УДК 546.221:546.222:547.279.1:547.592.1:544.653.1

РЕДОКС-АКТИВАЦИЯ СЕРОВОДОРОДА, ТИОЛОВ И СЕРЫ В ЭЛЕКТРОСИНТЕЗЕ ОРГАНИЧЕСКИХ ДИ-И ПОЛИСУЛЬФИДОВ

© 2019 г. Е. В. Шинкарь*, И. В. Смолянинов, В. В. Кузьмин, Н. Т. Берберова

Астраханский государственный технический университет, ул. Татищева 16, Астрахань, 414056 Россия *e-mail: nberberova@gmail.com

> Поступило в Редакцию 15 ноября 2018 г. После доработки 15 ноября 2018 г. Принято к печати 22 ноября 2018 г.

Предложен новый эффективный метод синтеза биологически активных органических ди-, три- и тетрасульфидов. Рассмотрены различные способы редокс-активации серы, сероводорода, тиолов в реакциях с органическими соединениями. Электрохимическое инициирование реакций системы медиатор– H_2S-S_8 с циклогексаном, метилциклогексаном и бензолом приводит к образованию полисульфидов R_2S_n (n = 2-4). Применение в качестве медиатора окисления H_2S бромида тетрабутиламмония позволило снизить анодное перенапряжения электросинтеза. В условиях анодной активации реакции циклоалкантиолов (C_5 , C_6) или тиофенола с серой получены ди- и тетрасульфидов. Электровосстановление S_8 в присутствии тиолов благоприятствовало формированию ди- и трисульфидов. Выход и соотношение R_2S_n (n = 2-4) зависят от способа редокс-активации тиолирующего агента.

Ключевые слова: электросинтез, органические полисульфиды, сероводород, циклоалкантиолы, элементная сера, редокс-активация

DOI: 10.1134/S0044460X19040085

Органические ди- и полисульфиды широко применяют в различных областях промышлености, особенно в пищевой и фармацевтической – в качестве потенциальных противогрибковых, антибактериальных и противоопухолевых веществ [1-4]. Полисульфиды R_2S_n (*n* = 2-4) играют роль соединений-платформ И перспективны лля создания лекарственных препаратов. Высокую биологическую активность органических полисульфидов связывают с возможностью образования H₂S, поэтому их часто используют в качестве перспективных источников эндогенно образующегося сероводорода. В последнее время сероводород признан важной биологической молекулой, которая играет определенную роль в различных физиологических процессах [5, 6]. Недавние исследования выявили способность сероводорода принимать активное участие в передаче сигнала между клетками живого организма и регулировать некоторые процессы, что позволяет отнести его к газотрансмиттерам [7]. Одним из приоритетных направлений в химии природных и синтетических веществ является разработка новых подходов к получению соединений-доноров сероводорода. Интересно, что между строением R_2S_n и скоростью выделения H_2S в результате распада органических полисульфидов существует корреляция, которую необходимо учитывать при дизайне лекарственных средств. Таким образом, разработка эффективных подходов к синтезу ди-, три- и тетрасульфидов с различными заместителями является актуальной проблемой.

При конструировании биологически активных органических соединений серы особое внимание уделяют различным способам образования связей C-S, S-S [8, 9]. Реакции тиолирования реализуются благодаря активации связи С_{*sp*³}-Н в каталитических условиях металлосодержащими соединениями [10, 11] или при радикальном инициди-*трет*-бутилпероксидом ировании [12–14]. Органические три- и тетрасульфиды получают также взаимолействием алкил(арил)тиолов с лихлоридом серы в присутствии оснований в неполярных растворителях [15]. Известно много результативных примеров синтеза дии

полисульфидов в условиях термической активации серы. Так, полисульфиды симметричного строения образуются в реакции диаллилдисульфида с элементной серой при температуре расплава S₈ (115-120°С) [16]. Термическая активация системы S₈-H₂S при 120-180°С эффективна в синтезе органических производных серы за счет генерирования гидрополисульфидных и тиильных радикалов в расплаве [17, 18]. Известен также электрохимический способ получения смеси органических сульфидов R_2S_n (n = 2-4) при комнатной температуре, основанный на взаимолействии алкил(арил)меркаптанов с анодногенерируемым дикатионом серы (2.2 В) [19].

Ранее нами был предложен электрохимический метод получения R_2S_n (n = 2-4) на основе взаимодействия циклоалканов C₅-C₈ с сероводородом в условиях прямой (анод/катод) активации H₂S при комнатной температуре и атмосферном давлении [20, 21]. Для снижения анодного перенапряжения электросинтеза применяли также косвенную активацию сероводорода в присутствии медиатора окисления H₂S – Bu₄NBr [22, 23]. Эффективность бромида тетрабутиламмония обусловлена его инертностью по отношению к реагенту И способностью к окислению при более низком значении потенциала, а также возможностью регенерации на катоде [24]. При использовании различных способов активации H₂S в реакции с циклоалканами С5-С8 первоначально образуются продукты тиолирования цикла – циклоалкантиолы и дисульфиды. Увеличение продолжительности электросинтеза способствует в результате окисления H₂S формированию неорганических полисульфанов и серы, которые участвуют в синтезе три- и тетрасульфидов симметричного строения [25]. Таким образом, проведенные ранее исследования показали, что различные серосодержащие соединения (сероводород, тиолы, сера) участвуют в электросинтезе органических ди-, три- и тетрасульфидов. К основным достоинствам данного метода можно отнести мягкие условия проведения реакций и высокую экологическую безопасность процесса. В связи с этим целью настоящей работы является поиск эффективных способов вовлечения серосодержащих соединений путем предварительной их редокс-активации в синтез биологически активных R₂S_n (n = 2-4) в органическом растворителе.

Для эффективного электросинтеза полисульфидов R_2S_n (n = 2-4) использовали несколько

способов редокс-активации серосодержащих реагентов (сероводорода, циклопентантиола, циклогексантиола, тиофенола и серы). В реакциях с участием H₂S (*E*_{па} = 1.7 В) применяли электромедиаторное (Bu₄NBr, $E_{na1} = 0.9$ B, $E_{na2} = 1.2$ B) окисление до катион-радикала сероводорода, снижающее потенциал электролиза ($\Delta E = 0.8$ B). Генерирование тиильного радикала осуществляется за счет циклических превращений редокспары Br-/Br при потенциале первого анодного пика. Взаимодействие HS-радикала с S_8 способствует формированию гидрополисульфидных радикалов в растворе (схема 1).

$$H_{2}S \xrightarrow[CH_{2}Cl_{2}]{Pr} \xrightarrow[Pt]{re} \stackrel{H}{Br} H_{2}S \xrightarrow[H_{2}S]{Pr} H_{2}S \xrightarrow[H_{2}S]{Hr} HS \xrightarrow{S_{8}} HS_{9}$$

Димеризация тиильных радикалов как продуктов фрагментации нестабильного катионрадикала H_2S приводит к образованию неорганических полисульфанов (H_2S_n) с различным содержанием атомов серы. Электролиз при потенциале окисления медиатора благоприятствует одноэлектронному окислению H_2S_n (0.4–1.5 B) до HS_n радикалов (схема 2).

Схема 2.

При длительном проведении реакции повышается концентрация высших полисульфанов H_2S_n $(n \ge 4-8)$, которые превращаются в S_8 [26, 27]. Систему Med- H_2S-S_8 использовали для синтеза дии полисульфидов в реакциях с циклогексаном, метилциклогексаном и бензолом в дихлорметане при комнатной температуре. В случае циклоалканов первично образуются соответствующие циклоалкантиолы (схема 3).

Сравнительная оценка реакционной способности тиильного и гидрополисульфидных радикалов HS_n (n = 2-6) в реакции с циклоалканами с помощью

квантово-химических расчетов показала, что отрыв атома водорода от субстрата при действии тиильного радикала идет намного легче (на ~75 кДж/моль). Еще одной конкурирующей атакующей частицей является радикал брома, генерируемый на аноде. Однако концентрация медиатора в реакционной смеси значительно ниже, чем сероводорода, что способствует высокой степени регенерации Med в приэлектродной области. Следовательно, инициирование реакций с участием циклоалканов тиильными радикалами более вероятно (схема 3).

Образующиеся в ходе электролиза циклоалкантиолы RSH также окисляются активной формой медиатора до циклоалкилтиильных радикалов, способных к димеризации в приэлектродной области или к взаимодействию с серой в растворе (схема 4).

В результате электромедиаторного окисления RSH образуются дисульфиды, а нестабильные циклоалкилгидрополисульфиды RS_nH превращаются в три- и тетрасульфиды, что сопровождается выделением сероводорода и серы. При проведении электролиза циклоалканов C₆, C₇ с системой Med– H_2S-S_8 при потенциале окисления первого анодного пика медиатора были получены R₂S_n (*n* = 2–4) (табл. 1). Система Med–H₂S–S₈ позволяет понизить энерго- и временные затраты на получение R₂S_n (*n* = 2–4) по сравнению с прямой анодной активацией H₂S в присутствии S₈.

Для соединений C₆H₁₂, (CH₃)C₆H₁₁ общий выход продуктов реакции увеличивается при возрастании продолжительности электролиза до 2.5 ч. Проведение электросинтеза в течение 3 ч приводит к снижению выхода R₂S_n (n = 2-4) до 24.6 и 37.7% для циклогексана и его гомолога соответственно. В результате электросинтеза отмечено уменьшение концентрации тетрасульфидов до 14.9 и 20.0%. Это может быть обусловлено взаимодействием R₂S_n

Таблица 1. Зависимость выхода продуктов взаимодействия циклогексана и метилциклогексана с системой Med-H₂S-S₈ от времени электросинтеза [$c(S_8) = c(Med) = 5$ ммоль, E = 1.10 B, CH₂Cl₂, Pt-ahod]

	Выход, %					
Величина	C ₆ H ₁₂		$(CH_3)C_6H_{11}$			
	1.5 ч	2.5 ч	1.5 ч	2.5 ч		
R_2S_2	5.8	7.2	6.8	9.8		
R_2S_3	4.9	5.7	10.4	11.0		
R_2S_4	16.9	22.6	18.4	25.4		
Σ^{a}	27.6	35.5	35.6	46.2		

^а Суммарный выход продуктов реакции.

(n = 2-4) и H₂S, приводящим к RSH и RS_{n-1}H, которое легко протекает в биологических системах [28]. Значения тепловых эффектов реакций H₂S и R₂S_n с циклогексильными группами варьируются от -2.98 до 17.42 кДж/моль. Следует отметить, что подобные превращения с участием низкомолекулярных неорганических сульфанов H_2S_n (*n* = 2, 3) протекают заметно легче (ΔH изменяется от -7.75 до 3.77 кДж/моль). Образующиеся нестабильные промежуточные соединения RS_{n-1}H диспропорционируют до ди- и трисульфидов с выделением серы. Кроме того, наличие бромид-аниона в реакционной смеси может способствовать распаду RS₂H до тиолов и серы [29]. Этот факт согласуется с расчетом величины конверсии серы, которая во всех проведенных реакциях меняется незначительно (25.8-32.3%). При увеличении продолжиэлектросинтеза тельности содержание S₈ в реакционной смеси также возрастает за счет превращения сероводорода неорганические в полисульфаны. способные к деструкции образованием серы.

Полученные данные свидетельствуют о более высоком суммарном выходе ди-, три- и

Схема 4.

тетрасульфидов в реакции с участием метилциклогексана. Отличие в поведении данного субстрата объясняется участием тиильных радикалов в реакции дегидрирования по третичному атому углерода в цикле. Повышение выхода полисульфидов R_2S_n (n = 2-4) происходит за счет значительного возрастания содержания тетрасульфидов (табл. 1). При проведении электромедиаторного синтеза (1.5 ч) в отсутствие серы в соотношение продуктов растворе реакции отличается, $R_2S_2:R_2S_3:R_2S_4 = 1.0:1.3:0.6$. Состав реакционной смеси изменяется в пользу тетрасульфидов, следовательно, предварительное введение серы способствует увеличению ИХ концентрации. В реакции циклогексана с системой Med-H₂S-S₈ выход R₂S₃ по сравнению с метилпроизводным незначителен. Более заметное накопление дисульфидов по сравнению с трисульфидами объясняется достаточно высокой скоростью лимеризации шиклоалкилтиильных раликалов. Экспериментальные данные согласуются с ранее полученными результатами по прямой анодной активации системы H₂S-S₈ в реакциях с циклоалканами С5-С7 [25].

Наряду с циклогексаном и его метилпроизводным были изучены превращения бензола с участием системы Med-H₂S-S₈ при потенциале электролиза, равном значению первого анодного пика Bu₄NBr (0.9 В). В этих условиях электролиза бензол не реагирует с активированным сероводородом, так как для реакции радикального замещения не характерны. В связи с этим, электролиз проводили при потенциале второго пика окисления медиатора (1.2 В), что позволило снизить на 0.5 В анодное перенапряжение процесса окисления сероводорода. В результате использования данного подхода генерируется электрофил (Br⁺), который выступает атакующей частицей по отношению к сероводороду и бензолу. Это ведет к уменьшению степени регенерации медиатора на

15–20% по сравнению с превращениями циклоалканов в аналогичных условиях (95–98%).

Активация сероводорода, как в условиях радикального инициирования (схема 2), так и при взаимодействии с электрофилом, приводит к образованию дисульфана (схема 5).

В условиях двухэлектронного окисления бромиданиона при взаимодействии с H_2S , предположительно, генеририруется сероцентрированный катион (HS_2^+), который реагирует с бензолом до промежуточного продукта – гидрофенилдисульфана (схема 6).

Представленный механизм электротиолирования бензола согласуется с изученными ранее превращениями ароматических и гетероциклических соединений с тиоцианат-анионом в электрохимических условиях [30, 31]. Электроокисление аниона способствует генерированию реакционноспособного интермедиата – тиоцианогена (SCN)₂, атакующего (гетеро)ароматическое ядро с образованием продуктов тиоцианирования [32].

В ходе электролиза бензола с системой Med-H₂S-S₈ в течение 1.5 ч получена смесь продуктов реакции R_2S_n (n = 2-4): $R_2S_2 - 8.9\%$, $R_2S_3 - 17.3\%$, R₂S₄-31.2%. Увеличение времени реакции до 2.5 ч приводит к повышению суммарного содержания продуктов тиолирования до 66.1% (11.3% R₂S₂, 18.8% R₂S₃, 36.0% R₂S₄), при этом основной вклад в прирост выхода происходит за счет накопления тетрасульфидов. Этот факт объясняется тем, что нестабильный гидрофенилдисульфан окисляется до R₂S₄ или взаимодействует с серой с образованием высокомолекулярных полисульфидов. Как и в случае циклоалканов, увеличение продолжительности электролиза до 3 ч не приводит к повышению общего выхода продуктов реакции (52.8%).

Для электросинтеза, направленного на получение полисульфидов R_2S_n (n = 2-4) без

Таблица 2. Выход продуктов реакций при анодной активации RSH в присутствии S_8 [RSH: $S_8 = 2:1$, c(RSH) = 20 ммоль, E = 1.85 B, CH₂Cl₂, 1.5 ч, Pt-анод]

Соединение	Выход п реаки	δ, % ^a		
	R_2S_2	R_2S_4		
<i>cyclo</i> -C ₅ H ₉ SH	16.0	25.4	20.1	
$cyclo-C_6H_{11}SH$	12.3	30.0	33.5	
C ₆ H ₅ SH	27.8	10.1	7.0	

 a δ – степень превращения серы.

применения медиатора, были рассмотрены два альтернативных подхода: анодная активация тиолов в реакциях с серой и катодная активация серы в присутствии тиолов. В первом случае в электролиза (1.85 B) **VСЛОВИЯХ** окислению подвергаются тиолы (циклопентантиол – 1.68 В, циклогексантиол – 1.72 В, тиофенол – 1.75 В), поскольку сера обладает более высоким анодным потенциалом (2.20)**B**). Bo втором случае электрохимическое восстановление серы протекает в энергетически более выгодных условиях (-1.10, -1.40 В), чем катодная активация тиолов (>-1.80 В). Анодная активация RSH, как и в присутствии медиатора (схема 4), приводит к образованию алкилтиильных радикалов, реагирующих с серой. Гидрополисульфиды с высокой молекулярной массой (RS₉H) могут диспропорционировать до более устойчивых сульфидов R₂S₂ и R₂S₄ (схема 7).

Схема 7.

$$4RS_9H \rightarrow R_2S_2 + R_2S_4 + 3H_2S + 7/8S_8$$

Результаты электросинтеза полисульфидов с применением анодной активации тиолов в присутствии серы представлены в табл. 2.

реакции Особенностью данной является преобладание выхода тетрасульфидов (25.0, 30.5%) по сравнению с дисульфидами (16.5, 12.6%) для циклопентан- и циклогексантиола, соответственно. то же время для тиофенола доминирует В направление реакции – димеризация фенилтиильных радикалов. Подобная картина ранее наблюдалась реакции электрогенерируемого на примере дикатиона серы с тиофенолом [33]. Значение конверсии серы согласуется с незначительным выходом тетрасульфидов, что связано с низкой реакционной способностью фенилтиильного радикала по отношению к сере. Стоит отметить, что в реакциях изученных тиолов не наблюдается

Таблица 3. Состав и выход продуктов реакции при катодной активации S_8 в присутствии RSH [RSH: $S_8 = 2:1, c(S_8) = 1.5$ ммоль, E = -1.30 В, CH₂Cl₂, 1.5 ч, Pt-анод]

Вых	S 0/ a		
R_2S_2	R_2S_3	R_2S_4	0, 70
30.0	29.0	_	42.0
43.0	39.0	_	41.7
34.6	_	49.0	51.7
	Вых R ₂ S ₂ 30.0 43.0 34.6	Выход по току R ₂ S ₂ R ₂ S ₃ 30.0 29.0 43.0 39.0 34.6 —	Выход по току, % R ₂ S ₂ R ₂ S ₃ R ₂ S ₄ 30.0 29.0 - 43.0 39.0 - 34.6 - 49.0

^а δ – степень превращения серы.

образование трисульфидов. Это объясняется отсутствием в реакционной смеси сероцентриинтермедиатов (HS-радикал, рованных HS_{2} катион), генерируемых из сероводорода. Таким образом, при использовании анодной активации тиолов в присутствии серы не образуются полупродукты – гидроциклоалкил(фенил)дисульдиспропорционирование фаны. которых способствует получению трисульфидов (схема 8) [28].

Схема 8.

$2RSSH \rightarrow R_2S_3 + H_2S$

Для получения R_2S_n (n = 2-4) предложена также катодная активация S_8 в реакции с тиолами. Известно, что при электрохимическом восстановлении серы образуется ряд реакционноспособных интермедиатов (схема 9) [19, 34, 35].

$$S_8 \xrightarrow{+2e} S_8^{2-}$$

$$4S_8^{2-} \xrightarrow{+2e} 4S_6^{2-} + S_8$$

$$S_6^{2-} \xrightarrow{-2} 2S_3^{--}$$

Катодная активация серы в присутствии тиолов полисульфидов позволяет получить смесь различного состава (табл. 3). Для циклоалкантиолов отмечается образование только ди- и трисульфидов, тогда как в реакции с тиофенолом трисульфиды фиксируются. не Подобная закономерность наблюдается в случае прямой анодной активации тиофенола в присутствии серы. Высокая концентрация образующихся дисульфидов обусловлена взаимодействием тиолов с нуклеофильными частицами серы, что приводит к окислению RS-анионов в ячейке с неразделенным катодно-анодным пространством (схема 10).

Cxema 10.

$$S_8^{2-} + RSH \rightarrow RS_8^- + RS^-$$

 $RS^- \xrightarrow{-e} 2RS^\bullet \longrightarrow R_2S_2$

Для получения R_2S_3 необходимо формирование в растворе HS_3 -радикалов, рекомбинация которых с RS-радикалами ведет к RS₄H, диспропорционирующих на трисульфид, сероводород и серу (схема 11).

Схема 11.

$$S_3^{-} + RSH \rightarrow HS_3^{-} + RS^{-}$$

 $HS_3^{-} + RS^{-} \rightarrow RS_4H$
 $2RS_4H \rightarrow R_2S_3 + H_2S + 1/2S_8$

Тетрасульфилы с достаточно высоким выходом фиксируются только в реакции с участием тиофенола, что согласуется с большей степенью превращения серы. Следовательно, фенилтиильный радикал достаточно активен по отношению к различным полисульфидным частицам, образующимся при активации серы. К преимуществу указанного типа инициирования реакции следует отнести возможность направленного электросинтеза ди- и трисульфидов и более высокую степень превращения серы по сравнению с анодной активацией циклоалкантиолов. Особенностью данного подхода является отсутствие тетрасульфидов в продуктах реакции, поскольку в условиях катодной активации серы не затрагивается область электроокисления R_2S_n (n = 2, 3).

Таким образом, в работе предложены новые эффективные подходы к электросинтезу ди-, три- и тетрасульфидов с использованием различных способов активации серосодержащих реагентов в дихлорметане при комнатной температуре. Применение редокс-системы Med-H₂S-S₈ в реакциях с циклоалканами С₆, С₇ и бензолом при варьировании потенциала электролиза и времени взаимодействия позволило получить R_2S_n (n = 2-4) с достаточно высоким выходом. В зависимости от природы субстрата использование медиатора Ви4NBr способствует снижению анодного перенапряжения на 0.8 или 0.5 В. Активация H₂S в присутствии S₈ ведет к генерированию тиильных и гидрополисульфидных радикалов, участвующих в реакции тиолирования. Данный подход целесообразно применять для получения тетрасульфидов с высоким выходом при наличии ди-И трисульфидов в смеси продуктов. В условиях анодного инициирования реакции тиолов с серой преимущественно образуются ди- и тетрасульфиды в отсутствии трисульфидов. Катодная активация серы в присутствии циклоалкантиолов благоприятствует образованию ди- и трисульфидов, а в реакции с тиофенолом получены ли- и тетрасульфилы. Таким образом, определяющими факторами в электросинтезе полисульфидов заданного строения является способ активации используемого реагента (сероводорода или тиола) присутствии серы И продолжительность в взаимодействия. Основными достоинствами электросинтеза R_2S_n (n = 2-4) являются мягкие vсловия процесса его И экологическая безопасность.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В работе использовали коммерчески доступные реактивы: циклогексан, метилциклогексан, бензол, циклопентантиол, циклогексантиол, тиофенол (98%, Aldrich), бромид тетрабутиламмония (98%, Aldrich), гексан (95%, Alfa Aesar), серу (99.5% Sigma-Aldrich) без дополнительной очистки. Сероводород получали по методике [36]. Очистку хлористого метилена (ХЧ) осуществляли по известной методике [37].

Метод циклической вольтамперометрии (ЦВА) использовали для анализа смеси продуктов электролиза и определения редокс-потенциалов соединений. Электрохимические эксперименты проводили в трехэлектродной ячейке с помощью потенциостата IPC-рго в среде аргона. Рабочий электрод – стационарный платиновый (Pt) электрод диаметром 3 мм; вспомогательный электрод – платиновая пластина ($S = 36 \text{ мм}^2$); электрод сравнения – (Ag/AgCl/KCl) с водонепроницаемой диафрагмой. Скорость развертки потенциала 0.2 B·c⁻¹. Фоновый электролит – 0.15 М. Ви₄NClO₄ (99%, Acros) дважды перекристаллизованный из водного EtOH и высушенный в вакууме (48 ч) при 50°C.

Микроэлектролиз системы Med-H₂S-S₈ (1.5 ч) проводили в потенциостатическом режиме на платиновых электродах ($S = 30 \text{ мm}^2$) в бездиафрагменной трехэлектродной ячейке (2 мл) в дихлорметане при 25°C в среде аргона. Концентрация медиатора Bu₄NBr и S₈ составляла 5 ммоль. Мольное соотношение сероводород:углеводород = 3:1, $c(H_2S) = 30$ ммоль. Сероводород вводили в реакционную среду через 0.5 ч в виде насыщенного раствора в дихлорметане (20 мкл). Концентрацию H₂S определяли гравиметрическим методом по реакции с Pb(CH₃COO)₂. Значение потенциала электролиза зависело от природы субстрата: для циклоалканов поддерживали потенциал 1.10 В (первый пик окисления медиатора), для бензола – 1.40 В (второй анодный пик медиатора).

Анодную активацию тиолов (5 ммоль) проводили в потенциостатическом режиме (1.5 ч) при потенциале 1.85 В и соотношении RSH:S₈ = 2:1. Катодную активацию серы (1.5 ммоль) осуществляли при потенциале -1.30 В и соотношении RSH:S₈ = 2:1 в течение 1.5 ч.

Препаративный электролиз (10 мл) смеси углеводорода и системы Med-H₂S-S₈ в дихлорметане проводили на платиновых электродах (S =55 мм²) в течение 1.5 и 2.5 ч. Скорость подачи сероводорода 2-3мл/мин, составляла что обеспечивало заданную концентрацию H₂S в электрохимической ячейке. Молярное соотношение сероводород : углеводород составляло 3:1, $c(H_2S) = 30$ ммоль, c(S) = c(Med) = 5 ммоль. В пронессе электролиза плотность тока поддерживали в диапазоне 5–10 мА/см². Реакционную смесь после электролиза дегазировали током аргона в течение далее концентрировали в вакууме. 30 мин. Фоновый электролит и медиатор осаждали Смесь органических полисульфидов гексаном. выделяли трехступенчатой экстракцией гексаном, далее экстракт концентрировали в вакууме.

Препаративный электролиз (15 мл) с участием серы и тиолов проводили в потенциостатическом режиме (1.5 ч) при потенциале 1.85 В, в дихлорметане на платиновых электродах (S = 50 мм²). Навеску серы (10 ммоль) предварительно растворяли в дихлорметане. Раствор серы с тиолом при соотношении 1:2 деаэрировали 5-7 мин. В случае катодной активации серы в присутствии тиола препаративный электролиз проводили при потенциале -1.30 В. Плотность тока в ходе электролиза поддерживали в диапазоне 5-10 мA/см². Реакционную смесь после электролиза концентрировали в вакууме. Фоновый электролит осаждали гексаном. Смесь органических полисульфидов и тиолов выделяли трехступенчатой экстракцией гексаном, далее экстракт концентрировали в вакууме.

Для идентификации полученных органических соединений серы использовали методы циклической вольтамперометрии, ИК спектроскопии, хромато-масс-спектрометрии и рентгенофлуоре-

сцентного анализа. На циклических вольтампероокисления продуктов электролиза граммах фиксировали три анодных пика: R₂S₂ (1.50–1.60 B), \hat{R}_2S_3 (1.73–1.85 В), R_2S_4 (1.90–2.05 В). В случае реакций тиолов с серой наблюдали также пики окисления исходных тиолов в диапазоне от 1.62 до 1.75 В. Выход ди-, трисульфидов оценивали по данным хромато-масс-спектрометрии. В реакциях с использованием медиаторной системы расчет выхода продуктов электролиза проводили на прореагировавший сероводород, а в случае редоксактивации системы RSH-S₈ содержание R₂S₂ и R₂S₃на прореагировавший тиол. Выход тетрасульфидов для всех исследуемых систем оценивали по данным ЦВА путем определения соотношения токов анодных пиков ди- и тетрасульфидов с учетом молекулярных масс R_2S_n (n = 2, 4), окисляющихся в рассмотренных условиях в одну двухэлектронную стадию. Неорганические полисульфаны (H₂S_n) с различной молекулярной массой регистрировали электрохимическим методом в диапазоне 0.4-1.5 В. Степень превращения серы контролировали методом ЦВА по снижению величины тока катодного пика (-1.15 В).

ИК спектры продуктов электролиза регистрировали на ИК Фурье-спектрометре ФСМ-1201 в таблетках KBr в лиапазоне от 400 ло 4000 см⁻¹. В ИК спектрах фиксировали валентные колебания связей: S-S (507-520 см⁻¹), C-S (690-710 см⁻¹) и S-H (2550-2600 см⁻¹). Анализ смеси продуктов реакции методом газовой хромато-масспроводили спектрометрии на приборе GCMS-QP2010 Ultra (Shimadzu) с масс-спектрометрическим детектором (EI, 70 эВ). Капиллярная колонка SPB-1 SULFUR $(30 \text{ м} \times 0.32 \text{ мм}), t_{\text{max}} = 320^{\circ}\text{C}, газ-носитель – гелий.$ Температурный режим колонки программировали от 30 до 280°С. В масс-спектрах фиксировали молекулярные ионы *m/z* (*I*, %): C₅H₉SH, 102 (40) $[M]^+$, 75 (15), 69 (100), 53 (20), 41 (60); C₆H₁₁SH, 116 (25) $[M]^+$, 83 (23), 67 (40), 55 (100), 45 (20); C_6H_5SH , 110 (100) $[M]^+$, 84 (14), 77 (12), 66 (31), 51 (10); $(C_5H_9)_2S_2$, 202 (11) $[M]^+$, 134 (21), 69 (100); $(C_5H_9)_2S_3$, 234 (12) $[M]^+$, 101 (25), 67 (55); (C₆H₁₁)₂S₂, 230 (14) $[M]^+$, 147 (16), 83 (100), 55 (27); (C₆H₁₁)₂S₃, 262 (16) $[M]^+$, 230 (3), 179 (8), 115 (32), 83 (100), 55 (25); $(C_6H_5)_2S_2$, 218 (100) $[M]^+$, 185 (70), 154 (65), 109 (80), 77 (55), 66 (70); (C₆H₅)₂S₃, 250 (8) $[M]^+$, 218 (100), 185 (25), 154 (35), 140 (10), 109 (80), 66 (35); $(C_7H_{13})_2S_2$, 260 (13) $[M]^+$, 163 (17), 130 (10), 97 (100); $(C_7H_{13})_2S_3$, 291 (14) $[M]^+$, 260 (4), 163 (28), 130 (44), 97 (100).

Органические тетрасульфиды в условиях контроля методом хромато-масс-спектрометрии подвергаются деструкции. В связи с этим, смесь R_2S_n (*n* = 2–4) анализировали рентгенофлуоресцентным методом на спектрометре АСЭ-1 для определения содержания общей серы. Полученные рассчитать процентное ланные позволили содержание R₂S₄, учитывая результаты хроматомасс-спектрометрии по выходу ди-И трисульфидов. Установленные значения выхода тетрасульфидов согласуются результатами с электрохимических исследований.

Квантово-химические расчеты проводили с использованием программы Нурег Chem 8.0 методом функционала плотности B3LYP/6-31++G (d,p). Влияние растворителя (CH₂Cl₂) учитывали с помощью модели поляризуемого континуума (PCM). Энергетические эффекты реакций (ΔH) рассчитывали как разность полных энергий конечных и исходных структур.

ФОНДОВАЯ ПОДДЕРЖКА

Работа выполнена при финансовой поддержке Российского научного фонда (грант № 17-13-01168).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Steudel R. // Chem. Rev. 2002. Vol. 102. N 11. P. 3905. doi 10.1021/cr010127m
- Lee B.C., Park B.H., Kim S.Y., Lee Y.J. // J. Cell. Biochem. 2011. Vol. 112. P. 118. doi 10.1002/jcb.22896
- Bisen P.S., Emerald M. // Curr. Nutr. Food. Sci. 2016. Vol. 12. P. 190. doi 10.2174/1573401312666160608121
- Münchberg U., Anwar A., Mecklenburg S., Jacob C. // Org. Biol. Chem. 2007. P. 1505. doi 10.1039/B703832A
- Pluth M.D., Bailey T.S., Hammers M.D., Hartle M.D., Henthorn H.A., Steiger A.K. // Synlett. 2015. Vol. 26. N 19. P. 2633. doi 10.1055/s-0035-1560638
- Hartle M.D., Pluth M.D. // Chem. Soc. Rev. 2016. Vol. 45. P. 6108. doi 10.1039/c6cs00212a
- Li L., Rose P., Moore P.K. // Annu. Rev. Pharmacol. Toxicol. 2011. Vol. 51. P. 169. doi 10.1146/annurevpharmtox-010510-100505
- Gangjee A., Zeng Y., Talreja T., McGuire J.J., Kisliuk R.L., Queener S.F. // J. Med. Chem. 2007. Vol. 50. N 13.

P. 3046. doi 10.1021/jm070165j

- Ley S.V., Thomas A.W. // Angew. Chem. Int. Ed. 2003. Vol. 42. N 44. P. 5400. doi 10.1002/anie.200300594
- Beletskaya I.P., Ananikov V.P. // Chem. Rev. 2011. Vol. 111. N 3. P. 1596. doi 10.1021/cr100347k
- Zou L.H., Reball J., Mottweiler J., Bolm C. // Chem. Commun. 2012. Vol. 48. P. 11307. doi 10.1002/ adsc.201300566
- 12. *Tang R.Y., Xie Y.X., Xie Y.L., Xiang J.N., Li J.H. //* Chem. Commun. 2011. Vol. 47. P. 12867. doi 10.1039/ C1CC15397H
- Zhao J., Fang H., Han J., Pan Y., Li G. // Adv. Synth. Catal. 2014. Vol. 356. N 11–12. P. 2719. doi 10.1002/ adsc.201400032
- Zhang J.-R., Liao Y.-Y., Deng J.-C., Feng K.-Y., Zhang M., Ning Y.-Y., Lina Z.-W., Tang R.-Y. // Chem. Commun. 2017. Vol. 53. P. 7784. doi 10.1039/C7CC03940A
- Gundermann K.-D., Humke K. In: Methoden der Organischen Chemie / Ed. D. Klamann. Stuttgart: Thieme, 1985. N 11. P. 148.
- 16. Groom M., Block E. Pat. US 8101802 (2012).
- 17. Дерягина Э.Н., Паперная Л.К., Воронков М.Г.// ЖОрХ. 1995. Т. 31. Вып. 4. С. 627; Deryagina E.N., Papernaya L.K., Voronkov M.G. // Russ. J. Org. Chem. 1995. Vol. 31. P. 580.
- Дерягина Э.Н., Паперная Л.К. // ЖОргХ. 1997. Т. 33.
 Вып. 8. С. 1189; Deryagina E.N., Papernaya L.K. // Russ. J. Org. Chem. 1997. Vol. 33. P. 1113.
- Le Guillanton G. // Sulfur Rep. 1992. Vol. 12. P. 405. doi 10.1080/01961779208048949
- Берберова Н.Т., Шинкарь Е.В., Смолянинов И.В., Абдулаева В.Ф. // ЖОХ. 2015. Т. 85. Вып. 4. С. 697; Berberova N.T., Shinkar' E.V., Smolyaninov I.V., Abdulaeva V.F. // Russ. J. Gen. Chem. 2015. Vol. 85. P. 998. doi 10.1134/S1070363215040416.
- Берберова Н.Т., Шинкарь Е.В., Смолянинов И.В., Швецова А.В., Седики А.Б., Кузьмин В.В. Пат. РФ № 2614151 (2017) // Б. И. 2017. № 9.
- Шинкарь Е.В., Швецова А.В., Седики А.Б., Берберова Н.Т. // Электрохимия. 2015. Т. 51. № 11.
 С. 1182; Shinkar' E.V., Shvetsova A.V., Sediki D.B., Berberova N.T. // Russ. J. Electrochem. 2015. Vol. 51.
 Р. 1046. doi 10.1134/S1023193515110178
- Берберова Н.Т., Шинкарь Е.В., Смолянинов И.В., Пащенко К.П. // Докл. АН. 2015. Т. 465. № 6. С. 683; Berberova N.T., Shinkar' E.V., Smolyaninov I.V., Pashenko K.P. // Doklady Chem. 2015. Vol. 465. P. 295. doi 10.1134/S0012500815120058
- 24. *Francke, R., Little R.D.* // Chem. Soc. Rev. 2014. Vol. 43. P. 2492. doi 10.1039/C3CS60464K
- 25. Берберова Н.Т., Смолянинов И.В., Шинкарь Е.В., Кузьмин В.В., Швецова А.В., Седики А.Б. // Изв. АН. Сер. хим. 2018. Т. 67. № 1. С. 108; Berberova N.T., Smolyaninov I.V., Shinkar E.V., Kuzmin V.V., Sediki D.B.,

Shvetsova A.V. // Russ. Chem. Bull. 2018. Vol. 67. P. 108. doi 10.1007/s11172-018-2044-4

- Берберова Н.Т., Шинкарь Е.В. // Изв. АН. Сер. хим. 2000. Т. 49. № 7. С. 1182; Berberova N.T., Shinkar' E.V. // Russ. Chem. Bull. 2000. Vol. 49. Р. 1178. doi 10.1007/BF02495758
- Robert J., Anouti M., Abarbri M., Paris J. // J. Chem. Soc. Perkin Trans. 1997. N 9. P. 1759. doi 10.1039/ A700939I
- Bianco C.L., Chavez T.A., Sosa V., Saund S.S., Nhu N.Q. Nguyen, Tantillo D.J., Ichimura A.S., Toscano J.P., Fukuto J.M. // Free Rad. Biol. Med. 2016. Vol. 101. P. 20. doi 10.1016/j.freeradbiomed.2016.09.020
- Bailey T.S., Zakharov L.N., Pluth M.D. // J. Am. Chem. Soc. 2014. Vol. 136. P. 10573. doi 10.1021/ja505371z
- Gitkis A., Becker J.Y. // J. Electroanal. Chem. 2006. Vol. 593. P.29. doi 10.1016/j.jelechem.2005.12.011
- 31. Kokorekin V.A., Yaubasarova R.R., Neverov S.V., Petrosyan V.A. // Mendeleev Commun. 2016. Vol. 26.

P. 413. doi 10.1016/j.mencom.2016.09.016

- Gitkis A., Becker J.Y. // Electrochim. Acta. 2010. Vol. 55.
 P. 5854. doi10.1016/j. electacta.2010.05.035
- Le Guillanton G., Do Q.T., Elothmani D. // J. Electrochem. Soc. 1996. Vol. 143. P. L223. doi 10.1149/ 1.1837151
- Kunugi A., Kuwamura K., Inoue M., Kawamura Y., Abe K. // Electrochim. Acta. 1996. Vol. 41. P. 1987. doi 10.1016/0013-4686(96)00002-3
- Izumi I., Yasuzawa M., Kunugi A. // Electrochemistry. 2006. Vol. 74. P. 691. doi 10.5796/electrochemistry.74.691
- Летичевская Н.Н., Шинкарь Е.В., Береберова Н.Т., Охлобыстин О.Ю. // ЖОХ. 1996. Т. 66. Вып. 11. С. 1785; Letichevskaya N.N., Shinkar' E.V., Berberova N.T., Okhlobystin O.Yu. // Russ. J. Gen. Chem. 1996. Vol. 66. P. 1739.
- 37. *Gordon A.J., Ford R.A.* The chemist's companion. New York: Wiley Intersci. Publ., 1972. P. 541.

Redox Activation of Hydrogen Sulfide, Thiols and Sulfur in Electrosynthesis of Organic Di- and Polysulfides

E. V. Shinkar'*, I. V. Smolyaninov, V. V. Kuzmin, and N. T. Berberova

Astrakhan State Technical University, ul. Tatishcheva 16, Astrakhan, 414056 Russia *e-mail: nberberova@gmail.com

Received November 15, 2018; revised November 15, 2018; accepted November 22, 2018

A new and effective method for the synthesis of biologically active organic di-, tri- and tetrasulfides is proposed. Different methods of redox activation of sulfur, hydrogen sulfide, thiols in the reactions with organic compounds are considered. Electrochemical initiation of the reactions of the system mediator–H₂S–S₈ with cyclohexane, methylcyclohexane and benzene results in the formation of polysulfides R_2S_n (n = 2-4). The application of tetrabutylammonium bromide as a mediator of oxidation of H₂S allowed to decrease the anodic overpotential of electrosynthesis. Under the conditions of anodic activation of the reaction of cycloalkanethiols (C_5 , C_6) or thiophenol with sulfur, di- and tetrasulfides were obtained. Electroreduction of S₈ in the presence of the same thiols favored the formation of di- and trisulfides. The yield and the ratio of R_2S_n (n = 2-4) depend on the method of redox activation of the thiolating reagent.

Keywords: electrosynthesis, organic polysulfides, hydrogen sulfide, cycloalkanethiols, elemental sulfur, redox activation