пиков изменяется с увеличением степени конверсии, и появляются новые пики осколочных и перегруппировочных ионов (*m/z* 202, 172, 144, 130, 114, 112, 88, 74, 72, 58, 46, 44, 42, 30, 28), свидетельствующие о деструкции цикла в ходе разложения.

Принимая во внимание вышесказанное, а также симбатное изменение активационных параметров распада 3,7-динитротетраазабицикло[3.3.1]нонана в растворе, можно по аналогии с гексогеном и октогеном предположить гомолитический механизм термораспада, лимитирующей стадией которого является разрыв связи N–NO₂ в одном из циклов молекулы. При таком механизме реакции переходное состояние должно быть более упорядоченным, чем исходное, а энергия активации – меньше энергии наиболее слабой связи N–NO₂ (1.375 Å) [15].

Энтропия активации термораспада динитротетраазабицикло[3.3.1]нонана в растворе при 180°С составляет всего 5.75 Дж/(моль град) (дибутилфталат) и 4.02 Дж/(моль град) (динитробензол). Можно предположить, что переходное состояние близко к исходному из-за более жесткой структуры и наличия коротких контактов С…О в молекуле динитротетраазабицикло[3.3.1]нонана с плоской конфигурацией нитраминной группы.

Механизм термораспада 3,7-динитротетраазабицикло[3.3.1]нонана представлен на схеме 2. В рамках предложенного механизма (1)–(11) хорошо объясняется образование газообразных и конденсированных продуктов термораспада динитротетраазабицикло[3.3.1]нонана, а также пониженные активационные параметры уравнения Аррениуса в растворе по сравнению с гексогеном и октогеном (табл. 1).

Таким образом, установлены кинетические закономерности, активационные параметры и механизм термораспада 3,7-динитротетраазабицикло[3.3.1]нонана в твердом состоянии и растворах. Показано, что причиной ускорения распада является автокатализ продуктами реакции. Выявлено влияние строения молекулы 3,7-динитротетраазабицикло[3.3.1]нонана на скорость и механизм термического разложения

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

3,7-Динитротетраазабицикло[3.3.1]нонан синтезировали из динитрата уротропина и уксусного ангидрида, очищали перекристаллизацией из ацетона, т. пл. 207°С (205–206°С [1]).

Кинетику термораспада изучали манометрическим методом с применением стеклянного манометра типа Бурдона при остаточном давлении воздуха в реакционном пространстве $10^{-2}-10^{-1}$ мм рт. ст. [16]. Анализ газообразных продуктов разложения проводили на хроматографе ЛХМ-80 с использованием колонки с полисорбом 1. Состав конденсированных продуктов распада анализировали на хромато-масс-спектрометре Shimadzu LCMS-2020 (растворитель – ацетонитрил, 70 эВ). Константы скорости термораспада вычисляли по начальным скоростям разложения. Ошибка в определении константы скорости не превышала 6–8%, а энергии активации – 3–4 кДж/моль.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Орлова Е.Ю., Орлова Н.А., Жилин В.Ф., Збарский В.Л., Шутов Г.М., Витковская Л.И. // Октоген – термостойкое взрывчатое вещество. М.: Недра, 1975. 126 с.
- Шу Ю., Корсунский Б.Л., Назин Г.М. // Усп. хим. 2004. Т. 73. № 3. С. 320; Shu Yu., Nazin G.M., Korsounskii B.L. // Russ. Chem. Rev. 2004. Vol. 73. P. 293. doi 10.1070/RC2004v073n03ABEH000802
- Zeman S., Dimun M. // Propel. Expl. Pyrotechn. 1990. Vol. 15. P. 217.
- Збарский В.Л., Максимов Ю.Я., Орлова Е.Ю. // Тр. МХТИ. Теория взрывчатых веществ. М.: ВШ, 1967. Вып. 53. С. 84.
- 5. *Максимов Ю.Я.* // Тр. МХТИ. Теория взрывчатых веществ. М.: ВШ, 1967. Вып. 53. С. 73.
- 6. Буров Ю.М., Манелис Г.Б., Назин Г.М. // Хим. физика. 1985. Т. 4. № 7. С. 956.
- 7. *Клименко Г.К.* Горение и взрыв. М.: Наука, 1977. С. 785.
- Беляева М.С., Клименко Г.К., Бабайцева Л.Т., Столяров П.Н. // Химическая физика процессов горения и взрыва. Кинетика химических реакций. Черноголовка, 1977. С. 47.
- 9. *Буров Ю.М., Назин Г.М. //* Хим. физика. 1984. Т. 3. № 8. С. 1126.
- Степанов Р.С., Круглякова Л.А., Астахов А.М. // ЖОХ. 2007. Т. 77. Вып. 7. С. 1211; Stepanov R.S., Kruglyakova L.A., Astachov A.M. // Russ. J. Gen. Chem. 2007. Vol. 77. N 7. P. 1293. doi 10.1134/ S1070363207070237
- Ситонина Г.В., Корсунский Б.Л., Пятаков И.Ф., Швайко В.Г., Абдрахманов И.Ш., Дубовицкий Ф.И. // Изв. АН СССР. Сер. хим. 1979. № 2. С. 311; Sitonina G.V., Korsunskii B.L., Pyatakov N.F., Shvaiko V.G., Abdrakhmanov I.S., Dubovitskii F.I. // Bull. Acad. Sci. USSR. Div. Chem. Sci. doi 10.1007/BF00925868
- Степанов Р.С., Круглякова Л.А., Астахов А.М. // ЖОХ. 2006. Т. 76. Вып. 12. С. 2063; Stepanov R.S., Kruglyakova L.A., Astachov A.M. // Russ. J. Gen. Chem. 2006. Vol. 76. N 12. P. 1293. doi 10.1134/ S1070363206120292
- Choi C.S., Bulusu S. // Acta Crystallogr. (B). 1974.
 Vol. 30. N 6. P. 1576. doi 10.1107/S0567740874005292
- Целинский И.В., Шугалей И.В., Щербинин М.Б. Физическая химия нитросоединений. Л.: ЛТИ им. Ленсовета, 1985. 186 с.
- Дубовицкий Ф.И., Корсунский Б.Л. // Усп. хим. 1981. Т. 50. № 10. С. 1828; Dubovitskii F.I., Korsunskii B.L. // Russ. Chem. Rev. 1981. Vol. 50. N 10. P. 958. doi 10.1070/RC1981v050n10ABEH002721
- 16. Круглякова Л.А., Степанов Р.С. // Изв. вузов. Сер. хим. и хим. технол. 2008. Т. 51. Вып. 10. С. 31.

Kinetics of Thermal Decomposition of 3,7-Dinitro-1,3,5,7-tetraazabicyclo[3.3.1]nonane

L. A. Kruglyakova^a*, R. S. Stepanov^a, Yu. V. Kekin^b, and K. V. Pekhotin^a

^a Academician M. F. Reshetnev Siberian State University of Science and Technology, pr. Gazety Krasnoyarskii Rabochii 31, Krasnoyarsk, 660037 Russia *e-mail: lakruglyakova@sibsau.ru

^b Siberian Law Institute of the Ministry of Internal Affairs of Russia, Krasnoyarsk, Russia

Received July 19, 2018; revised July 19, 2018; accepted July 26, 2018

The thermal decomposition kinetics of 3,7-dinitro-1,3,5,7-tetraazabicyclo3.3.1. nonane in the solid phase and in solution was studied. The decomposition mechanism and kinetic regularities were established. The activation parameters of the limiting stage were determined.

Keywords: dinitrotetraazabicyclo[3.3.1]nonane, cyclic nitramines, octogen, thermal decomposition, activation parameters