УДК 547.46'052

РЕАКЦИЯ 1-(2-ОКСОЦИКЛОГЕКСИЛ)ЭТАН-1,1,2,2-ТЕТРАКАРБОНИТРИЛА С а,β-НЕПРЕДЕЛЬНЫМИ АЛЬДЕГИДАМИ

© 2019 г. В. П. Шевердов^{*a*, *,} В. В. Давыдова^{*a*}, О. Е. Насакин^{*a*}, М. А. Марьясов^{*a*}, П. Б. Дороватовский^{*b*}, В. Н. Хрусталев^{*b,c*}

^а Чувашский государственный университет имени И. Н. Ульянова, Московский пр. 15, Чебоксары, 428015 Россия *e-mail: SheverdovVP@yandex.ru

^b Национальный исследовательский центр «Курчатовский институт», Москва, Россия

^с Российский университет дружбы народов, Москва, Россия

Поступило в Редакцию 6 сентября 2018 г. После доработки 6 сентября 2018 г. Принято к печати 17 сентября 2018 г.

Изучены реакции 1-(2-оксоциклогексил)этан-1,1,2,2-тетракарбонитрила с кротоновым и коричным альдегидом, 2-фурилакролеином, 3-фенил-2-пропиналем, 3-бутил-2-пропиналем, 2-фурилакролеином, *R*-(–)-миртеналем. Показано, что эти реакции протекают через стадию образования 8агидроксигексагидро-2*H*-хромен-3,3,4,4-тетракарбонитрила с последующим формированием 10иминотетрагидро-8а,4-(эпоксиметано)хромен-3,3,4(*2H*,4а*H*)-трикарбонитрила. На основании данных рентгеноструктурного анализа сделано предположение о том, что стереохимические особенности продуктов реакций определяются направлением их протекания.

Ключевые слова: 1-(2-оксоциклогексил)этан-1,1,2,2-тетракарбонитрил, непредельные альдегиды, *R*-(–)-миртеналь, конфигурация

DOI: 10.1134/S0044460X1903003X

Актуальность исследований 4-оксоалкан-1,1,2,2тетракарбонитрилов обусловлена их высокой реакционной способностью, позволяющей получать из них разнообразные карбо- и гетероциклы, в том числе полифункциональные органические соединения класса пиранов [1–4], представляющих интерес для изучения их биологической активности [5, 6].

Первые представители 4-оксоалкан-1,1,2,2тетракарбонитрилов были получены реакцией тетрацианоэтилена с кетонами в присутствии «молекулярного серебра» в качестве катализатора [7]. Позже были предложены более доступные катализаторы и на основании данных рентгеноструктурных исследований было установлено, что в реакции 4-оксоалкан-1,1,2,2-тетракарбонитрилов с простейшими альдегидами образуются производные диоксабицикло[3.2.1]октана [8].

В ряду 4-оксоалкан-1,1,2,2-тетракарбонитрилов 1-(2-оксоциклогексил)этан-1,1,2,2-тетракарбонитрил является одним из наиболее активных и перспективных синтонов [2, 9]. Ранее нами было установлено, что 4-оксоалкан-1,1,2,2-тетракарбонитрилы с акролеином образуют 4-формил-3циклопентен-1,1,2-трикарбонитрилы [1]. Реакции с другими непредельными альдегидами более сложного строения изучены не были. Представинтересным изучить реакции лялось 1 - (2 оксоциклогексил)этан-1,1,2,2-тетракарбонитрила с аналогами акролеина: кротоновым и коричным 2-фурилакролеином, *R*-(-)-миртеальдегидом, налем, алкиналями. Установлено, что эти реакции в сравнении с реакцией с акролеином протекают по другому направлению, общим структурным элементом образующихся соединений которого является фрагмент 10-иминотетрагидро-8а,4-(эпоксиметано)хромен-3,3,4(2H,4aH)-трикарбонитрила. Реакции 4-оксоалкан-1,1,2,2-тетракарбонитрила с кротоновым и коричным альдегидом, 2-фурилакролеином, *R*-(-)-миртеналем, алкиналями в этаноле проводили при комнатной температуре. Выход целевых 10-иминотетрагидро-8а,4-(эпокси-

R= CH₃CH=CH (**a**), C₆H₅CH=CH (**б**), 2-Fu-CH=CH (**в**), C₄H₉C≡CH (**г**),C₆H₅C≡CH (**д**).

метано)хромен-3,3,4(2*H*,4а*H*)-трикарбонитрилов **1а**–д составил 88–95% (схема 1).

Вероятно, что вначале происходит присоединение 1-(2-оксоциклогексил)этан-1,1,2,2-тетракарбонитрила C(CN)₂CH-кислотным фрагментом к альдегидной группе с образованием интермедиата **А**. Далее имеет место HO·····C=O взаимодействие и образование 10-иминотетрагидро-8а,4-(эпоксиметано)хромен-3,3,4(2*H*,4а*H*)-трикарбонитрила **Б**. Интермедиат **Б** в результате HO····CN-взаимодействия превращается в конечные соединения **1а**–д.

В реакции 1-(2-оксоциклогексил)этан-1,1,2,2тетракарбонитрила с *R*-(–)-миртеналем получен (2*R*,4*S*,4*aR*,8*aR*)-2-{(1*R*,5*S*)-6,6-диметилбицикло[3.1.1]гепт-2-ен-2-ил}-10-иминотетрагидро-8а,4-(эпоксиметано)хромен-3,3,4(2*H*,4*aH*)-трикарбонитрил **1**е (схема 2).

Строение соединений **1а-е** определено методами ИК и ЯМР спектроскопии, а также методом

рентгеноструктурного анализа. В ИК спектрах соединений 1а-е лля фрагмента 10-иминотетрагидро-8а,4-(эпоксиметано)хромен-3,3,4(2H,4aH)трикарбонитрила зафиксированы полосы поглощения групп NH (3280-3434 см⁻¹), С≡N (2243-2254 см⁻¹) и С=N (1714-1723 см⁻¹). В спектрах ЯМР ¹Н сигналы протона NH проявляются в области 9.74-9.89 м. д. Спектры ЯМР ¹³С характеризуются наличием трех сигналов атомов углерода цианогрупп в области 110.11-113.10 м. д. и сигналов атома углерода C=NH в области 149.87-156.04 м. д.

По данным РСА, соединения **1a**, **1b** и **1e** включают трициклическую систему из сочлененных тетрагидропиранового, дигидрофуранового и циклогексанового циклов, принимающих конформации *кресло*, *конверт* и *кресло* соответственно (рис. 1, 2, табл. 1). Объемные заместители при атоме углерода C² в молекулах этих соединений занимают наиболее стерически

Соединение	D−H…A	<i>d</i> (D–H), Å	<i>d</i> (H···A), Å	$d(\mathbf{D}\cdots\mathbf{A}),\mathbf{\mathring{A}}$	∠(DHA), град
1 a	N^{12} – H^{12} ···O ^{1a}	0.89(3)	2.24(3)	3.050(2)	152(2)
1в	N^{12} – H^{12} ···O ^{1b}	0.90(2)	2.27(2)	3.070(2)	149(2)
1e	N^{12} – H^{12} ···O ^c	0.91(3)	2.30(3)	3.126(3)	151(3)

Таблица 1. Водородные связи в молекулах соединений 1а, 1в, 1е^а

^а Кристаллографические операции для генерации симметрически эквивалентных атомов: ^а -x+1, y+1/2, -z+1/2; ^b -x+1, y+1/2, -z+1/2; ^c -x+1, y+1/2, -z+1/2;

Рис. 1. Общий вид молекулы соединения 1а в кристалле.

предпочтительное экваториальное положение. Молекулы соединений **1a** и **1b** содержат четыре (при атомах углерода C^2 , C^4 , C^5 и C^{10}), а соединения **1e** – шесть (при атомах углерода C^2 , C^4 , C^5 , C^{10} , C^{16} и C^{18}) асимметрических центров. Кристаллы соединений **1a** и **1b** являются рацематами и состоят из энантиомерных пар диастереомера с конфигурацией центров 2R, 4S, 5R, 10R(рис. 1). Кристалл соединения **1e** хиральный, благодаря оптически активной молекуле исходного R-(–)-миртеналя. Таким образом, выявлено, что молекула соединения **1e** имеет абсолютную конфигурацию 2R, 4S, 5R, 10R, 16S, 18R (рис. 2).

В кристалле, молекулы соединений **1a**, **1b** и **1e** образуют H-связанные цепочки вдоль направления [010] за счет межмолекулярных водородных связей N–H…O (табл. 1, 2). Цепочки упакованы в стопки вдоль кристаллографической оси *a*.

Таким образом, в результате исследования реакционной способности 1-(2-оксоциклогексил)этан-1,1,2,2-тетракарбонитрила по отношению к α, β-непредельным альдегидам, замещенным в βположении алкильными и арильными заместителями, установлено, что происходит образо-10-иминотетрагидро-8а,4-(эпоксиметано)вание хромен-3,3,4(2H,4aH)-трикарбонитрилов. Реакции протекают в мягких условиях с высокими выходами. Синтезированы новые представители класса аннелированных тетрагидропиранов, перспективные как синтоны органического синтеза и в качестве объектов для исследования их биологической активности. Поскольку относительные конфигурации вновь образующихся асимметрических центров в 10-имино-2-Rтетрагидро-8а,4-(эпоксиметано)-хромен-3,3,4(2H,4aH)трикарбонитрилах 1a (R = проп-1-ен-1-ил), 1в [R =

Рис. 2. Общий вид молекулы соединения 1е в кристалле.

2-(фуран-2-ил)винил)] и **1e** {R = 2-(6,6диметилбицикло[3.1.1]гепт-2-ен-2-ил)} являются идентичными, можно предположить, что они определяются направлением реакции образования этих соединений.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Контроль за ходом реакции и чистотой синтезированных соединений осушествляли методом TCX на пластинах Silufol UV-254 (элюент этилацетат, проявление в УФ свете, парами иода или термическим разложением). Температуры плавления определяли на приборе Optimelt МРА100. ИК спектры регистрировали на Фурьеспектрометре ФСМ-1202 в тонком слое (суспензия в вазелиновом масле). Спектры ЯМР¹Н и ¹³С регистрировали на спектрометре AVANCE 400 WB Bruker (400.13 и 100.61МГц соответственно) при 293К в ДМСО-*d*₆, внутренний стандарт – ТМС. Элементный анализ выполняли на CHN-анализаторе vario Micro cube.

Все синтезированные соединения при комнатной температуре хорошо растворимы в полярных органических растворителях, таких как ацетон, ацетонитрил, этилацетат, диметилформамид, диметилсульфоксид; при нагревании растворяются в этаноле и пропан-2-оле; в воде не растворяются.

Общая методика получения соединений 1а-е. К суспензии 2 ммоль (452 мг) 1-(2-оксоциклогексил)этан-1,1,2,2-тетракарбонитрила в 10 мл этанола добавляли 2 ммоль соответствующего альдегида. Полученную смесь перемешивали при комнатной температуре до полного растворения (контроль методом TCX). Раствор выдерживали

Таблица 2. Кристаллоструктурные данные для соединений 1а, 1в, 1е

Параметр	1a	1в	1e
Формула	$C_{16}H_{16}N_4O_2$	$C_{19}H_{16}N_4O_3$	$C_{22}H_{24}N_4O_2$
Молекулярная масса	296.33	348.36	376.45
Размеры монокристалла, мм	0.03×0.10×0.12	0.05×0.08×0.20	0.04×0.07×0.20
Сингония	Моноклинная	Моноклинная	Моноклинная
Пространственная группа	$P2_{1}/c$	$P2_{1}/c$	$P2_1$
<i>a</i> , Å	7.6959(15)	7.7601(16)	7.6801(15)
b, Å	10.264(2)	10.300(2)	10.420(2)
<i>c</i> , Å	19.118(4)	21.490(4)	12.340(3)
β, град	94.32(3)	96.03(3)	102.35(3)
<i>V</i> , Å ³	1505.9(5)	1708.2(6)	964.7(4)
Ζ	4	4	2
$d_{\rm c}$, г/см ³	1.307	1.355	1.296
F(000)	624	728	400
μ, мм ⁻¹	0.117	0.123	0.110
20 _{тах} , град	61.86	62.09	62.10
Количество измеренных отражений	19006	13313	12895
Количество независимых отражений	3298	3786	4292
R _{int}	0.081	0.075	0.042
Количество отражений с $I > 2\sigma(I)$	2739	2932	3980
Количество уточняемых параметров	204	239	259
$R_1; wR_2$ [для отражений с $I > 2\sigma(I)$]	0.060; 0.147	0.052; 0.127	0.037; 0.092
$R_1; wR_2$ (все измеренные отражения)	0.072; 0.155	0.068; 0.139	0.041; 0.094
GOF по F^2	1.056	1.041	1.054
Коэффициент экстинкции	0.057(5)	0.018(2)	0.081(8)
$T_{ m min}/T_{ m max}$	0.980/0.990	0.963/0.987	0.970/0.990

при комнатной температуре на воздухе в течение 10–15 ч для максимально полной кристаллизации продукта реакции. Кристаллическое вещество отфильтровывали, промывали 10 мл охлажденной до 0–5°C смесью этанол–гексан (3:1).

10-Имино-2-(проп-1-ен-1-ил)тетрагидро-8а,4-(эпоксиметано)хромен-3,3,4(2*H*,4а*H*)-трикарбонитрил (1а). Выход 520 мг (88%), белое вещество, т. пл. 162°С. ИК спектр, v, см⁻¹: 3434 (N–H), 2248 (C≡N), 1723 (C=N). Спектр ЯМР ¹Н, δ, м. д.: 9.76 с (1H, NH), 6.36–6.27 м (1H, CH), 5.62–5.56 м (1H, CH), 4.87 д (1H, OCH, *J* = 7.6 Гц), 2.80 к (1H, CH, J = 6.0 Гц), 2.02 т (2H, CH₂, J = 15.0 Гц), 1.79 д (3H, CH₃, J = 8.0 Гц), 1.75–1.69 м (2H, CH₂), 1.51–1.19 м (2H, CH₂), 1.06–0.98 м (2H, CH₂). Спектр ЯМР ¹³С, $\delta_{\rm C}$, м. д.: 155.98, 155.85, 137.89, 121.83, 112.53, 110.63, 107.39, 74.23, 52.61, 45.98, 29.68, 25.29, 21.86, 20.78, 17.71, 17.67. Найдено, %: С 64.92; H 5.38; N 18.84. С₁₆H₁₆N₄O₂. Вычислено, %: С 64.85; H 5.44; N 18.91.

10-Имино-2-стирилтетрагидро-8а,4-(эпоксиметано)хромен-3,3,4(2*H***,4а***H***)-трикарбонитрил (16).** Выход 520 мг (88%), белое вещество, т. пл. 183–185°С. ИК спектр, v, см⁻¹: 3285 (N–H), 2254 (C=N), 1714 (C=N). Спектр ЯМР ¹Н, δ , м. д.: 9.85 с (1H, NH), 7.55 д (2H, Ph, J = 7.2 Гц), 7.43–7.35 м (3H, Ph), 7.19 д (1H, CH, J = 7.2 Гц), 6.32 д. д (1H, CH, J = 16.0, 7.2 Гц), 5.17 д (1H, CH, J = 7.2 Гц), 2.87 к (1H, CH, J = 7.0 Гц), 2.06 т (2H, CH₂, J = 14.0 Гц), 1.76 т 1.82–1.69 м (2H, CH₂), 1.52–1.21 м (2H, CH₂), 1.09–0.99 м (2H, CH₂). Спектр ЯМР ¹³С, $\delta_{\rm C}$, м. д.: 155.83, 153.19, 138.84, 134.35, 131.30, 129.56, 129.05, 127.36, 118.99, 112.53, 110.57, 110.06, 107.55, 74.34, 46.05, 45.17, 52.70, 29.73, 25.33, 21.90, 20.80. Найдено, %: С 70.47; Н 5.01; N 15.69. С₂₁H₁₈N₄O₂. Вычислено, %: С 70.38; Н 5.06; N 15.63.

2-[2-(Фуран-2-ил)винил]-10-иминотетрагидро-8а,4-(эпоксиметано)хромен-3,3,4(2H,4aH)трикарбонитрил (1в). Выход 635 мг (91%), белое вещество, т. пл. 156°С (разл.). ИК спектр, v, см⁻¹: 3285 (N-H), 2251 (C≡N), 1720 (C=N). Спектр ЯМР ¹Н, б. м. д.: 9.85 с (1Н, NН), 7.66 д (1Н, CH, 2-Fu, *J* = 1.6 Гц), 7.09 д (1H.CH, 2-Fu, *J* = 16.0 Гц), 6.72 д (1H, CH, $J = 2.8 \Gamma \mu$), 6.57 μ (1H, CH, $J = 3.6 \Gamma \mu$), 6.02 д. д (1H, CH, 2-Fu, J = 15.6, 7.2 Гц), 5.21 д (1H, ОСН, *J* = 8.0 Гц), 2.85 к (1Н, CH, *J* = 5.5 Гц), 2.05 т (2Н, СН₂, J = 15.0 Гц), 1.81–1.70 м (2Н, СН₂), 1.52– 1.21 м (2Н, СН₂), 1.08-0.98 м (2Н, СН₂). Спектр ЯМР ¹³С, ₆С, м. д.: 155.92, 149.87, 144.80, 126.60, 116.34, 112.86, 112.54, 112.28, 110.03, 107.58, 73.78, 52.40, 29.68, 25.33, 21.87, 20.82. Найдено, %: С 65.47; Н 4.56; N 16.14. С₂₁Н₁₆N₄O₂. Вычислено, %: C 65.51; H 4.63; N 16.08.

2-(Гекс-1-ин-1-ил)-10-иминотетрагидро-8а,4-(эпоксиметано)хромен-3,3,4(2*H***,4а***H***)-трикарбонитрил (1г). Выход 630 мг (90%), белое вещество, т. пл. 106–108°С. ИК спектр, v, см⁻¹: 3280 (N–H) 2251 (С=N), 1717 (С=N). Спектр ЯМР ¹H, δ, м. д.: 9.79 с (1H, NH), 5.48 с (1H, OCH), 2.85 к (1H, CH, J = 6.0 Гц), 2.36 т (2H, CH₂, J = 7.5 Гц), 2.01 т (2H, CH₂, J = 15.0 Гц), 1.78–1.67 м (2H, CH₂), 1.52–1.43 м (2H, CH₂), 1.40–1.32 м (2H, CH₂), 1.31–1.21 м (2H, CH₂), 1.04–0.94 м (2H, CH₂), 0.85 т (3H, CH₃, J = 7.5 Гц). Спектр ЯМР ¹³С, \delta_{\rm C}, м. д.: 155.8, 113.1, 111.5, 110.5, 108.4, 94.2, 72.2, 66.5, 53.1, 46.7, 46.5, 30.9, 30.3, 27.9, 26.06, 22.6, 22.4, 21.5, 18.5, 14.6. Найдено, %: C 68.67; H 6.21; N 15.05. С₁₉H₂₀N₄O₂. Вычислено, %: C 68.55; H 6.33; N 15.99.**

10-Имино-2-(фенилэтинил)тетрагидро-8а,4-(эпоксиметано)хромен-3,3,4(2*H*,4а*H*)-трикарбонитрил (1д). Выход 680 мг (95%), белое вещество, т. пл. 175–177°С. ИК спектр, v, см⁻¹: 3308 (N–H), 2243(C≡N), 1717 (C=N). Спектр ЯМР ¹Н, δ, м. д.: 9.89 с (1H, NH), 7.56–7.52 м (3H, Ph), 7.51–7.45 м (2H, Ph), 5.87 с (1H, OCH), 2.94 к (1H, CH, J = 6.0 Гц), 2.08–2.01 м (2H, CH₂), 1.83–1.68 м (2H, CH₂), 1.52–1.42 м (2H, CH₂), 1.29–1.19 м (2H, CH₂), 1.06–0.96 м (2H, CH₂). Спектр ЯМР ¹³С, $\delta_{\rm C}$, м. д.: 155.8, 132.7, 131.5, 129.9, 120.1, 113.0, 111.5, 110.4, 108.6, 91.43, 80.6, 66.8, 53.3, 46.7, 46.2, 30.3, 26.1, 22.6, 21.6. Найдено, %: С 70.71; Н 4.68; N 15.53. С₂₁H₁₆N₄O₂. Вычислено, %: С 70.77; Н 4.53; N 15.72.

(2R,4S,4aR,8aR)-2-{(1R,5S)-6,6-Диметилбицикло-[3.1.1]гепт-2-ен-2-ил}-10-иминотетрагидро-8а,4-(эпоксиметано)хромен-3,3,4(2H,4аH)-трикарбонитрил (1е). Выход 700 мг (93%), белое вещество, т. пл. 170–172°С. ИК спектр, v, см⁻¹: 3269 (N–H), 2251 (C=N), 1717 (C=N). Спектр ЯМР ¹Н, б, м. д.: 9.74 с (1H, NH), 6.08 д (1H, CH=C, J = 21 Гц), 4.80 д (1H, OCH, J = 8 Гц), 2.88–2.83 м (1H, CH), 2.60 т (1Н, СН₂, J = 7 Гц), 2.43–2.27 м (2Н, СН₂), 2.10– 1.97 м (3H, 2CH₂), 1.78–1.69 м (3H, 2CH₂), 1.52– 1.42 м (1Н, СН₂), 1.28 д (3Н, СН₃, *J* = 6 Гц), 1.20-0.95 м (2Н, СН), 0.85 д (3Н, СН₃, J = 42.0 Гц). Спектр ЯМР ¹³С, δ_{C} , м. д.: 156.04, 139.48, 138.71, 129.94, 128.48, 112.82, 111.36, 110.11, 107.81, 76.08, 53.11, 45.80, 32.12, 31.64, 31.19, 29.73, 25.75, 25.34, 21.58, 21.29, 21.13, 20.89. Найдено, %: С 70.21; Н 6.49; N 14.79. С22H24N4O2. Вычислено, %: С 70.19; Н 6.43: N 14.88.

Рентгеноструктурное исследование соединений 1а, 1в и 1е. Параметры элементарных ячеек и интенсивности отражений измерены на синхротронной станции «БЕЛОК» Национального исследовательского центра «Курчатовский институт» с использованием двухкоординатного детектора Rayonix SX165 CCD (100 K, $\lambda = 0.80246$ Å, φ сканирование с шагом 1.0°). Обработка экспериментальных данных проведена с помощью программы iMOSFLM, входящей в комплекс программ ССР4 [10]. Для полученных данных учет поглощения рентгеновского проведен излучения по программе Scala [11]. Основные кристаллоструктурные данные И параметры уточнения представлены в табл. 1. Структуры решены прямыми методами И уточнены полноматричным методом наименьших квадратов по F^2 в анизотропном приближении для неводородных атомов. Атомы водорода иминогрупп выявлены объективно в разностных Фурьесинтезах и уточнены изотропно с фиксированными параметрами смещения $[U_{\mu_{30}}(H) = 1.2U_{3KB}(N)].$ Положения остальных атомов водорода рассчитаны геометрически И включены в уточнение с фиксированными позиционными параметрами по модели наездника и изотропными параметрами смещения $[U_{iso}(H) = 1.5U_{eq}(C)$ для CH_3 -групп и $U_{iso}(H) = 1.2U_{eq}(C)$ для остальных групп]. Абсолютная конфигурация асимметрических центров в соединении 1е определена объективно на основании известной конфигурации исходной молекулы *R*-(-)-миртеналя. Все расчеты проведены с использованием комплекса программ SHELXTL [12]. Таблицы координат атомов, длин валентных и торсионных связей. углов и анизотропных параметров смещения для соединений 1а, 1в и 1е депонированы в Кембриджском банке структурных данных [СССС 1862746 (1а), 1862710 (1в) и 1862711 (1е)].

ФОНДОВАЯ ПОДДЕРЖКА

Работа выполнена при финансовой поддержке Программы повышения конкурентоспособности РУДН «5-100». Рентгеновские измерения были проведены на оборудовании уникальной научной установки Курчатовский источник синхротронного излучения, финансируемой Министерством образования и науки РФ (идентификатор проекта RFMEFI61917X0007).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

 Шевердов В.П., Ершов О.В., Еремкин А.В., Насакин О.Е., Бардасов И.Н., Тафеенко В.А. // ЖОрХ. 2005. Т. 41. Вып. 12. С. 1795; Sheverdov V.P., Ershov O.V., Eremkin A.V., Nasakin O.E., Bardasov I.N., Tafeenko V.A. // Russ. J. Org. Chem. 2016. Vol. 41. N 12. P. 1757. doi 10.1007/s11178-006-0034-8

- Ievlev M.Yu., Ershov O.V., Tafeenko V.A. // Org. Lett. Vol. 18. N 8. P. 1940. doi 10.1021/acs.orglett.6b00867
- Иевлев М.Ю., Ершов О.В., Васильев А.Н., Тафеенко В.А., Суражская М.Д., Насакин О.Е. // ЖорХ. 2017. Т. 53. Вып. 7. С. 1019; Ievlev М.Ү., Ershov O.V., Vasil'ev A.N., Nasakin O.E., Tafeenko V.A., Surazhskaya M.D. // Russ. J. Org. Chem. 2017. Vol. 53. N 7. P. 1030. doi 10.1134/S1070428017070119
- Ievlev M.Yu., Ershov O.V., Belikov M.Yu., Milovidova A.G., Tafeenko V.A., Nasakin O.E. // Beilstein J. Org. Chem. 2016. Vol. 12. P. 2093.doi 10.3762/bjoc.12.198
- Марьясов М.А., Шевердов В.П., Насакин О.Е., Махмудов Р.Р. // Хим.-фарм. ж. 2016. Т. 50. № 9. С. 56; Mar'yasov М.А., Sheverdov V.P., Nasakin O.E., Makhmudov R.R. // Pharm. Chem. J. 2016. Vol. 50. N 9. P. 580. doi 10.1007/s11094-016-1494-y
- Ievlev M.Yu., Ershov O.V. // Chem. Heterocycl. Compd. 2016. Vol. 52. N 4. P. 213. doi 10.1007/s10593-016-1864-0
- Middleton W.J., Heckert R.E., Little E.L., Krespan C.J. // J. Am. Chem. Soc. 1958. Vol. 80. N 11. P. 2783. doi 10.1021/ja01544a053
- Каюков Я.С., Лукин П.М., Насакин О.Е., Хрусталев В.Н., Нестеров В.Н., Антипин М.Ю., Шевердов В.П. // ХГС. 1997. № 4. С. 497; Kayukov Ya.S., Lukin P.M., Khrustalev V.N., Nesterov V.N., Antipin М.Yu., Sheverdov V.P. // Chem. Heterocycl. Compd. 1997. Vol. 33. N 4. P. 423. doi 10.1007/BF02321385
- Шевердов В.П., Ершов О.В., Насакин О.Е., Чернушкин А.Н., Тафеенко В.А. // ЖОрХ. 2002.
 Т. 38. Вып. 7. С. 1043; Sheverdov V.P., Ershov O.V., Nasakin O.E., Chernushkin A.N., Tafeenko V.A. // Russ.
 J. Org. Chem. 2002. Vol. 38. N 7. P. 1001. doi 10.1023/ A:1020801612443
- Battye T.G., Kontogiannis L., Johnson O., Powell H.R., Leslie A.G.W. // Acta Crystallogr (D). 2011. Vol. 67. P. 271. doi 10.1107/S0907444910048675
- Evans P. // Acta Crystallogr. (D). 2006. Vol. 62. P. 72. doi 10.1107/S0907444905036693
- Sheldrick G.M. // Acta Crystallogr. (C). 2015. Vol. 71. P. 3. doi 10.1107/S2053229614024218

Reaction of 1-(2-Oxocyclohexyl)ethane-1,1,2,2-tetracarbonitrile with α,β-Unsaturated Aldehydes

V. P. Sheverdov^a*, V. V. Davydova^a, O. E. Nasakin^a, M. A. Maryasov^a, P. B. Dorovatovskii^b, and V. N. Khrustalev^{b,c}

^a I. N. Ulyanov Chuvash State University, Moscoskii pr. 15, Cheboksary, 428015 Russia *e-mail: SheverdovVP@yandex.ru

> ^bNational Research Center "Kurchatov Institute", Moscow, Russia ^cRussian University of Peoples' Friendship, Moscow, Russia

Received September 6, 2018; revised September 6, 2018; accepted September 17, 2018

The reactions of 1-(2-oxocyclohexyl)ethane-1,1,2,2-tetracarbonitrile with crotonic and cinnamic aldehyde, 2-furylacrolein, 3-phenyl-2-propinal, 3-butyl-2-propinal, and R-(–)-myrtenal proceed through the stage of formation of 8a-hydroxyhexahydro-2*H*-chromene-3,3,4,4-tetracarbonitrile followed by the formation of 10-iminotetrahydro-8a,4-(epoxymethane)chromene-3,3,4(2*H*,4a*H*)-tricarbonitriles. By X-ray diffraction data, the stereochemical features of the desired products are determined by the reaction direction.

Keywords: 1-(2-oxocyclohexyl) ethane -1, 1, 2, 2-tetracarbonitrile, unsaturated aldehydes, R-(-)-myrtenal, configuration