УДК 547.455.522

СИНТЕЗ ГЛИКОНАНОЧАСТИЦ ЗОЛОТА НА ОСНОВЕ ТИОЛСОДЕРЖАЩИХ АЦИЛГИДРАЗОНОВ D-ГЕКСОЗ И ИХ МОДИФИКАЦИЯ ТИОЛИРОВАННОЙ ПОЛИ(2-ДЕЗОКСИ-2-МЕТАКРИЛОИЛАМИНО-D-ГЛЮКОЗОЙ)

© 2019 г. А. Ю. Ершов^{*a,b,* *, М. Ю. Васильева^{*a*}, М. Л. Левит^{*a*}, И. В. Лагода^{*c*}, В. А. Байгильдин^{*d*}, Б. М. Шабсельс^{*a*}, А. А. Мартыненков^{*a*}, А. В. Якиманский^{*a,d*}}

^а Институт высокомолекулярных соединений Российской академии наук, Большой пр. В. О. 31, Санкт-Петербург, 199004 Россия *e-mail: ershov305@mail.ru

^b Санкт-Петербургский государственный технологический институт (технический университет), Санкт-Петербург, Россия

^с Государственный научно-исследовательский испытательный институт военной медицины Министерства обороны РФ, Санкт-Петербург, Россия

^d Санкт-Петербургский государственный университет, Санкт-Петербург, Россия

Поступило в Редакцию 9 августа 2018 г. После доработки 9 августа 2018 г. Принято к печати 13 августа 2018 г.

На основе меркаптоацетил-, 3-меркаптопропионил- и 2-меркаптобензоилгидразонов природных гексоз (D-глюкоза, D-галактоза и D-манноза) и тиолированной поли(2-дезокси-2-метакрилоиламино-D-глюкозы) разработан метод синтеза гликонаночастиц золота со средним размером частиц 15–30 нм и низким значением индекса полидисперсности.

Ключевые слова: тиолсодержащие ацилгидразоны D-глюкозы и D-галактозы и D-маннозы, кольчатокольчатая таутомерия, поли(2-дезокси-2-метакрилоиламино-D-глюкоза, гликонаночастицы золота

DOI: 10.1134/S0044460X19020215

В последнее время интенсивно развивается ряд направлений, связанных с получением и исследованием металлических гликонаночастиц в биологических и биомедицинских целях [1-17]. Благодаря своему уникальному химическому строению, имитирующему естественную клеточную поверхность, повышенному сродству к природным гликопротеиновым молекулам, а также необычным оптическим свойствам. ланные объекты находят применение в качестве иммунохимических маркеров и биосенсоров [2-4], активно используются для диагностики и лечения ряда онкологических заболеваний [5-12], обладают бактерицидными и противовирусными свойствами [13].

Основной путь синтеза гликонаночастиц связан с взаимодействием тиолсодержащих углеводов и

солей благородных металлов (чаще всего, серебра и золота) в присутствии восстанавливающих агентов различной природы [1–16]. При этом синтез исходных тиолсодержащих сахаров – многостадийный процесс, требующий, наряду с введением самой тиолсодержащей функции, предварительной защиты гидроксильных групп углеводного фрагмента молекулы [17].

Ранее нами был предложен одностадийный метод синтеза тиолсодержащих углеводов, основанный на прямом взаимодействии природных дисахаридов с гидразидами тиолсодержащих кислот: меркаптоацетилгидразином, 3-меркаптопропионилгидразином и 2-меркаптобензоилгидразином, а также были получены гликонаночастиця Ag и Au на их основе [18–21]. Данный метод не предпо-

D-глюкоза (а), D-галактоза (б), D-манноза (в).

лагает предварительной защиты гидроксильных групп исходного углевода, что в значительной степени упрощает синтез тиолсодержащих сахаров и гликонаночастиц благородных металлов на их основе.

Целью данной работы было изучение возможности синтеза гликонаночастиц Au на основе взаимодействия коллоидного золота с соединениями **1а–в**, **2а–в** и **3а**, **б**, полученными нами ранее [22–25] на основе взаимодействия природных моносахаридов D-глюкозы и D-галактозы и D-маннозы с тиолсодержащими гидразидами.

Известно, что SH-ацилгидразоны сахаридов в таутомерном сложные плане системы, способные к циклизации как в пиранозную форму А, так и в 1,3,4-тиадиазиновую (1,3,4-тиадиазепиновую) формы В, Г и Д, являющиеся результатом внутримолекулярных нуклеофильных присоединений тиольной группы к связи C=N структуры линейной Б. При этом также необходимо учитывать, что каждая из этих форм

СИНТЕЗ ГЛИКОНАНОЧАСТИЦ ЗОЛОТА

Nº	Форма в кристаллическом состоянии	Таутомерный состав, %					
		D ₂ O			ДМФА- <i>d</i> 7		
		Α	Б	В, Гили Д	Α	Б	В, Гили Д
1a	Α	70	_	30	60	5	35
16	В	15	_	85	35	10	55
1в	В	10	_	90	25	15	60
2a	Α	85	5	10	75	10	15
26	Α	70	5	25	60	20	20
2в	Α	75	5	20	70	10	20
3a	Д	25	5	70	_	_	100
36	Д	15	5	80	_	_	100

Таблица 1. Таутомерный состав соединений 1а–36 в различных растворителях через 48 ч после растворения

способна существовать в виде двух пространственных изомеров (α , β -изомеры формы **A**, *Z*,*E*конформеры формы **Б** и *R*,*S*-диастереомеры форм **B**, Γ , и Д (схема 1).

Не вдаваясь в детальное обсуждение установленных нами ранее [22–25] спектральных различий между возможными формами, основанных на использовании метода спектроскопии ЯМР ¹Н и ¹³С, укажем лишь общие закономерности строения соединений **1–3** в различных растворителях (табл. 1).

В кристаллическом состоянии соединение 1a – продукт конденсации D-глюкозы с гидразидом тиогликолевой кислоты – имеет циклическое пиранозное строение A, тогда как производные D-галактозы (16) и D-маннозы (1в) находятся в кристаллическом состоянии в шестичленной 1,3,4-тиадиазиновой форме B. На это указывает различие в положении сигналов аномерного атома C¹ в спектрах ЯМР ¹³C, снятых в твердой фазе: 89.98 (O,C,N-окружение) и 76.45 м. д. (S,C,N-окружение).

В растворах соединений 1a-в в D₂O реализуются варианты кольчато-кольчатых таутомерных равновесий между пиранозной (**A**) и 1,3,4тиадиазиновой (**B**) формами, при этом положение равновесия определяется природой исходного моносахарида и варьируется в широких пределах – от 70:30 до 10:90% форм **A** и **B** для соединений 1aи 1b соответственно. Использование апротонных полярных растворителей (ДМСО- d_6 , ДМФА- d_7) приводит к частичной стабилизации линейного таутомера **Б** (табл. 1).

Переход от продуктов конденсации моносахаридов с гидразидом тиогликолевой кислоты к производным на основе гидразида 3-меркаптопропионовой кислоты (соединения 2а-в) предполагает вовлечение в таутомерное равновесие семичленной 1,3,4-тиадиазепиновой формы Г, являющейся результатом внутримолекулярного нуклеофильного присоединения тиольной группы к связи C=N линейной структуры Б. Оказалось, что для соединений 2а-в наблюдается заметное смещение кольчато-линейно-кольчатого таутомерного равновесия между формами А, Б и Г в сторону пиранозной формы А; в этой форме соединения 2а-в существует в кристаллическом состоянии и она является превалирующей в растворах всех применяемых растворителей (табл. 1).

2-Меркаптобензоилгидразоны D-глюкозы и D-(соединения галактозы 3a, б) имеют в кристаллическом состоянии циклическое 1,3,4бензотиадиазепиновое строение Д. Эта же форма является единственной для соединений За и Зб в растворах апротонных полярных растворителей (ДМСО- d_6 , ДМФА- d_7). В растворах в D_2O соединения За и Зб претерпевают частичный переход (15-25%) в пиранозную форму А, при этом в обоих случаях реализуется вариант кольчатолинейно-кольчатого таутомерного равновесия между формами А, Б и Д с явным преобладанием последней.

Поскольку для всех исследованных продуктов конденсации гексоз с тиолсодержащими гидразидами форма **Б** не являлась превалирующей и ее доля в растворах не превышала 50%, термин «SH-

4а–в, **5а–в**, **6а**, **б** D-глюкоза (а), D-галактоза (б), D-манноза (в); R=CH₂ (**4а–в**), CH₂CH₂ (**5а–в**), C₆H₄ (**6а**, **б**).

ацилгидразон» для подобных систем носит условный характер.

Синтез гликонаночастиц Au 4a–в, 5а–в и 6a, б осуществляли выдерживанием при комнатной температуре смеси водных растворов коллоидного золота, полученного цитратным способом по методу Туркевича [26] и соединений 1a–в, 2а–в и 3a, б соответственно (схема 2). В течение всего процесса образования гликонаночастиц Au 4a–66 проводили визуальный контроль за ходом реакции, а также осуществляли анализ размера формирующихся гликонаночастиц золота методом динамического светорассеяния (ДСР) и просвечивающей электронной микроскопии (ПЭМ).

Образование гликонаночастиц золота начинается через несколько часов после смешивания растворов исходных соединений 1–3 с коллоидным золотом, о чем можно судить визуально по переходу окраски раствора от темно-красной в фиолетовую и завершается для 3-меркаптопропионил- и 2-меркаптобензоилгидразонов гексоз 5а–в и 6а, б, а также меркаптоацетилгидразона Dглюкозы 4а, уже через сутки. В случае меркаптоацетилгидразонов D-галактозы и D-маннозы 46 и **4в** этот процесс занимает несколько суток, что может быть связано с бо́льшей стабильностью шестичленной тиадиазиновой формы **В** этих соединений по сравнению со стабильностью семичленных циклов Г и Д соединений **5а–в** и **ба**, **б** соответственно.

Очевидно, что взаимодействие соединений 1–3 с коллоидным золотом осуществляется через пиранозную форму **A**, поскольку серосодержащие 1,3,4-тиадиазиновый **B** и 1,3,4-тиадиазепиновые **Г** и Д циклы, в структуре которых не содержится тиольной функции, не способны к такому взаимодействию. Возможность участия линейной гидразонной формы **Б** во взаимодействии с коллоидным золотом также следует исключить из рассмотрения, поскольку содержание этой формы в растворах в D_2O для соединений 1–3 не превышает 5% (табл. 1).

Характерной особенностью гликонаночастиц Au **4–6** является наличие в их электронных спектрах полосы плазмонного резонанса, максимум которой приходится на диапазон 525– 530 нм (рис. 1а). Судя по данным ДСР и ПЭМ, средний диаметр полученных наночастиц

Рис. 1. (а) Электронные спектры гликонаночастиц Au на основе меркаптоацетилгидразона D-глюкозы 4a (1), 3-меркаптопропионилгидразона D-глюкозы 5a (2), 2-меркаптобензоилгидразона D-глюкозы 6a (3). (б) Электронные спектры полимерсодержащих гликонаночастиц Au на основе меркаптоацетилгидразона D-глюкозы 10a (1), 3-меркаптопропионилгидразона D-глюкозы 106 (2), 2-меркаптобензоилгидразона D-глюкозы 10в (3).

составляет 18–22 нм и имеет узкий индекс полидисперсности (табл. 2, рис. 2).

Агрегативная устойчивость гликонаночастиц Au 4-6 в значительной степени определяется строением исходного тиолсодержащего гидразида. Так, гликонаночастицы Au 4a-в и 6a, б, полученные на основе продуктов конденсации гексоз с гидразидами тиогликолевой и 2-меркаптобензойной кислот оказались устойчивыми при хранении в течение 3-4 недель и увеличение их диаметра, согласно данным ДСР, не превышало 5%.

С другой стороны, гликонаночастицы Аи 5а-в, полученные на основе продуктов конденсации Dглюкозы, D-галактозы и D-маннозы с гидразидом 3-меркаптопропионовой кислоты, претерпевают заметную агрегацию уже через 2-3 сут после приготовления. Визуально это можно наблюдать по переходу окраски раствора от фиолетовой до бледно-голубой, а затем до полного обесцвечивания раствора. Агрегация вышеуказанных гликонаночастиц Аи подтверждается также данными ДСР и электронной спектроскопии по заметному смещению полосы плазмонного резонанса в длинноволновую область. Аналогичная склонность к агрегации наблюдалась нами ранее [18] при изучении свойств гликонаночастиц Аи, полученных на основе продуктов конденсации D-лактозы и D-мальтозы с гидразидом 3-меркаптопропионовой кислоты.

Для предотвращения агрегации полученных гликонаночастиц Au **5а**–в нами рассмотрены два подхода. Первый из них базируется на

использовании в качестве стабилизатора натриевой соли *N*-лаурилсаркозина, которую добавляли в реакционную смесь при синтезе гликонаночастиц Аи 5а-в в молярном соотношении 1:1 от массы исходного тиолсодержащего углевода. Следует заметить, что полученные после добавления Na-Nлаурилсаркозина коллоидные растворы гликонаночастиц Аи 5а-в оказались устойчивыми при выдерживании в течение 3–4 недель. что контролировалось нами оптическими И спектральными методами анализа.

Второй метод стабилизации основан на взаимодействии гликонаночастиц Au с тиолированной поли(2-дезокси-2-метакрилоиламино-D-глюкозой) 9,

Таблица 2. Данные о размерах, полидисперсности и световому поглощению водных растворов гликонаночастиц Au **4a–66** через 72 ч после приготовления

№	Средний диаметр, нм	Индекс поли- дисперсности	Длина волны, нм	
4 a	21	0.60	528	
46	19	0.22	525	
4в	16	0.22	527	
5a	19	0.53	530	
56	19	0.43	525	
5в	21	0.35	525	
6a	18	0.60	524	
66	22	0.25	527	

Схема 4.

D-глюкоза (**a-в**), R=CH₂ (**a**), R=CH₂CH₂ (**б**), R=C₆H₄ (**в**).

полученной из 2-дезокси-2-метакрилоиламино-Dглюкозы **8** в условиях RAFT-полимеризации (Reversible Addition–Fragmentation Chain-Transfer) с использованием 4-дитиобензоил-4-циановалериановой кислоты **7** в качестве агента обратимой передачи цепи. Данная реакция рассмотрена нами на примере гликонаночастиц Au **4a**, **5a** и **6a** – производных меркаптоацетил-, 3-меркаптопропионили 2-меркаптобензоилгидразонов D-глюкозы соответственно (схемы 3 и 4).

Радикальная полимеризация 2-дезокси-2-метакрилоиламино-D-глюкозы 8 проходит в ДМФА при 70°С в присутствии 4-дитиобензоил-4-циановалериановой кислоты 7, взятой в молярном соотношении 1:20 от массы исходного мономера, и приводит к образованию поли(2-дезокси-2метакрилоиламино-D-глюкозы) **9**, содержащей терминальную дитиобензоильную группировку. Согласно данным гель-проникающей хроматографии, полимер **9** имел молекулярную массу $M_n =$ 6100 и молекулярно-массовое распределение 1.05.

В спектре ЯМР ¹³С соединения **9**, снятого в твердой фазе, наряду с сигналами основной цепи при 18.01 (CH₃) и 45.95 (CH₂) м. д., присутствуют два сигнала аномерного атома C¹ при 91.25 и 96.32 м. д., указывающие на наличие конфигурационной α , β -изомерии пиранозного цикла в примерном соотношении форм 6:1.

В литературе имеется ряд примеров снятия терминальной тиоацильной группировки углевод-

Рис. 2. Распределение по размерам гликонаночастиц Аu на основе меркаптоацетилгидразона D-глюкозы 4a.

содержащих полимеров [27–35]. Это достигается действием агентов различной природы: боргидрида натрия [30, 31], первичных аминов [32], гидразина и его производных [33]. Образующиеся в ходе удаления тиоацильной группы тиолсодержащие полимеры могут представлять интерес в последующей реакции алкеновой гидротиолизации с целью получения материалов как технического, так и биомедицинского профиля [35–37].

Нами показано, что удаление тиобензоильной группы полимера 9 проходит количественно после выдерживания его водного раствора с эквивалентным количеством циклогексиламина в течение нескольких часов при 25°С. Полученный раствор поли(2-дезокси-2-метакрилоилтиолированной амино-D-глюкозы) затем добавляли в реакционную смесь при синтезе гликонаночастиц Au 4a, 5a и 6a в молярном соотношении 1:10 от массы исходного тиолсодержащего моносахарида. Судя по данным ДСР и ПЭМ, диаметр полученных полимерсодержащих гликонаночастиц 10а-в составляет 18-31 нм и имеет средний индекс полидисперсности (табл. 3, рис. 3). При этом растворы соединений 10а-в оказались устойчивыми при выдерживании в течение 3-4 недель, и наблюдаемое увеличение их диаметра, вызванное частичной агрегацией, не превышало 5%.

Таким образом, предложен простой метод синтеза гликонаночастиц Au на основе тиолсодержащих ацилгидразонов D-глюкозы, Dгалактозы и D-маннозы. Показана принципиальная возможность синтеза Au гликонаночастиц смешанно-лигандного типа, где наряду с исходными тиолсодержащими ацилгидразонами

Рис. 3. Распределение по размерам полимерсодержащих гликонаночастиц Au **10a** на основе меркаптоацетилгидразона D-глюкозы.

альдоз могут быть использованы синтетические полисахариды, содержащие в своем составе функциональную тиольную группу. В этом случае углеводсодержащая макромолекула, входящая в состав наночастицы, может выполнять функции вектора молекулярного узнавания, направляя иммобилизированные ею гликонаночастицы в определённый орган или ткань живого организма.

Кроме того, представляется также актуальным изучение радиопротекторных свойств исходных меркаптоацетил-, 3-меркаптопропионил- и 2-меркаптобензоилгидразонов D-гексоз. Накопленные к настоящему моменту данные [38] свидетельствуют, что соединения, в структуре которых содержатся дисульфидные или тиольные группы, обладают высокой профилактической радиозащитной активностью. Такие вещества могут применяться при лучевой терапии онкологических больных, а также для защиты клеток, не вовлеченных в опухолевый рост от цитотоксического лействия химиотерапевтических препаратов. Между тем, широкое практическое применение

Таблица 3. Данные о размерах, полидисперсности и световому поглощению водных растворов полимерсодержащих гликонаночастиц Au 10а-в через 72 ч после приготовления

N⁰	Средний диаметр, нм	Индекс поли- дисперсности	Длина волны, нм	
10a	18	0.57	527	
105	22	0.41	528	
10в	31	0.67	531	

серосодержащих препаратов ограничено их плохой переносимостью. Одним из способов снижения токсичности и, тем самым, улучшения переносимости серосодержащих радиопротекторов, может являться включение в их состав фрагментов природных моно-, ди- и полисахаридов. Это будет являться предметом наших дальнейших исследований.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Элементный анализ проводили на анализаторе Hewlett-Packard 185В. Спектры ЯМР ¹Н и ¹³С снимали на спектрометре Bruker AV-400 при рабочих частотах 400 и 100 МГц соответственно. Спектры ЯМР ¹³С в твердой фазе снимали на спектрометре Bruker AM-500 при рабочей частоте 125 МГц по стандартной методике с использованием передачи поляризации и вращением под магическим углом с частотой 4.5 кГп. Электронные спектры поглощения гликонанозолота регистрировали частиц на спектрофотометре СФ-2000 в диапазоне длин волн 300-750 нм в кварцевой кювете толщиной 1 см. Диаметр и индекс полидисперсности полученных гликонаночастиц золота определяли методом динамического светорассеяния на анализаторе Malvern Zetasizer Nano-ZS с длиной волны лазерного излучения 633 нм. Для определения морфологии гликонаночастиц золота использовался метод просвечивающей электронной микроскопии на микроскопе Jeol JEM 100 S.

Определение молекулярных масс и молекулярно-массового распределения поли(2-дезокси-2-метакрилоил-D-глюкозы) **9** осуществляли методом гель-проникающей хроматографии на жидкостном хроматографе Agilent-1260 Infinity, оснащенным рефрактометрическим, светорассеивающим и вискозиметрическим детекторами в комбинации с двумя колонками Agilent PLgel MIXED-C (7.5×300 мм). Анализ проводили при 50°C, в качестве подвижной фазы использовали ДМФА с 0.1 М. LiBr со скоростью потока элюента 1 мл/мин.

Синтез и физико-химические параметры тиолсодержащих ацилгидразонов гексоз 1–3 приведены в работах [22–25].

Получение раствора коллоидного золота. К 200 мл 0.01 М. раствора HAuCl₄ при 70°С при перемешивании добавляли горячий раствор 0.10 г трехводного цитрата натрия в 10 мл H₂O. Смесь перемешивали в течение 20 мин при 75–80°С до образования темно-вишневого окрашивания, затем

охлаждали до 25°С и использовали в синтезе гликонаночастиц Au 4–6. Судя по данным ДРС и электронной спектроскопии, полученный раствор содержал основную фракцию коллоидного золота с диаметром частиц 12.0±0.50 нм и имел максимум поглощения при длине волны 524 нм.

Синтез гликонаночастиц золота 4а–66. К раствору 10 мл 0.0001 М. раствора коллоидного золота по каплям при перемешивании добавляли раствор 0.0002–0.003 моля соединения 1а–в, 2а–в или 3а, б в 1 мл H_2O (в случае соединений 5а–в с добавлением 0.02 г Nа-*N*-лаурилсаркозина) и выдерживали полученную смесь при 25°C в течение 48–72 ч. Контроль за протеканием реакции осуществляли визуально по изменению окраски раствора от темно-красной до фиолетовой, а также с использованием методов ДРС, ПЭМ и электронной спектроскопии.

Синтез и физико-химические параметры 2-дезокси-2-метакрилоиламино-D-глюкозы **8** приведены в работе [34].

Синтез поли(2-дезокси-2-метакрилоиламино-**D-глюкозы) 9.** К раствору 1.05 г (4.25 ммоль) соединения 8 в 4.5 мл ДМФА добавляли 0.59 г (0.21 ммоль) 4-дитиобензоил-4-циановалериановой кислоты и 0.009 г (0.053 ммоль) динитрила азобисизомасляной кислоты и выдерживали смесь при 70°С в течение 16 ч. Полимер 9 выделяли осаждением в 150 мл Et₂O и последующей сушкой вакууме. Очистку от низкомолекулярных в примесей осуществляли методом диализа против воды с использованием мембран Orange Scientific с размером пор 1000 Дa последующей И лиофилизацией. Выход 0.66 г (63%), М_n 6100. Спектр ЯМР ¹Н (D₂O), б, м. д.: 1.04–1.26 м (3Н, CH₃), 3.49 M (2H, H³ + H⁵), 3.84–3.91 M (4H, H² + H⁴ + CH₃), 5.49 M (2H, H + H), 5.84–5.91 M (4H, H + H + H⁶), 5.1–5.3 M (1H, H_α¹ + H_β¹). Cneκτp *MMP* ¹³C (твердая фаза), δ_C , м. д.: 18.01 (CH₃), 45.95 (CH₂), 55.65 (C²), 62.28 (C⁶), 72.06 (C⁴ + C⁵), 75.66 (C³), 91.25 (C_α¹), 96.32 (C_β¹), 178.98 (C=O).

Синтез полимерсодержащих гликонаночастиц золота 10а-в. К раствору 0.015 г соединения 9 в 2 мл H_2O добавляли 1.0 мл 0.001 М. раствора циклогексиламина. Выдерживали полученную смесь при при 25°С в течение 3 ч, затем добавляли 0.003 моля соединения 1а, 2а или 3а. К полученному раствору по каплям при перемешивании добавляли 10 мл 0.0001 М. раствора коллоидного золота и выдерживали смесь при 25°С в течение 48– 72 ч. Контроль за протеканием реакции осуществляли с использованием методов ДРС, ПЭМ и электронной спектроскопии.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Carbohydrate nanotechnology / Ed. K.J. Stine. New Jersey: John Wiley & Sons, 2016. 470 p. doi 10.1002/9781118860212.ch3
- Glycochemical synthesis: strategies and applications / Eds S.-C. Hung, M.M.L. Zulueta. Hoboken: John Wiley & Sons, Inc., 2016. 576 p. doi 10.1002/ 9781119006435.ch16
- Engineered carbohydrate-based materials for biomedical applications: polymers, surfaces, dendrimers, nanoparticles, and Hydrogels / Ed. R. Narain. New Jersey: John Wiley & Sons, 2011. 424 p. doi 10.1002/9780470944349.ch6
- Carbohydrate / Eds M. Caliskan, I.H. Kavakli, G.C. Oz. Istanbul: InTech Publisher, 2017. 164p. doi 10.5772/66194
- Nanobiomaterials in cancer therapy: applications of nanobiomaterials / Ed. A. Grumezescu. Oxford: Elsevier Science Publishing Co Inc., 2016. 588 p. doi 10.1016 /B978-0-323-42863-7.00002-5
- Marin M.J., Schofield C.L., Field R.A., Russell D.A. // Analyst. 2015. Vol. 140. P. 59. doi 10.1039/ C4AN01466A
- de la Fuente J.M., Penades S. // Biochim. Biophys. Acta. 2006. Vol. 1760. N 4. P. 636. doi 10.1016/ j.bbagen.2005.12.001
- Barrientos A.G., de la Fuente J.M., Rojas T.C., Fernandez A., Penades S. // Chem. Eur. J. 2003. Vol. 9. N 9. P. 1909. doi 10.1002/CHEM.200204544
- Vetro M., Safari D., Fallarini S., Salsabila K., Lahmann M., Penades S., Lay L., Marradi M., Compostella F. // Nanomedicine. 2017. Vol. 12. N 1. P. 13. doi 10.2217/ nnm-2016-0306
- Bogart L. K., Pourroy G., Murphy C. J., Puntes V., Pellegrino T., Rosenblum D., Peer D., Lévy R. // ACS Nano. 2014. Vol. 8. N 4. P. 3107. doi 10.1021/ nn500962q
- Федотчева Т.А., Оленин А.Ю., Старостин К.М., Лисичкин Г.В., Банин В.В., Шимановский Н.Л. // Хим.-фарм. ж. 2015. Т. 49. № 4. С. 11; Fedotcheva T.A., Olenin A.Yu., Starostin K.M., Lisichkin G.V., Banin V.V., Shimanovskii N.L. // Pharm. Chem. J. 2015. Vol. 49. N 4. P. 220. doi 10.1007/s11094-015-1260-6
- 12. Jazayeri M.H., Amani H., Pourfatollah A.A., Avan A., Ferns G.A., Pazoki-Toroudi H. // Cancer Gene Therapy.

2016. Vol. 23. P. 365. doi 10.1038/cgt.2016.42

- Veerapandian M., Lim S.K., Nam H.M., Kuppannan G., Yun K.S. // Analyt. Bioanalyt. Chem. 2010. Vol. 398. P. 867. doi 10.1007/s00216-010-3964-5
- Perfezou M., Turner A., Merkoci A. // Chem. Soc. Rev. 2012. Vol. 41. P. 2606. doi 10.1039/C1CS15134G
- Love J.C., Estroff L.A., Kriebel J.K., Nuzzo R.G., Whitesides G.M. // Chem. Rev. 2005. Vol. 105. P. 1103. doi 10.1021/cr0300789
- Pourceau G., del Valle-Carrandi L., Di Gianvincenzo P., Michelena O., Penades S. // RSC Adv. 2014. Vol. 4. P. 59284. doi 10. 1039/C4RA11741G
- Wang C. // Adv. Mater. Res. 2013. Vol. 643. P. 153. doi 10.4028/www.scientific.net/AMR.643.153
- Васильева М.Ю., Ершов А.Ю., Байгильдин В.А., Шабсельс Б. М., Лагода И.В., Якиманский А.В. // ЖОХ. 2018. Т. 88. Вып. 6. С. 1027; Vasileva М.Yu., Ershov A.Yu., Baygildin V.A., Shabsels B.M., Lagoda I.V., Yakimansky A.V. // Russ. J. Gen. Chem. 2018. Vol. 88. N 6. P. 1205. doi 10.1134/S1070363218060257
- Ершов А.Ю., Васильева М.Ю., Лагода И.В., Якиманский А.В. // ЖОХ. 2018. Т. 88. Вып. 6. С. 1020; Ershov А.Yu., Vasileva М.Yu., Lagoda I.V., Yakimansky A.V. // Russ. J. Gen. Chem. 2018. Vol. 88. N 6. P. 1199. doi 10.1134/S1070363218060245
- Ершов А.Ю., Васильева М.Ю., Лагода И.В., Байгильдин В.А., Наследов Д.Г., Кулешова Л.Ю., Якиманский А.В. // ЖОХ. 2018. Т. 88. Вып. 1. С. 108; Ershov A.Yu., Vasileva М.Yu., Lagoda I.V., Baygildin V.A., Nasledov D.G., Kuleshova L.Yu., Yakimansky A.V. // Russ. J. Gen. Chem. 2018. Vol. 88. N 1. P. 103. doi 10.1134/S1070363218010164
- Васильева М.Ю., Ершов А.Ю., Байгильдин В.А., Лагода И.В., Кулешова Л.Ю., Штро А.А., Зарубаев В.В., Якиманский А.В. // ЖОХ. 2018. Т. 88. Вып. 1. С. 115; Vasileva M.Yu., Ershov A.Yu., Baygildin V.A., Lagoda I.V., Kuleshova L.Yu., Shtro A.A., Zarubaev V.V., Yakimansky A.V. // Russ. J. Gen. Chem. 2018. Vol. 88. N 1. P. 109. doi 10.1134/S1070363218010176
- Ершов А.Ю., Лагода И.В., Якимович С.И., Зерова И.В., Пакальнис В.В., Мокеев М.В., Шаманин В.В. // ЖОрХ. 2009. Т. 45. Вып. 5. С. 754; Ershov A.Yu., Lagoda I.V., Yakimovich S.I., Zerova I.V., Pakal'nis V.V., Mokeev M.V., Shamanin V.V. // Russ. J. Org. Chem. 2009. Vol. 45. N 5. P. 740. doi 10.1002/chin. 201008197
- Ершов А.Ю., Лагода И.В., Якимович С.И., Зерова И.В., Пакальнис В.В., Шаманин В.В. // ЖОрХ. 2009. Т. 45.
 Вып. 10. С. 1503; Ershov A.Yu., Lagoda I.V., Yakimovich S.I., Zerova I.V. Pakal'nis V.V., Shamanin V.V. // Russ. J. Org. Chem. 2009. Vol. 45. N 10. P. 1488. doi 10.1134/S107042800910011X
- Алексеев В.В., Ершов А.Ю., Черница Б.В., Дорошенко В.А., Лагода И.В., Якимович С.И., Зерова И.В., Пакальнис В.В., Шаманин В.В. // ЖОрХ. 2010. Т. 46.

Buil. 6. C. 865; Alekseyev V.V., Ershov A.Yu., Chernitsa B.V., Doroshenko V.A., Yakimovich S.I., Lagoda I.V., Pakal'nis V.V., Zerova I.V., Shamanin V.V. // Russ. J. Org. Chem. 2010. Vol. 46. N 6. P. 860. doi 10.1134/ S1070428010060138

- Ershov A.Yu., Lagoda I.V., Yakimovich S.I., Kuleshova L.Yu., Vasileva M.Yu., Korovina I.S., Shamanin V.V. // Open Ass. Lib. J. 2016. Vol. 3. e2646. doi 10.4236/ oalib.1102646
- Turkevich J. // Gold Bull. 1985. Vol. 18. P. 125. doi 10.1007/BF03214694
- Toyoshima M., Oura T., Fukuda T., Matsumoto E., Miura Y. // Polym. J. 2010. Vol. 42. P. 172. doi 10.1038/pj.2009.321
- Li X., Bao M., Weng Y., Yang K., Zhang W., Chen G. // J. Mater. Chem. (B). 2014. Vol. 2. P. 5569. doi 10.1039/ c4tb00852a
- Parry A.L., Clemson N.A., Ellis J., Bernhard S.S.R., Davis B.G. // J. Am. Chem. Soc. 2013. Vol. 135. N 25. P. 9362. doi 10.1021/ja4046857
- 30. Housni A., Cai H., Liu S., Suzie H., Pun S.H., Narain R. //

Langmuir. 2007. Vol. 23. N 9. P. 5056. doi 10.1021/ la070089n

- 31. Spain S. G., Albertin L., Cameron N. R. // Chem. Commun. 2006. P. 4198. doi 10.1039/b608383h
- Shan J., Tenhu H. // Chem. Commun. 2007. P. 4580. doi 10.1039/b707740h
- Luan B., Friedrich T., Zhai J., Streltsov V.A., Lindsey B.W., Kaslin J., de Jonge M.D., Zhu J., Hughes T.C., Hao X. // RSC Adv. 2016. N 6. P. 23550. doi 10.1039/c6ra02801b
- 34. Lu W., Ma W., Lu J., Li X., Zhao Y., Chen G. // Macromol. Rapid Commun. 2014. Vol. 35. P. 827. doi 10.1002/marc.201300905
- 35. *Willcock H., O'Reilly R. K. //* Polym. Chem. 2010. N 1. P. 149. doi 10.1039/b9py00340a
- Lowe A.B. // Polym. Chem. 2010. N 1. P. 17. doi 10.1039/b9py 00216b
- Hoyle C.E., Bowman C.N. // Angew. Chem. Int. Ed., 2010. Vol. 49. P. 1540. doi 10.1002/anie.200903924
- Johnke R.M., Sattler J.A., Allison R.R. // Future Oncol. 2014. Vol. 10. N 15. P. 2345. doi 10.2217/FON.14.175

Synthesis of Gold Glyconanoparticles Based on Thiol-Containing Acylhydrazones of D-Hexoses and Their Modification with Thyolated Poly(2-deoxy-2-methacryloylamino-D-glucose)

A. Yu. Ershov^{*a,b**}, M. Yu. Vasilyeva^{*a*}, M. L. Levit^{*a*}, I. V. Lagoda^{*c*}, V. A. Baygildin^{*d*}, B. M. Shabsels^{*a*}, A. A. Martynenkov^{*a*}, and A. V. Yakimansky^{*a,d*}

^a Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bol'shoy pr. V. O. 31, St. Petersburg, 199004 Russia *e-mail: ershov305@mail.ru

^b St. Petersburg State Institute of Technology (Technical University), St. Petersburg, Russia

^c State Research Testing Institute of Military Medicine, Ministry of Defense of the Russian Federation, St. Petersburg, Russia

^d St. Petersburg State University, St. Petersburg, Russia

Received August 9, 2018; revised August 9, 2018; accepted August 13, 2018

A method for the synthesis of gold glyconanoparticles with an average particle size of 15–30 nm and a low polydispersity index value was developed on the basis of mercaptoacetyl-, 3-mercaptopropionyl- and 2-mercaptobenzoylhydrazones of natural hexoses (D-glucose, D-galactose and D-mannose) and thiolated poly(2-deoxy-2-methacryloylamino-D-glucose).

Keywords: thiol-containing acylhydrazones of D-glucose, D-galactose and D-mannose, ring-ring tautomerism, poly(2-deoxy-2-methacryloylamino-D-glucose), gold glyconanoparticles