УДК 547.388.4′546.16:547.863.15

3-(ПОЛИФТОРАЛКИЛ)ПРОПАН-1,2,3-ТРИОН-2-ОКСИМЫ В РЕАКЦИЯХ С ДИАМИНОАРЕНАМИ

© 2019 г. Н. С. Болтачева, П. А. Слепухин, М. Г. Первова, В. И. Филякова*, В. Н. Чарушин

Институт органического синтеза имени И. Я. Постовского Уральского отделения Российской академии наук, ул. С. Ковалевской 22/20, Екатеринбург, 620990 Россия *e-mail: filver@mail.ru

> Поступило в Редакцию 27 сентября 2018 г. После доработки 27 сентября 2018 г. Принято к печати 4 октября 2018 г.

Взаимодействием 3-трифторметил-1,2,3-пропантрион-2-оксимов с 1,2-диаминобензолом или 2,3диаминонафталином получены новые производные хиноксалина: 2-трифторметил-3-ароилхиноксалин и 2-трифторметил-3-ароилбензо[g]хиноксалин. В аналогичных условиях $3-R^{F}$ -1,2,3-пропантрион-2-оксимы [$R^{F} = C_{3}F_{7}$, H(CF₂)₄, C₄F₉, C₆F₁₃] с указанными диаминоаренами образуют смеси продуктов конденсации и фрагментации в различных соотношениях. Структура (4-метилфенил)-{3-(трифторметил)бензо[g]хиноксалин-2-ил}метанона установлена методом PCA.

Ключевые слова: фторалкилсодержащие 1,3-дикетонаты лития, 1,2,3-алкантрион-2-оксимы, 2-R^F-3бензоилхиноксалины, 2-R^F-3-ароилбензо[g]хиноксалины, (4-метилфенил)-{3-(трифторметил)бензо[g]хиноксалин-2-ил}метаноны

DOI: 10.1134/S0044460X19030089

1.2.3-Алкантрион-2-оксимы (2-гидроксимино-1.3дикетоны) являются ценными полифункциональными строительными блоками для направленного синтеза широкого круга ациклических и гетероциклических соединений [1]. Однако свойства 3-полифторалкил-1,2,3-алкантрион-2-оксимов 1 практически не исследованы, поскольку лишь недавно был разработан эффективный метод их синтеза, заключающийся в нитрозировании 3-(полифторалкил)-1,3-дикетонатов лития 3 нитритом натрия в уксусной кислоте [2]¹. Между тем, реакционная способность соединений, содержащих фторированные заместители, существенно отличаются от нефторированных аналогов. что обусловлено сильным электроноакцепторным эффектом атома фтора [6, 7]. Анализ литературы показал, что реакции гетероциклизации оксимов 1 ограничены взаимодействием соединения 1а с гидразином с образованием 4-гидроксиимино-5-фенил-3-трифторметилпиразола [8], 5-фенил-3-(трифторметил)-1*H*пиразол-4-амина [9], а также с 1,2-диаминобензолом с образованием 3-трифторметилхиноксалин-2-она или 2-гидрокси-3-гидроксиамино-4фенил-2-трифторметил-1*H*-1,5-бензодиазепина [10]. Ранее было показано, что реакции оксимирования с участием оксимов 1 приводят с высокими выходами к 5-гидрокси-5-(полифторалкил)-4(5*H*)изоксазолоноксимам [11]. В данной работе мы исследовали реакции оксимов 1а-е с 1,2-диаминобензолом 4 и 2,3-диаминонафталином 5.

Оксимы 1 с диаминоаренами 4 и 5 могут образовывать несколько продуктов конденсации, что обусловлено возможностью протекания реакции по электрофильным центрам 1-2, 2-3, 1-3 с образованием соединений 6–11 (схема 1).

Кроме того, в ходе реакций возможны различные фрагментации как исходного оксима 1, так и продуктов его конденсации с 1,2-диаминоареном. Известно, что при кипячении оксима 1a с 1,2-диаминобензолом 4 в метаноле образуется исключительно 3-трифторметилхиноксалин-2-он

¹ Нитрозирование 3-полифторалкил-1,3-дикетонов 2 в аналогичных условиях приводит к образованию гидратов оксимов 1 [3] или сопровождаются деструкцией молекулы. Данным методом был получен единственный стабильный представитель оксимов 1 – 3-гидроксиимино-4-фенил-1,1,1трифторметил-2,4-бутандион 1a [4, 5].

M=H (2), Li (3); $R^{F} = CF_{3}$ (a, δ), $C_{3}F_{7}$ (b), $C_{4}F_{9}$ (r), $H(CF_{2})_{4}$ (д), $C_{6}F_{13}$ (e); R = Ph (a, b-e), 4-CH₃C₆H₄ (δ).

12а, что свидетельствует о конденсации диаминоарена 4 с продуктом фрагментации оксима 1а. Проведение указанной реакции в кипящем диэтиловом эфире привело к образованию 2гидрокси-3-гидроксиамино-4-фенил-2-трифторметил-1*H*-1,5-бензодиазепина 13а [10] (схема 2). Других сведений по взаимодействию оксимов 1 с диаминоаренами в литературе нет.

Установлено, что кипячение оксимов 1 с эквимольными количествами диаминоаренов 4 и 5

в метаноле или этаноле приводит к образованию сложной смеси продуктов, среди которых методом ГХ-МС зафиксированы соединения 6-8 и 9-11 соответственно. Однако взаимодействие оксимов 1а и 16 с диаминоаренами 4 или 5 в ледяной уксусной кислоте при комнатной температуре приводит к преимущественному образованию продуктов конденсации по электрофильным центрам 1-2, а именно 2-R^F-3-бензоилхиноксалинов **6a**, **б** и 2-R^F-3-ароилбензо[g]хиноксалинов 9а, б соответственно. В реакционных массах методом ГХ-МС зафиксировано также образование незначительных количеств соединений 7, 8, 12 (или 10, 11, 18). Соединения 6а, б и 9а, б представляют собой белые или светло-желтые порошки, растворимые в диэтиловом эфире, хлористом метилене, хлороформе и этаноле. Выбор между изомерными структурами 6 и 7 (или 9 и 10) сделан на основе анализа данных ИК, ЯМР спектроскопии и масс-спектрометрии. В ИК спектрах соединений 6а, б и 9а, б наблюдаются узкие интенсивные полосы в области 1670–1680 см⁻¹, характерные для валентных колебаний групп С=О, связанных с арильным заместителями (для связи C=O трифторацетильной группы характерна интенсивная полоса поглощения в области 1720-1780 см⁻¹).

В масс-спектрах соединений **6a**, **б** и **9б** присутствуют пики молекулярных ионов $[M]^+$ интенсивностью 6–7%, фрагментов $[M - \text{ArCO}]^+$, $[M - \text{CF}_3]^+$, $[M - \text{CF}_3 - \text{ArCO}]^+$ интенсивностью до 1%. Базовым является пик иона $[\text{ArCO}]^+$. Таким образом, фрагментация молекулярных ионов $[M]^+$ исследованных соединений соответствует структурам 2-R^F-3-бензоилхиноксалинов **6a**, **б** и 2-R^F-3-ароилбензо[g]хиноксалина **9б**.

В спектрах ЯМР ¹³С соединений **6а**, **б** и **9а** наблюдается синглет карбонильного атома углерода в области ~191 м. д. Для изомеров **7а**, **б** и **10а** сигнал карбонильного углерода представлял бы собой квартет. В спектрах ЯМР ¹⁹F **6а**, **б** и **9а** сигнал CF₃-группы наблюдается при $\delta \sim -65$ м. д., тогда как группа CF₃C(O) проявляется сигналом при $\delta \sim -73$ м. д. [2, 3].

Структура (4-метилфенил-{3-(трифторметил)бензо[g]хиноксалин-2-ил}метанона 9б была однозначно доказана методом РСА (см. рисунок). Элементарная ячейка содержит две кристаллографически независимые молекулы схожей геометрии. Избранные длины связей и валентные углы представлены в табл. 1. 2. Номера соответствующих атомов второй молекулы обозначены индексом «А». Длины связей и валентные углы молекул близки к ожидаемым и

Общий вид молекулы соединения **96** по данным РСА в тепловых эллипсоидах 50%-ной вероятности.

хорошо соотносятся друг с другом попарно. Ароильный фрагмент в обеих молекулах практически плоский, развернут под углом 69.6° к плоскости гетероцикла. Существенно укороченные межмолекулярные контакты в кристалле отсутствуют.

Следует отметить, что в поисковых системах SciFinder и Reaxys отсутствует информация о производных хиноксалина типа 6 и 7, одновременно содержащих фторалкильные и ароильные заместители. Между тем, хиноксалин и его производные имеют огромное значение. Хиноксалиновый цикл присутствует во многих

Связь	<i>d</i> , Å	Связь	<i>d</i> , Å	Связь	<i>d</i> , Å	Связь	<i>d</i> , Å
F ¹ -C ¹⁵	1.329(3)	N ⁴ -C ⁵	1.380(3)	F ^{1A} –C ^{15A}	1.324(3)	N ^{4A} -C ^{5A}	1.376(3)
$F^2 - C^{15}$	1.338(3)	$O^1 - C^{16}$	1.213(3)	$F^{2A} - C^{15A}$	1.337(3)	O ^{1A} –C ^{16A}	1.212(3)
$F^{3}-C^{15}$	1.316(3)	$C^2 - C^{15}$	1.497(4)	F^{3A} – C^{15A}	1.329(3)	C^{2A} - C^{15A}	1.511(4)
N^1-C^2	1.301(3)	C^3-C^2	1.439(4)	N ^{1A} –C ^{2A}	1.296(3)	$C^{2A} - C^{3A}$	1.437(3)
$N^1 - C^{14}$	1.375(3)	$C^{14} - C^5$	1.427(3)	N ^{1A} –C ^{14A}	1.378(3)	C^{14A} – C^{5A}	1.427(3)
$N^4 - C^3$	1.307(3)	$C^{3}-C^{16}$	1.522(3)	N ^{4A} -C ^{3A}	1.306(3)	$C^{3A} - C^{16A}$	1.516(3)

Таблица 1. Избранные длины связей в молекуле соединения 96

Таблица 2. Избранные валентные углы в молекуле соединения 96

Угол	ω, град	Угол	ω, град	Угол	ω, град	Угол	ω, град
$C^2 N^1 C^{14}$	116.3(2)	$N^{1}C^{14}C^{13}$	119.7(2)	$C^{2A}N^{1A}C^{14A}$	116.7(2)	N ^{1A} C ^{14A} C ^{13A}	119.6(2)
$C^3N^4C^5$	117.0(2)	$F^1C^{15}F^2$	105.1(2)	$C^{3A}N^{4A}C^{5A}$	117.2(2)	$F^{1A}C^{15A}F^{2A}$	106.3(3)
$O^1C^{16}C^3$	115.8(3)	$F^3C^{15}F^2$	106.6(3)	$O^{1A}C^{16A}C^{3A}$	117.0(3)	$F^{3A}C^{15A}F^{2A}$	106.7(2)
$O^1 C^{16} C^{17}$	123.5(3)	$F^3C^{15}F^1$	106.8(2)	$O^{1A}C^{16A}C^{17A}$	123.7(2)	$F^{1A}C^{15A}F^{3A}$	107.0(2)
$N^1C^{14}C^5$	120.9(2)	$C^{17}C^{16}C^3$	120.8(2)	$N^{1A}C^{14A}C^{5A}$	120.4(2)	$C^{17A}C^{16A}C^{3A}$	119.3(2)

БОЛТАЧЕВА и др.

N⁰	Содержание в смеси, % ^а	<i>t</i> _r , мин	$[M]^+, m/z$ $(I_{\text{отн}}, \%)$	Характеристические ионы, <i>m/z</i> (<i>I</i> _{отн} , %)
16г	7.3	11.07	131 (63)	105 (100) $[C_6H_5CO]^+$, 77 (62) $[C_6H_5]^+$, 51 (41) $[C_4H_3]^+$, 38 (5) $[C_3H_2]^+$, 27 (3) $[HCN]^+$
14г	11.9	15.03	336 (26)	317 (8) $[M - F]^+$, 297 (0.5) $[M - HF_2]^+$, 198(6) $[M - F - C_2F_5]^+$, 167 (100) $[M - C_3F_7]^+$, 147 (21) $[M - C_3F_7 - HF]^+$, 140 (14) $[M - C_3F_7 - HCN]^+$, 131 (1) $[C_3F_5]^+$, 116 (6) $[M - C_3F_7 - HCF_2]^+$, 90 (13) $[C_6H_4N]^+$, 69 (11) $[CF_3]^+$, 51 (3) $[C_4H_3]^+$
1r	16.1	19.29	395 (4)	219 (0.7) $[C_4F_9]^+$, 169 (0.3) $[C_3F_7]^+$, 131 (5) $[C_3F_5]^+$, 119 (2) $[C_2F_5]^+$, 105 (100) $[C_6H_5CO]^+$, 77 (48) $[C_6H_5]^+$, 69 (11) $[CF_3]^+$, 51 (16) $[C_4H_3]^+$
6г	13.9	22.75	452 (9)	433 (3) $[M - F]^+$, 424 (2) $[M - CO]^+$, 347 (0.4) $[M - C_6H_5CO]^+$, 283 (0.1) $[M - C_3F_7]^+$, 233 (1) $[M - C_4F_9]^+$, 205 (0.7) $[M - C_4F_9 - CO]^+$, 178 (0.6) $[M - C_6H_5CO - C_3F_7]^+$, 147 (2) $[M - C_6H_5CO - C_4F_8]^+$, 128 (3) $[M - C_6H_5CO - C_4F_9]^+$, 105 (100) $[C_6H_5CO]^+$, 77 (39) $[C_6H_5]^+$, 69 (4) $[CF_3]^+$, 51 (8) $[C_4H_3]^+$
15г	4.7	24.31	194 (100)	167 (5) $[M - \text{HCN}]^+$, 140 (2), $[M - 2\text{HCN}]^+$, 104 (5) $[C_8\text{H}_8]^+$, 90 (8) $[C_7\text{H}_6]^+$, 77 (9) $[C_6\text{H}_5]^+$, 63 (11) $[C_5\text{H}_3]^+$, 51 (6) $[C_4\text{H}_3]$
8г	46.0	25.07	467 (39)	450 (100) $[M - OH]^+$, 431 (5) $[M - OH - F]^+$, 262 (20), 231 (36) $[M - C_4F_9 - OH]^+$, 205 (15) $[M - C_4F_9 - CNOH]^+$, 77 (25) $[C_6H_5]^+$, 69 (30) $[CF_3]^+$

Таблица 3. Данные анализа продуктов взаимодействия оксима 1г и 2,3-диаминобензола 4 методом ГХ-МС

^а Расчет по площадям пиков на хроматограмме по методу внутренней нормализации.

антибактериальных, противовирусных [12], противотуберкулезных [13] препаратах, комплексообразующих агентах, люминофорах [14], красителях, органических полупроводниках [15] и других практически значимых веществах. При увеличении длины фторалкильных заместителей в оксимах 1 [$R^F = C_3F_7$, H(CF₂)₄, C₄F₉, C₆F₁₃] селективность их реакций с диаминоаренами 4 и 5 резко снижается, приводя к образованию продуктов конденсации и фрагментации в

Таблица	4. Ланные анал	иза пролуктов	взаимолействия	оксима 1в и 2	3-лиаминона	bталина 5 м	иетолом ГХ-	MC
гаолица	т. дапные анал	продуктов	взаниоденствия	Uncrima IB H 2	,5-днаминонас	prasinina S N	петедом т л-	IVIC

	0		гъ a [±] /	NY /
N⁰	Содержание в	t _{r.} МИН	[M], m/z	Характеристические ионы, <i>m/z</i>
•	смеси, %"		$(I_{\text{отн}}, \%)$	(<i>I</i> _{OTH} , %)
16в	9.5	11.07	131 (63)	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
19в	35.8	20.80	336 (100)	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
11в	4.3	27.25	467 (51)	448 (0.5) $[M - F]^+$, 421 (2) $[M - F - HCN]$, 298 (71) $[M - C_3F_7]^+$, 271 (84) $[M - C_3F_7 - HCN]^+$, 140 (100) $[C_{10}H_6N]^+$, 77 (23) $[C_6H_5]^+$, 69 (22) $[CF_3]^+$, 51 (7) $[C_4H_3]^+$
9в	16.3	28.01	452 (7)	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
20в	34.1	31.56	244 (100)	$\begin{vmatrix} 217 & (3) & [M - HCN]^+, 190 & (1), & [M - 2HCN]^+, 140 & (28) & [C_{10}H_6N]^+, \\ 122 & (23) & [C_{10}H_2]^+, 114 & (25) & [C_9H_6]^+, 77 & (7) & [C_6H_5]^+, 63 & (5) & [C_5H_3]^+, \\ 51 & (4) & [C_4H_3]^+ \end{vmatrix}$

^а Расчет по площадям пиков на хроматограмме по методу внутренней нормализации.

различных соотношениях (табл. 3, 4). Количество продуктов фрагментации возрастает при проведении указанных реакций при кипячении в АсОН. Анализ реакционных смесей методом ГХ-МС показал наличие в продуктах реакций оксимов 1в-е с 1,2-диаминобензолом 4 соединений 6-8 (схема 1), а также хиноксалонов 12 (схема 2), бензимидазолов 14 и 15, кетонитрилов RC(O)CN 16 и хиноксалинов 17² (схема 3). Подобный состав имеют и реакционные смеси оксимов 1в-е с 2,3диамино-нафталином 5. В реакционных массах зафиксированы 2-R^F-3-ароилбензо[g]хиноксалины **9**, нафтодиазепины **11** (схема 1), бензо[g] хиноксалоны 18, нафтоимидазолы 19 и 20. кетонитрилы RC(O)CN 16 и бензо[g]хиноксалины **21**³ (схема 3).

Из смесей, полученных при взаимодействии оксимов **1**в-е с диаминоаренами **4** и **5**, в некоторых случаях препаративно были выделены основные продукты. Так, при кипячении оксима **1**д с 1,2диаминобензолом **4** в смеси Et_2O —EtOH (1:1) основным продуктом является 3-R^F-хиноксалин-2он **12**д, что согласуется с данными работы [4]. Из продуктов реакции оксима **1**г с 1,2-диаминобензолом **4** (табл. 4) выделены диазепин **8**г и бензимидазол **14**г. Образования гидратов бензо- и нафтодиазепинов **9** и **11** в исследованных реакциях зафиксировано не было. Таким образом, изучено взаимодействие 3полифторалкил-1,2,3-алкантрион-2-оксимов с 1,2диаминобензолом и 2,3-диаминонафталином и получены новые производные хиноксалина.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Температуры плавления определяли на приборах Воеtius и Stuart SMP3. ИК спектры записаны для твердых образцов на приборе PerkinElmer Spectrum One FT-IR в интервале 400–4000 см⁻¹ помощью приставки диффузионного отражения (DRA). Спектры ЯМР ¹H, ¹³С и ¹⁹F получены на спектрометре Bruker AVANCE-500, внутренние стандарты – ТМС и C₆F₆. Элементный анализ выполнен с помощью элементного анализатора PerkinElmer PE 2400.

Продукты реакций идентифицировали с помощью газового хромато-масс-спектрометра Trace GC Ultra DSQ II США с кварцевой капиллярной колонкой Thermo TR-5ms (30 м × 0.25 мм × 0.25 мкм, полиметилсилоксан, 5% фенильных групп) и квадрупольным детектором масс. Сканирование по полному ионному току в диапазоне масс 20–1000 Да в режиме электронной ионизации (70 эВ). Начальная температура колонки – 40°C, выдержка – 3 мин, затем нагрев со скоростью 10 град/мин до 280°C, температура испарителя – 250°C, температура детектора – 200°C, температура переходной камеры – 200°C, газ-носитель – гелий, деление потока 1:50, расход через колонку – 1.0 мл/мин.

Рентгеноструктурный анализ выполнен на автоматическом рентгеновском дифрактометре Xcalibur 3 [Мо K_{α} -излучение, графитовый монохроматор, ω -сканирование с шагом 1° при 295(2) K]. Введена эмпирическая поправка на поглощение.

² По-видимому, имидазолы 14 и 15 являются продуктами трансформации 1,5-диазепинов 8 в кислой среде [16, 17]. Хиноксалины 17 являются продуктами взаимодействия кетонитрилов 16 с 1,2-диаминобензолом.

³ Вероятно, нафтоимидазолы 19 и 20 являются продуктами трансформации нафтодиазепинов 11 в кислой среде [16, 17]. Бензо[g]хиноксалины 21 являются продуктами взаимодействия кетонитрилов 16 с 2,3-диаминонафталином.

Решение и уточнение структуры проведено с использованием программной оболочки Olex2 [18]. Структура решена по программе Superflip [19] и уточнена полноматричным МНК по F^2 по программе ShelXL [20]. Уточнение проведено в анизотропном приближении для неводородных атомов, атомы водорода помещены в рассчитанные положения и уточнены в модели наездника. Монокристаллы соединения 96 получены кристаллизацией из CHCl₃, C₂₁H₁₃F₃N₂O, M 366.33, система моноклинная, *a* = 7.9988(7) Å, *b* = 36.992(2) Å, *c* = 11.8595(7) Å, $\beta = 91.304(6)^{\circ}$, V = 3508.2(4) Å³, пространственная группа $P2_1/n$, Z = 8, $\mu(MoK_a) =$ 0.109 мм^{-1} , на углах рассеяния $4.76 < 2\theta < 52.74^{\circ}$ 12867 собрано отражений, из них 6847 независимых (R_{int} = 0.0353), в том числе 3567 с I > $2\sigma(I)$. Окончательные параметры уточнения: $R_1 =$ 0.1218, $wR_2 = 0.1391$ (все данные), $R_1 = 0.0545$, $wR_2 =$ 0.1075 [$I > 2\sigma(I)$], фактор добротности GooF = 1.010, $\Delta \rho_{\bar{e}} = 0.13/-0.17 \ \bar{e}/\text{Å}^3$. Результаты рентгеноструктурных исследований соединения 96 зарегистрированы в Кембриджском центре кристаллографических данных под номером ССDС 1882664.

Оксимы **1а-е** получены нитрозированием соответствующих 3-(полифторалкил)-1,3-дикетонатов лития нитритом натрия в уксусной кислоте [2]. Контроль чистоты полученных соединений проводили методом TCX на пластинках Sorbfil (УФ-254, элюент – CHCl₃), проявляли под УФ лампой или раствором ацетата меди.

4,4,5,5,6,6,6-Гептафтор-1-фенил-1,2,3-гексантрион-2-оксим (1в) получали по методике [2] из 2.0 г (6.0 ммоль) дикетоната лития **3в**, 9 мл уксусной кислоты и 0.48 г (6.9 ммоль) нитрита натрия. Выход 1.85 г (89.4%), т. пл. 126–127°С. ИК спектр, v, см⁻¹: 1129 с (СF), 1193 с (СF), 1232 ср (СF), 1652 с (С=О), 1713 с (С=О), 3271 ш (NOH). Спектр ЯМР ¹Н (ДМСО-*d*₆), δ, м. д.: 7.60–7.66 м (2H, H^M), 7.76–7.80 м (1H, Hⁿ), 7.82–7.86 м (2H, H^o), 14.52 с (1H, OH). Спектр ЯМР ¹⁹F (ДМСО-*d*₆), $\delta_{\rm F}$, м. д.: –125.03÷–124.99 м (2F, CF₂), –114.93÷–114.82 м (2F, CF₂), –80.29 т (3F, CF₃, ³*J*_{FF} = 8.96, ⁴*J*_{FF} = 2.20 Гц). Найдено, %: С 42.08; Н 1.91; N 4.02; F 38.34. С₁₂H₆F₇NO₃. Вычислено, %: С 41.76; Н 1.75; N 4.06; F 38.53.

3-(1,1,2,2,3,3,4,4-Октафторбутил)хиноксалин-2-он (12д). Раствор 0.4 г (1.1 ммоль) оксима 1д и 0.12 г (1.1 ммоль) 1,2-диаминобензола 4 в 10 мл смеси Et₂O-EtOH (1:1) кипятили 2 ч, затем охлаждали до комнатной температуры и добавляли гексан. Полученный осадок отфильтровывали и перекристаллизовывали из хлористого метилена. Выход 0.32 г (84.2%), т. пл. 111°С, t_r 21.98 мин. ИК спектр, v, см⁻¹: 1128 с (CF), 1168 с (CF), 1278 ср (CF), 1674 о. с (C=O), 1612 с (C=N), 2896 сл (NH). Спектр ЯМР ¹Н (CDCl₃), δ , м. д.: 6.30 т. т [1H, H (CF₂)₄, ² J_{HF} = 51.9, ³ J_{HF} = 4.4 Ги], 7.44 д. д (1H, Ph, ³ J_{HH} = 8.2, ⁴ J_{HH} = 0.7 Гц), 7.48 д. д. д (1H, Ph, ³ J_{HH} = 8.2, ⁴ J_{HH} = 0.9 Гц), 7.73 д. д. д (1H, Ph, ³ J_{HH} = 7.0, ³ J_{HH} = 8.2, ⁴ J_{HH} = 0.7 Гц), 8.01 д. д (1H, Ph, ³ J_{HH} = 7.0, ³ J_{HH} = 8.2, ⁴ J_{HH} = 0.7 Гц), 12.69 с (1H, NH). Массспектр, m/z (I_{OTH} , %): 346 [M]⁺ (37), 327 (7) [M – F]⁺, 195 (100) [M – HC₃F₆]⁺, 167 (68) [M – HC₃F₆ – CO]⁺, 147 (34) [M – HC₃F₆ – CO – HF]⁺, 140 (18) [M – HC₃F₆ – CO – HCN]⁺, 102 (19) [C₇H₄N]⁺, 90 (34) [C₆H₄N]⁺, 69 (6) [CF₃]⁺, 63 (13) [C₅H₃]⁺, 51 (13) [HCF₂]⁺, 39 (4) [HF₂]⁺. Найдено, %: C 41.58; H 1.45; N 7.97; F 43.62. C₁2H₆F₈N₂O. Вычислено, %: C 41.64; H 1.75; N 8.09; F 43.90.

Общая методика взаимодействия оксимов 1а-е с 1,2-диаминобензолом 4 и 2,3-диаминонафталином 5. Эквимольные количества оксима 1 и 1,2диаминобензола 4 или 2,3-диаминонафталина 5 растворяли в ледяной уксусной кислоте и выдерживали при комнатной температуре до исчезновения реагентов (ТСХ-контроль). Реакционную массу выливали в воду, экстрагировали хлористым метиленом и фильтровали через слой силикагеля. Растворитель упаривали, остаток перекристаллизовывали из смеси хлористого метилена и гексана (1:3). В отдельных случаях продукт дополнительно очищали хроматографией на колонке (элюент – хлористый метилен).

Фенил-[3-(трифторметил)-2-хиноксалинил]метанон (6а) получали из 0.33 г (1.3 ммоль) оксима 1а и 0.15 г (1.3 ммоль) 1,2-диаминобензола 4. Выход 0.19 г (48.7%), т. пл. 78–79°С, *t*г 23.02 мин. ИК спектр, v, см⁻¹: 1169 с (СF), 1186 с (СF), 1235 ср (CF), 1596 с (C=N), 1676 о. с (C=O). Спектр ЯМР 'Н (CDCl₃), δ, м. д.: 7.48–7.54 м (2Н), 7.64–7.69 м (1Н), 7.90-8.01 м (4Н), 8.18-8.23 м (1Н), 8.28-8.33 м (1H). Спектр ЯМР ¹³С, CDCl₃, δ_{C} , м. д.: 120.73 к $(CF_3, {}^1J_{CF} = 276.0 \Gamma_{II}), 128.74, 129.52, 129.93,$ 130.56, 132.46, 133.20, 134.47, 134.71, 140.40, 141.03 к (<u>С</u>СF₃, ${}^{2}J_{CF} = 36.4$ Гц), 141.35, 149.13, 191.18 (С=О). Спектр ЯМР ¹⁹F (CDCl₃): δ_F –64.59 м. д. Масс-спектр, *m/z* (*I*_{отн}, %): 302 (7) [*M*]⁺, 283 (<1) [M - F], 274 (4) $[M - CO]^+$, 233 (4) $[M - CF_3]^+$, 197 $(<1) [M - C_6H_5CO]^+, 128 (1) [M - CF_3 - C_6H_5CO]^+,$ 105 (100) $[C_6H_5CO]^+$, 77 (56) $[C_6H_5]^+$, 69 (4) $[CF_3]^+$, 51 (14) [C₄H₃]⁺. Найдено, %: С 63.57; Н 3.07; N

9.47; F 18.39. С₁₆Н₉F₃N₂O. Вычислено, %: С 63.58; Н 3.00; N 9.27; F 18.86.

(4-Метилфенил)-{3-(трифторметил)-2-хиноксалинил}метанон (66) получали из 0.2 г (0.8 ммоль) оксима 16 и 0.083 г (0.8 ммоль) 1,2диаминобензола 4. Выход 0.16 г (64%), т. пл. 108-109°С, *t*_г 24.22 мин. ИК спектр, v, см⁻¹: 1182 с (СF), 1239 c (CF), 1282 cp (CF), 1604 cp (C=N), 1678 c (C=O). Спектр ЯМР⁻¹Н (CDCl₃), б, м. д.: 2.45 с (3Н, CH₃), 7.30 д (2H, Ar, ${}^{3}J_{\text{HH}} = 8.1$ Гц), 7.81 д (2H, Ar, ${}^{3}J_{\rm HH} = 8.1$ Гц), 7.95–8.01 м (2Н, хиноксалин), 8.17– 8.23 м (1Н, хиноксалин), 8.28–8.33 м (1Н, хиноксалин). Спектр ЯМР ¹³С (CDCl₃), δ_C, м. д.: 21.86, 95.74, 120.75 κ (CF₃, ¹J_{CF} = 276.1 Γ µ), 129.50, 129.53, 129.93, 130.70, 133.34, 133.13, 140.38, 141.04 к (<u>С</u>СF₃, ²*J*_{CF} = 36.3 Гц), 141.41, 145.75, 149.40, 190.85 (C=O). Спектр ЯМР ¹⁹F (CDCl₃): δ_F – 64.63 м. д. Масс-спектр, *m/z* (*I*_{отн}, %): 316 (6) [*M*]⁺, 301 (2) $[M - CH_3]^+$, 288 (1) $[M - CO]^+$, 247 (1) [M - $(CF_3)^+$, 197 (1) $[M - CH_3C_6H_4CO]^+$, 128 (1) $[M - CF_3 - CF_3]^+$ $CH_{3}C_{6}H_{4}CO]^{+}$, 119 (100) $[CH_{3}C_{6}H_{4}CO]^{+}$, 91 (33) $[CH_{3}C_{6}H_{4}]^{+}$, 69 (3) $[CF_{3}]^{+}$, 65 (12) $[C_{5}H_{5}]^{+}$, 51 (3) [HCF₂]⁺. Найдено, %: С 64.54; Н 3.51; N 8.78; F 17.69. С₁₇Н₁₁F₃N₂O. Вычислено, %: С 64.56; Н 3.51; N 8.86; F 18.02.

(4-Фенил)-{3-(трифторметил)бензо[g]хиноксалин-2-ил}метанон (9а) получали из 0.25 г (1.0 моль) оксима 1а и 0.16 г (1.0 моль) 2,3диаминонафталина 5. Выход 0.2 г (57%) т.пл. 158-159°С. ИК спектр, v, см⁻¹: 1126 с (СF), 1190 с (СF), 1202 ср (СF), 1596 ср (С=N), 1673 с (С=О). Спектр ЯМР ¹Н (CDCl₃), б, м. д.: 7.49–7.57 м (2Н), 7.64– 7.72 м (3H), 8.00 д (2H, ${}^{3}J_{\rm HH} = 7.6$ Гц), 8.11–8.21 м (2H), 8.77 с (1H), 8.9 с (1H). Спектр ЯМР ¹³С (CDCl₃), $\delta_{\rm C}$, м. д.: 98.1, 120.67 к (CF₃, ${}^1J_{\rm CF}$ = 276.2 Гц), 128.25, 128.50, 128.76, 128.84, 129.19, 130.67, 134.47, 134.73, 135.08, 135.59, 136.03, 136.72, 141.51 к (<u>С</u>СF₃, ²*J*_{CF} = 36.4 Гц), 148.82, 191.20 (С=О). Спектр ЯМР ¹⁹ F (CDCl₃): δ_F –64.83 м. д. Найдено, %: С 67.99; H 3.24; N 7.89; F 15.89. C₂₀H₁₁F₃N₂O. Вычислено, %: С 68.18; Н 3.15; N 7.95; F 16.18.

(4-Метилфенил)-[3-(трифторметил)бензо[g]хиноксалин-2-ил]метанон (96) получали из 0.2 г (0.77 ммоль) оксима 16 и 0.12 г (0.77 ммоль) 2,3диаминонафталина 5. Выход 0.16 г (57%), т. пл. 157.5–158.5°С, t_r 31.23 мин. ИК спектр, v, см⁻¹: 1138 с (СF), 1185 с (СF), 1204 ср (СF), 1604 ср (С=N), 1672 с (С=О). Спектр ЯМР ¹Н (СDСl₃), δ, м. д.: 2.47 с (3H, CH₃), 7.33 д (2H, Ph, ³J_{HH} = 8.1 Гц), 7.89 д (2H, Ph, ³J_{HH} = 8.1 Гц), 7.70 м (2H, хиноксалин),

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 89 № 3 2019

8.14 м (2Н, хиноксалин), 8.24 м (2Н, хиноксалин), 8.79 с (1Н, хиноксалин), 8.91 с (1Н, хиноксалин). Спектр ЯМР ¹⁹F (CDCl₃): $\delta_{\rm F}$ –64.93 м. д. Массспектр, *m/z* ($I_{\rm orth}$, %): 366 (7) [*M*]⁺, 351 (1) [*M* – CH₃]⁺, 338 (2) [*M* – CO]⁺, 297 (1) [*M* – CF₃]⁺, 247 (1) [*M* – CH₃C₆H₄CO]⁺, 178 (2) [*M* – CH₃C₆H₄CO – CF₃]⁺, 152 (7) [*M* – CH₃C₆H₄CO – CF₃ – CN]⁺, 119 (100) [CH₃C₆H₄CO]⁺, 91 [CH₃C₆H₄]⁺, 65 (11) [C₅H₅]⁺, 51 (1) [HCF₂]⁺. Найдено, %: С 68.82; Н 3.35; N 7.71; F 15.07. С₂₁H₁₃F₃N₂O. Вычислено, %: С 68.85; Н 3.57; N 7.65; F 15.56.

Взаимодействием оксима **1в** с 2,3-диаминонафталином **5**, по данным ГХ-МС, получили смесь продуктов **16**, **19в**, **11в**, **9в** и **20в** (табл. 4).

3-Гидроксиимино-2-(1,1,2,2,3,3,4,4,4-нонафторбутил)-4-фенил-3*H***-1,5-бензодиазепин-3-он (8г) получали из 0.3 г (0.76 ммоль) оксима 1г и 0.082 г (0.76 ммоль) 1,2-диаминобензола 4. Хроматографированием на колонке выделено 0.1 г (28%) соединения 8г и 0.06 г (23%) бензимидазола 14г. Т. пл. 142–147°С. ИК спектр, v, см⁻¹: 1129 с (СF), 1193 с (СF), 1232 ср (СF), 1450 ср (С=N), 1572 с (С=N), 3134 ш (ОН). Спектр ЯМР ¹Н (СDСІ₃), δ, м. д.: 7.39–7.46 м (2H, Ph), 7.48–7.57 м (3H, Ph), 7.60– 7.77 м (2H, Ph), 7.89 с (1H, OH), 8.06 д (2H, ³J_{HH} = 7.3 Гц). Найдено, %: С 48.67; Н 2.15; N 9.01; F 36.25. С₁9H₁₀F₉N₃O. Вычислено, %: С 48.84; H 2.16; N 8.99; F 36.59.**

Взаимодействием оксима 1д с 2,3-диаминонафталином 5, по данным ГХ-МС, получили сложную смесь, основными компонентами которой 2-(1,1,2,2,3,3,4,4-октафторбутил)нафтоявляются 19д и (4-фенил)-{3-(1,1,2,2,3,3,4,4имидазол октафторбутил)бензо[g]хиноксалин-2-ил}метанон Хроматографированием на колонке 9л. препаративно выделен 2-(1,1,2,2,3,3,4,4-октафторбутил)нафтоимидазол (19д), т. пл. 215-217°С, t_r 23.31 мин. ИК спектр, v, см⁻¹: 1143 с (СF), 1170 с (CF), 1274 ср (CF), 1476 ср (C=N), 3040-2865 ш (NH). Macc-спектр, m/z ($I_{\text{отн}}$, %): 368 (8) $[M]^+$, 349 (1) $[M-F]^+$, 317 (<1) $[M - HCF_2]^+$, 297 (<1) [M - $HCF_2 - HF^{\dagger}_{+}, 268 (2) [M - 2CF_2]^{\dagger}, 248 (4) [M - 2CF_2 - 2CF_2]^{\dagger}_{+}, 248 (4) [M - 2CF_2]^{\dagger}_{+}, 248 (4) [$ $HF]^+$, 217 (30) $[M - HC_3F_6]^+$, 197 (9) $[M - HC_3F_6 - HC_3F_6]^+$ HF^{+} , 190(6) $[M - \text{HC}_{3}\text{F}_{6} - \text{HCN}]^{+}$, 152 (19) $[\text{C}_{11}\text{H}_{6}\text{N}]^{+}$, 145 (27) $[C_{10}H_6F]^+$, 140 (41) $[C_{10}H_6N]^+$, 125 (7) $[C_{10}H_5]^+$, 113 (26) $[C_9H_5]^+$, 69 (36) $[CF_3]^+$, 51 (100) $[HCF_2]^+$, 39 (5) $[HF_2]^+$.

Взаимодействием оксима 1е с 2,3-диаминонафталином 5, по данным ГХ-МС, получили смесь продуктов 9е, 11е, 19е, 20е, 21е, из которой выделили 0.31 г (66%) **2-(1,1,2,2,3,3,4,4,5,5,6,6,6тридекафторгексил)нафтоимидазола** (19е), т. пл. 148–149°С, t_r 22.32 мин. ИК спектр, v, см⁻¹: 1144 с (CF), 1202 с (CF), 1238 ср (CF), 1479 ср (NH), 1588 сл (C=N), 3040–2615 ш (NH). Масс-спектр, m/z ($I_{\text{огн}}$, %): 486 (4) $[M]^+$, 467 (<1) $[M - F]^+$, 367 (<1) $[M - C_2F_5]^+$, 347 (<1) $[M - C_2F_5 - HF]^+$, 317 (2) $[M - C_3F_7]^+$, 298 (4) $[M - C_3F_7 - F]^+$, 278 (1) $[M - C_3F_7 - HF_2]^+$, 248 (5) $[M - C_4F_9 - F]^+$, 217 (41) $[M - C_5F_{11}]^+$, 197 (11) $[M - C_5F_{11} - HF]^+$, 190 (6) $[M - C_5F_{11} - HCN]^+$, 152 (21) $[C_{11}H_6N]^+$, 145 (34) $[C_{10}H_6F]^+$, 140 (39) $[C_{10}H_6N]^+$, 125 (6) $[C_{10}H_5]^+$, 119 (31) $[C_2F_5]^+$, 113 (18) $[C_9H_5]^+$, 69 (100) $[CF_3]^+$, 50 (7) $[CF_2]^+$, 39 (5) $[HF_2]^+$.

ФОНДОВАЯ ПОДДЕРЖКА

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант 18-03-00112 А) в рамках темы государственного задания (№ АААА-А19-119011790134-1) с использованием оборудования Центра коллективного пользования «Спектроскопия и анализ органических соединений».

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Михалева А.И., Зайцев, А.Б., Трофимов Б.А. // Усп. хим. 2006. Т. 75. № 9. С. 884; Mikhaleva A.I., Zaitsev A.B., Trofimov B.A. // Russ. Chem. Rev. 2006. Vol. 75. N 9. P. 797. doi 10.1070/ RC2006v075n09ABEH003594
- Filyakova V.I., Boltacheva N.S., Pervova M.G., Palysaeva N.V., Slepukhin P.A., Sheremetev A.B., Charushin V.N. // Mendeleev Commun. 2017. Vol. 27. P. 464. doi 10.1016/j.mencom.2017.09.011
- Bazhin D.N., Kudyakova Y.S., Nemytova N.A., Burgart Y.V., Saloutin V.I. // J. Fluor. Chem. 2016. Vol. 186. P. 28. doi 10.1016/j.jfluchem.2016.04.009
- Салоутин В.И., Бургарт Я.В., Скрябина З.Э., Кузуева О.Г. // ЖОрХ. 1996. Т. 32. Вып. 6. С. 828; Saloutin V.I., Bugardt Ya.V., Skryabina Z.E., Kuzueva O.G. // Russ. J. Org. Chem. 1996. Vol. 3. P. 792.
- 5. Исакова В. Г., Хлебникова Т.С., Лахвич Ф.А. // Усп.

хим. 2010. Т. 79. № 10. С. 929: *Isakova V.G., Khlebnikova T.S., Lakhvich F.A.* // Russ. Chem. Rev. 2010. Vol. 79. N 10. P. 849. doi 10.1070/ RC2010v079n10ABEH004123

- 6. Соединения фтора. Синтез и применение / Под ред. Н. Исикава. М.: Мир, 1990. 407 с.
- Kirsch P. Modern Fluoroorganic Chemistry: synthesis, reactivity, applications. Weinheim: Wiley-VCH, 2004. 308 p.
- Скрябина З.Э., Бургарт Я.В., Салоутин В.И. // ЖОрХ. 1997. Т. 33. Вып. 3. С. 442; Skryabina Z.E., Burgart Y.V., Saloutin V.I. // Russ. J. Org. Chem. 1997. Vol. 33. P. 392.
- Emmadi N.R., Bingi C., Kotapalli S.S., Ummanni R., Nanubolu J.B., Atmakur K. // Bioorg. Med. Chem. Lett. 2015. Vol. 25. N 15. P. 2918. doi 10.1007/s12272-016-0882-x
- Бургарт Я.В., Кузуева О.Г., Кодесс М.И., Салоутин В.И. // ЖОрХ. 1998. Т. 34. Вып. 3. С. 405; Burgart Y.V., Kuzueva O.G., Kodess M.I., Saloutin V.I. // Russ. J. Org. Chem. 1998. Vol. 34. P. 375.
- Palysaeva N.V., Boltacheva N.S., Slepukhin P.A., Pervova M.G., Filyakova V.I., Sheremetev A.B., Charushin V.N. // Mendeleev Commun. 2018. Vol. 28. P. 126. doi 10.1016/j.mencom.2018.03.003
- 12. Пат. СССР № 1037644 (1993).
- 13. Пат. РФ № 2209067 (2001) // Б. И. 2003. № 20.
- 14. *Трашахова Т.В., Чарушин В.Н. //* Матер. научн. конф. «Достижения в химии и химической технологии», Екатеринбург, 2011. С. 118.
- Tsami A., Bunnagel T.W., Farrel T., Scharber M., Choulis S.A., Brabec C.J., Scherf U. // J. Mater. Chem. 2007. 17. P. 1353. doi 10.1039/B700271H
- Comprehensive Organic Chemistry: the Synthesis and Reaction of Organic Compounds / Eds D. Barton, W.D. Ollis. Oxford: Pergamon Press, 1979. Vol. 4.
- Филякова В.И., Болтачева Н.С., Севенард Д.В., Чарушин В.Н. // Изв. АН. Сер. хим. 2010. № 9. С. 1744; Filyakova V.I., Boltacheva N.S., Sevenard D.V. Charushin V.N. // Russ. Chem. Bull. 2010. Vol. 59. N 9. P. 1791. doi 10.1007/s11172-010-0314-x
- Dolomanov O.V., Bourhis L.J., Gildea R.J, Howard J.A.K., Puschmann H. // J. Appl. Crystallogr. 2009. Vol. 42. P. 339. doi 10.1107/S0021889808042726
- Palatinus L., Chapuis G. // J. Appl. Crystallogr. 2007. Vol. 40. P. 786. doi 0.1107/S0021889807029238
- Sheldrick G.M. // Acta Crystallogr. (A). 2008. Vol. 64.
 P. 112. doi 10.1107/S0108767307043930

3-(Polyfluoroalkyl)propane-1,2,3-trione-2-oxyme in Reactions with Diaminoarenes

N. S. Boltacheva, P. A. Slepukhin, M. G. Pervova, V. I. Filyakova*, and V. N. Charushin

I. Ya. Postovsky Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences, ul. S. Kovalevskoi 22/20, Yekaterinburg, 620990 Russia *e-mail: filver@mail.ru

Received September 27, 2018; revised September 27, 2018; accepted October 4, 2018

The reaction of 3-trifluoromethyl-1,2,3-propanetrione-2-oximes with 1,2-diaminobenzene or 2,3-diaminonaphthalene produced new quinoxaline derivatives: 2-trifluoromethyl-3-aroylquinoxaline and 2-trifluoromethyl-3-aroylbenzo[g]quinoxaline. Under similar conditions, $3-R^F-1,2,3$ -propanetrione-2-oximes [$R^F = C_3F_7$, H(CF₂)₄, C₄F₉, C₆F₁₃] with these diaminoarenes form mixtures of condensation and fragmentation products in different ratios. Structure of (4-methylphenyl)-{3-(trifluoromethyl)benzo[g]quinoxalin-2-yl}methanone was established by X-ray diffraction method.

Keywords: fluoroalkyl-containing lithium 1,3-diketonates, 1,2,3-alkanetrione-2-oximes, $2-R^F$ -3-benzoylquinoxalines, $2-R^F$ -3-aroylbenzo[g]quinoxalines, (4-methylphenyl)-{3-(trifluoromethyl)benzo[g]quinoxalin-2-yl} methanones