УДК 541.49:546.(562+732):548.736:547.574

СИНТЕЗ, СТРОЕНИЕ И БИОЛОГИЧЕСКАЯ АКТИВНОСТЬ КООРДИНАЦИОННЫХ СОЕДИНЕНИЙ МЕДИ И КОБАЛЬТА С ЗАМЕЩЕННЫМИ 2-(2-ГИДРОКСИБЕНЗИЛИДЕН)-N-(ПРОП-2-ЕН-1-ИЛ)-ГИДРАЗИНКАРБОТИОАМИДАМИ

© 2019 г. А. П. Гуля^a, В. О. Граур^a, Ю. М. Чумаков^{b,c}, П. А. Петренко^b, Г. Г. Бэлан^d, О. С. Бурдунюк^{d,e}, В. И. Цапков^{a, *}, В. Ф. Рудик^f

^a Молдавский государственный университет, ул. Матеевича 60, Кишинев, Молдова *e-mail: vtsapkov@gmail.com

^b Институт прикладной физики, Кишинев, Молдова

^с Технический университет г. Гебзе, Гебзе, Турция

 d Государственный университет медицины и фармации имени Н. Тестемицану, Кишинев, Молдова e Национальное агентство общественного здоровья, Кишинев, Молдова

 f Институт микробиологии и биотехнологии Академии наук Республики Молдова, $\,$ Кишинев, Молдова

Поступило в Редакцию 29 ноября 2018 г. После доработки 29 ноября 2018 г. Принято к печати 22 февраля 2018 г.

Взаимодействием N-(проп-2-ен-1-ил)гидразинкарботиоамида с замещенными 2-гидроксибензальдегидами получены соответствующие азометины, которые были использованы для синтеза координационных соединений меди и кобальта составов $Cu(HL^{1-6})X \cdot nH_2O$ ($X = Cl^-$, NO_3^- ; n = 0–3), $Co(HL^2)_2NO_3$ и $Co(HL^6)_2Cl$. Строение полученных соединений установлено методами спектроскопии ЯМР и рентгеноструктурного анализа. Изучена противомикробная и противогрибковая активность синтезированных комплексов в отношении серии стандартных штаммов золотистого стафилококка, кишечных палочек и дрожжеподобных грибов, а также ингибирующее действие исходных тиоамидов и комплексов с биометаллами в отношении раковых клеток HL-60 миелоидной лейкемии человека.

Ключевые слова: координационные соединения, 2-гидроксибензальдегид, аллилтиосемикарбазоны, противомикробная и противораковая активность

DOI: 10.1134/S0044460X19050159

2-(2-Гидроксибензилиден)-*N*-(проп-2-ен-1-ил)гидразинкарботиоамид обладает широким набором донорных атомов и образует с переходными металлами разнообразные по составу и строению координационные соединения [1–6], проявляющие селективную противораковую активность [7, 8]. Установлено, что биологическая активность таких веществ хорошо согласуется с их строением. В связи с этим синтез и исследование новых координационных соединений металлов с производными этого гидразинкарботиоамида представляет как научный, так и практический интерес.

Целью данной работы явился синтез координационных соединений меди и кобальта с 2-(5бром-2-гидроксибензилиден)- (H_2L^1) , 2-(3,5-дибром-2-гидроксибензилиден)- (H_2L^2) , 2-(2,3-дигидроксибензилиден)- (H_2L^3) , 2-(2,4-дигидроксибензилиден)- (H_2L^4) , 2-(2-гидрокси-3-нитробензилиден)- (H_2L^5) и 2-(2-гидрокси-3-метоксибензилиден)- (H_2L^6) -N-(проп-2-ен-1-ил)гидразинкарботиоамидами (схема 1), установление их состава, строения, физико-химических и биологических свойств.

Тиоамиды H_2L^{1-6} получали конденсацией N-(проп-2-ен-1-ил)гидразинкарботиоамида (4-аллилтиосеми-карбазида) с замещенными 2-гидроксибензальдегидами в эквимолярном соотношении в этаноле. Выходы, температуры плавления и данные элементного анализа замещенных 2-(2-гидрокси-

$$R^{1}$$
 OH $N-NH$ $N-NH$ $N+1$ $N+1$

 $R^{1} = R^{2} = H$, $R^{3} = Br$ ($H_{2}L^{1}$); $R^{1} = R^{3} = Br$, $R^{2} = H$ ($H_{2}L^{2}$); $R^{1} = OH$, $R^{2} = R^{3} = H$ ($H_{2}L^{3}$); $R^{1} = R^{3} = H$, $R^{2} = OH$ ($H_{2}L^{4}$); $R^{1} = NO_{2}$, $R^{2} = R^{3} = H$ ($H_{2}L^{5}$); $R^{1} = OCH_{3}$, $R^{2} = R^{3} = H$ ($H_{2}L^{6}$).

бензилиден)-N-(проп-2-ен-1-ил)гидразинкарботиоамидов H_2L^{1-6} приведены в табл. 1; данные спектроскопии ЯМР представлены в табл. 2. При перекристаллизации гидразинкарботиоамидов H_2L^{1-6} из этанола удалось получить монокристаллы соединений H_2L^{4-6} , структура которых была установлена методом рентгеноструктурного анализа (табл. 3).

На рис. 1, 2 приведены общий вид фрагментов кристаллических структур гидразинкарботиоамидов H₂L⁴⁻⁶ и нумерация атомов в них. Во всех исследованных соединениях, в отличие от других панее тиосемикарбазидов тиосемикарбазонов [12-15], заместители, расположенные относительно связей N^1 – C^1 находятся в Zположении. Однако заместители, расположенные N^3-C^5 азометиновых связей относительно находятся в E-положении, что находится в согласии с уже цитированными литературными данными. Фрагменты A $(S^{1}N^{1}N^{2}N^{3}C^{1}C^{5})$ в тиоамидах H_2L^{4-6} практически плоские, максимальные отклонения от определяемых ими плоскостей составляют 0.053, 0.07 и 0.062 Å соответственно. При этом в целом исследованные молекулы H_2L^{4-6} не являются плоскими. Так, среднеквадратичные плоскости $C^6 - \hat{C}^{11}$ циклов ориентированы относительно фрагментов А под углами 17.3, 11.2 и 10.7°, а торсионные углы $N^1C^1C^2C^3$ и $C^1C^2C^3C^4$ принимают значения 92.2, -134.7°, 109.6, 2.9° и $142.1, 128.8^{\circ}$ соответственно. В тиоамиде H_2L^6 оба расстояния S^1 – C^1 и N^1 – C^1 сокращены по сравнению с таковыми в тиоамидах H₂L⁴ и H₂L⁵ на 0.021, 0.026 Å и 0.024, 0.035 Å (табл. 4).

В кристалле тиоамида H_2L^4 за счет двойной винтовой оси молекулы объединяются водородными связями O^1 -H... S^1 и C^2 -H... O^1 в цепочки вдоль оси b (рис. 3, табл. 5). В свою очередь, благодаря центру симметрии, цепочки связаны между собой водородными связями $N^2-H\cdots S^1$. В кристаллах тиоамидов H_2L^5 и H_2L^6 молекулы объединяются в центросимметричные димеры водородными связями $N^2-H\cdots S^1$, $N^2-H\cdots O^1$ и O^1 - $\hat{H} \cdot \cdot \cdot S^1$ (рис. 4, 5, табл. 5). Между димерами в данных соединениях осуществляется в основном ван-дер-ваальсово взаимодействие. При этом, согласно критерию, предложенному в работе [16] $(CgI\cdots CgJ < 6.0 \text{ Å}, \beta < 60.0^{\circ}, где \beta - угол между$ вектором CgICgJ и нормалью к ароматическому циклу CgI), в кристаллах тиоамидов H₂L⁴⁻⁶ наблюдается также π - π -стекинг взаимодействие между фенильными циклами (C^6-C^{11}), которые в лигандах H_2L^4 и H_2L^5 связанны между собой центром инверсии, а в азометине H_2L^6 – двойной винтовой осью. Расстояния между центроидами

Таблица 1. Некоторые характеристики замещенных 2-(2-гидроксибензилиден)-N-(проп-2-ен-1-ил)-гидразинкарботиоамидов $H_2L^{1-6\,a}$

Тиоамид	Найдено, % Т. пл., °С		Формула	Вычислено, %					
		,	С	Н	N		С	Н	N
H_2L^1	87	172–174	41.82	3.73	13.21	C ₁₁ H ₁₂ BrN ₃ OS	42.05	3.85	13.37
H_2L^2	90	210–212	33.72	2.65	10.93	$C_{11}H_{11}Br_2N_3OS$	33.61	2.82	10.69
H_2L^3	75	198–200	52.76	5.35	16.44	$C_{11}H_{13}N_3O_2S$	52.57	5.21	16.72
H_2L^4	78	186–188	52.36	5.18	16.56	$C_{11}H_{13}N_3O_2S$	52.57	5.21	16.72
H_2L^5	85	151–153	47.00	4.02	20.24	$C_{11}H_{12}N_4O_3S$	47.13	4.32	19.99
H_2L^6	92	225–227	54.14	5.54	15.77	$C_{12}H_{15}N_3O_2S$	54.32	5.70	15.84

^а Некоторые характеристики тиоамидов H_2L^1 , H_2L^4 и H_2L^6 приведены в работах [9–11].

Таблица 2. Данные спектроскопии ЯМР для тиоамидов H_2L^{1-6} а

Тиоамид	$\delta_{ m H}$, м. д. (ацетон- d_6)	$\delta_{\rm C}$, м. д. (ацетон- $d_{\rm 6}$)
H ₂ L ¹	10.56 уш. с (1H, OH), 9.41 уш. с (1H, NH), 8.47 уш. с (1H, NH), 8.45 с (1H, CH=N), 7.90 д (1H, CH, Ar, J = 2.5 Γ ц), 7.38 м (1H, CH, Ar), 6.91 д (1H, CH, Ar, J = 8.8 Γ ц), 5.97 м (1H, CH, Allyl), 5.15 м (2H, CH ₂ =C), 4.35 м (2H, CH ₂ N)	118.30, 111.44 (Ar), 139.48 (CH=N), 134.73
H_2L^2	10.71 уш. с (1H, OH), 9.88 уш. с (1H, NH), 8.45 уш. с (1H, NH), 8.40 с (1H, CH=N), 7.77 д (1H, CH, Ar, J = 2.4 Γ ц), 7.73 д (1H, CH, Ar, J = 2.4 Γ ц), 5.98 м (1H, CH, Allyl), 5.16 м (2H, CH ₂ =C), 4.37 м (2H, CH ₂ N)	111.49, 111.35 (Ar), 141.38 (CH=N), 134.51
H_2L^3	10.48 уш. с (1H, OH), 8.73 уш. с (1H, OH), 8.47 с (1H, CH=N), 8.27 уш. с (2H, NH), 7.15 д (1H, CH, Ar, $J=7.9$ Гц), 6.91 д (1H, CH, Ar, $J=7.9$ Гц), 6.76 т (1H, CH, Ar, $J=7.9$ Гц), 5.99 м (1H, CH, Allyl), 5.17 м (2H, CH ₂ =C), 4.36 м (2H, CH ₂ N)	119.61, 116.79 (Ar), 142.96 (CH=N), 134.75
H_2L^4	10.29 уш. с (1H, OH), 9.44 уш. с (1H, OH), 8.92 уш. с (1H, NH), 8.35 с (1H, CH=N), 8.11 уш. с (1H, NH), 7.38 д (1H, CH, Ar, $J=8.5$ Гц), 6.45 д (1H, CH, Ar, $J=8.5$ Гц), 6.41 с (1H, CH, Ar), 5.98 м (1H, CH, Allyl), 5.15 м (2H, CH ₂ =C), 4.35 м (2H, CH ₂ N)	108.10, 102.71 (Ar), 145.01 (CH=N), 134.86 (CH, Allyl), 115.15 (CH ₂ =), 46.41 (CH ₂ N)
H_2L^5	10.80 уш. с (1H, OH), 10.69 уш. с (1H, NH), 8.52 уш. с (1H, NH), 8.58 с (1H, CH=N), 8.37 м, 8.16 м, 7.13 м (3H, CH, Ar), 5.98 м (1H, CH, Allyl), 5.16 м (2H, CH ₂ =C), 4.36 м (2H, CH ₂ N)	119.85, 116.74 (Ar), 152.76 (CH=N), 134.63
H ₂ L ^{6 6}	11.52 уш. с (1H, OH), 9.23 уш. с (1H, NH), 8.62 уш. с (1H, NH), 8.42 с (1H, CH=N), 7.58 д (1H, CH, Ar, J = 7.9 Γ ц), 6.97 д (1H, CH, Ar, J = 7.9 Γ ц), 6.79 т (1H, CH, Ar, J = 7.9 Γ ц), 5.92 м (1H, CH, Allyl), 5.13 м (2H, CH ₂ =C), 4.22 м (2H, CH ₂ N), 3.82 с (3H, CH ₃)	118.57, 113.23 (Ar), 146.42 (CH=N), 135.66 (CH, Allyl), 115.94 (CH ₂ =), 56.35 (CH ₃),

^а Некоторые характеристики тиоамидов H_2L^1 , H_2L^4 и H_2L^6 приведены в работах [9–11]. ⁶ В ДМСО- d_6 .

этих фрагментов составляет 5.334, 5.613, 4.46 Å соответственно, а величины β принимают значения 53.5, 57.0, 12.2°. Наряду с указанным π – π -взаимодействием в соединении H_2L^5 осуществляется также Y–X····Cg (π -кольцо) взаимодействие (X····Cg < 4.0 Å, γ < 30.0°, где γ – это угол между вектором XCg и нормалью к ароматическому циклу), а в соединении H_2L^6 – X–H····Cg (π -кольцо) взаимо-

действие ($\text{H}\cdots\text{Cg} < 3.0 \text{ Å}$, $\gamma < 30.0^\circ$, где γ – это угол между вектором HCg и нормалью к ароматическому циклу [16, 17]). Так, для $\text{C}^1\text{--S}^1\cdots\text{Cg}$ ($\text{C}^6\text{--C}^{11}$) (-x, -y, 1-z) взаимодействия расстояние между атомом серы S^1 и центроидом фенильного цикла равно 3.489 Å, а значения величины γ составляет 2.7°. В азометине H_2L^6 для $\text{C}^9\text{--H}\cdots\text{Cg}$ ($\text{C}^6\text{--C}^{11}$) (-x, 0.5+y, 0.5-z) взаимодействия

Рис. 1. Общий вид молекулы соединения H_2L^4 в кристалле.

Рис. 2. Общий вид молекулы соединения H_2L^6 в кристалле.

Таблица 3. Кристаллографические характеристики, данные эксперимента и уточнения структуры соединений H_2L^{4-6} и **9**

Соединение	$\mathrm{H_2L}^4$	H_2L^5	$\mathrm{H_2L}^6$	9	
Формула	$C_{11}H_{13}N_3O_{2.75}S\\$	$C_{11}H_{12}N_4O_3S$	$C_{12}H_{15}N_3O_2S$	$C_{12}H_{20}N_4O_8SCu\\$	
M	263.30	280.31	265.33	443.92	
Сингония	Моноклинная	Моноклинная	Моноклинная	Триклинная	
Пространственная группа	$P2_{1}/c$	$P2_{1}/c$	$P2_{1}/c$	P-1	
Z	4	4	4	4	
a, Å	15.236(4)	8.9728(5)	13.661(14)	6.8720(7)	
b, Å	4.5098(13)	16.6764(7)	5.978(4)	14.0564(18)	
c, Å	20.553(5)	8.8395(5)	16.834(6)	18.901(2)	
α, град	90	90	90	79.178(10)	
β, град	95.65(2)	104.396(6)	108.17(6)	89.523(9)	
ү, град	90	90	90	87.640(10)	
V, Å ³	1405.4(6)	1281.16(12)	1306.2(17)	1791.8(4)	
$d_{\text{выч}}$, г/см ³	1.244	1.453	1.349	1.646	
λ, Å	0.71073	0.71073	0.71073	0.71073	
μ , cm ⁻¹	0.232	0.263	0.246	1.384	
T, K	293(2)	293(2)	293(2)	293(2)	
Размеры образца, мм	$0.80 \times 0.05 \times 0.02$	0.20×0.18×0.30	$0.40 \times 0.03 \times 0.01$	$0.50 \times 0.27 \times 0.04$	
θ_{max} , град	25.05	25.04	28.96	25.05	
Пределы h, k, l	$-16 \le h \le 18$ $-3 \le k \le 5$ $-24 \le l \le 15$	$-7 \le h \le 10$ $-17 \le k \le 19$ $-9 \le l \le 10$	$-18 \le h \le 18$ $-7 \le k \le 7$ $-22 \le l \le 22$	$-8 \le h \le 8$ $-16 \le k \le 15$ $-22 \le l \le 14$	
Число отражений	4482/ 2409	2785/1926	4767/4915	9835/6197	
измеренных/независимых (N_1) R_{int} с $I > 2\sigma(I)$ (N_2)	0.0699	0.0186	0.00	0.0507	
Число параметров	156	172	150	485	
R_1/wR_2 по N_1	0.0739/0.1345	0.0425/0.0851	0.0736/0.1064	0.0866/0.1625	
R_1/wR_2 по N_2	0.1822/0.1703	0.0657/0.0960	0.2974/0.2091	0.1751/0.2013	
S	0.883	1.004	0.828	0.962	
$\Delta \rho_{\text{max}}/\Delta \rho_{\text{min}}, e/A^3$	0.291/-0.224	0.144/-0.201	0.310/-0.304	1.776/-0.473	

расстояние H···Cg равно 2.83 Å, а значение угла γ равно 7.6°.

Взаимодействием горячих (50–55°С) этанольных растворов хлоридов или нитратов меди и кобальта с тиоамидами H_2L^{1-6} в мольном соотношении 1:1

или 1:2 получены координационные соединения **1–10**, для которых на основании данных элементного анализа (табл. 6) предложен состав $Cu(HL^{1-6})X \cdot nH_2O$ (**1**, **3–9**) [X = Cl⁻ (**1**, **5**, **7**, **8**), NO_3^- (**3**, **4**, **6**, **9**); n = 0 (**1**, **5**, **7**, **8**), 1 (**3**, **4**, **6**), 3 (**9**)], $Co(HL^2)_2NO_3$ (**2**) и $Co(HL^6)_2Cl$ (**10**). Полученные координационные

соединения 1–10 нерастворимы в диэтиловом эфире, малорастворимы в воде, лучше растворимы в спиртах, хорошо растворимы в ДМФА, ДМСО и ацетонитриле. Выходы и некоторые физико-химические характеристики полученных комплексов приведены в табл. 6.

При перекристаллизации комплексов 1-10 из этанола получены монокристаллы соединения 9. структура которого была установлена методом РСА (табл. 3). Независимая элементарная ячейка кристаллической структуры комплекса 9 содержит неэквивалентных комплексных $[Cu(HL^6)H_2O]^+$ нитрат-иона лва четыре молекулы воды. В каждом комплексе атом меди координируют однократно депротонированную трехдентатную молекулу H₂L⁶ с образованием двух хелатных циклов и молекулу воды (рис. 6). Длины связей металла с донорными атомами равны $Cu^{1}-O^{1}$ 1.9152(2) [1.9112(2)], $Cu^{1}-S^{1}$ 2.2636(3) [2.2591(3)], $Cu^{1}-N^{3}$ 1.9270(2) [1.9331(2)], $Cu^{1}O^{1}W$ 1.9430(2) [1.9605(3)] Å (табл. 7). Шестичленные и пятичленные металлоциклы в обоих комплексах практически одной В плоскости, соответствующие двугранные углы равны 3.83 и 3.79°. В кристалле комплексы связаны между собой нитратными группами и молекулами воды, образуя трехмерную систему межмолекулярных водородных связей (рис. 7). При этом, согласно

Рис. 3. Фрагмент кристаллической упаковки соединения H_2L^4 .

Таблица 4. Некоторые межатомные расстояния и валентные углы для соединений H_2L^{4-6}

Связь	d, Å						
Связь	H_2L^4	H_2L^5	H_2L^6				
S^1 – C^1	1.687(5)	1.683(3)	1.662(7)				
C^5-N^3	1.283(5)	1.276(3)	1.264(7)				
$C^5 - C^6$	1.460(6)	1.461(3)	1.448(8)				
N^3-N^2	1.397(5)	1.374(3)	1.399(6)				
N^1-C^1	1.330(5)	1.325(3)	1.295(8)				
N^1-C^2	1.437(5)	1.455(3)	1.476(9)				
N^2 – C^1	1.355(5)	1.354(3)	1.356(8)				
C^2 – C^3	1.463(7)	1.478(4)	1.462(10)				
Угол		ω, град					
$N^3C^5C^6$	122.0(4)	121.4(2)	121.0(6)				
$C^5N^3N^2$	115.9(4)	115.4(2)	115.9(5)				
$C^1N^1C^2$	125.3(4)	123.9(2)	124.2(7)				
$C^1N^2N^3$	120.1(4)	121.1(2)	122.4(5)				
$N^1C^1N^2$	117.0(4)	115.7(2)	115.5(6)				
$N^1C^1S^1$	123.9(4)	125.43(19)	125.0(6)				
$N^2C^1S^1$	119.1(4)	118.87(18)	119.5(5)				
$C^9C^8C^7$	119.3(5)	119.6(2)	119.8(6)				
$N^1C^2C^3$	115.6(5)	112.3(2)	112.3(7)				
$C^4C^3C^2$	127.2(5)	126.0(3)	125.7(10)				

критерию, предложенному в работе [16] (CgI···CgJ < 6.0 Å, β < 60.0°, где β – угол между вектором CgICgJ и нормалью к ароматическому циклу CgI), в кристалле наблюдается π - π -стекинг взаимодействие между металлоциклами Cu²O^{1A}C^{11A}C^{6A}C^{5A}N^{3A}, связанными центром симметрии. Расстояние Cg¹···Cg¹ (1-x, 1-y, -z) между центроидами этих фрагментов составляет 3.513 Å, а величина

Рис. 4. Образование фрагмента H-связанной цепочки в молекуле тиоамида H_2L^5 .

Таблица 5. Геометрические параметры водородных связей для соединений ${
m H}_2{
m L}^{4-6}$

Связь D–Н…А		Расстояние,	Å	Vrog DIIA mas-	Voor Hungary amazes
Связь D–п…А	D-H	H···A	D···A	Угол DHA, град	Координаты атома
		H_2	L^4		
O^1 – $H \cdots N^3$	0.82	1.95	2.672	147	x, y, z
$N^2 \cdots H \cdots S^1$	0.86	2.60	3.448	171	1-x, 2-y, 1-z
$N^1 \cdots H \cdots N^3$	0.86	2.26	2.659	108	x, y, z
$C^2 \cdots H \cdots S^1$	0.97	2.61	3.109	112	x, y, z
		H_2	L^5		
$O^1 \cdots H \cdots O^3$	0.82	1.90	2.594	142	x, y, z
$O^1 \cdots H \cdots S^1$	0.82	2.82	3.367	126	-x, $-1/2+y$, $1/2-z$
$N^1\!\cdots\!H\!\cdots\!N^3$	0.86	2.25	2.638	107	x, y, z
$N^2 \cdots H \cdots S^1$	0.86	2.72	3.479	148	-x, -y, -z
$C^2 \cdots H \cdots O^1$	0.97	2.46	3.349	153	-x, $1/2+y$, $1/2-z$
	·	H_2	L^6	'	'
$N^2 \cdots H \cdots O^1$	0.86	2.19	2.978	151	-x, 2-y, -z
$O^1 \cdots H \cdots O^2$	0.82	2.18	2.637	116	x, y, z
$O^1 \cdots H \cdots S^1$	0.82	2.52	3.184	139	-x, 2-y, -z
$N^1\!\cdots\!H\!\cdots\!N^3$	0.86	2.26	2.664	109	x, y, z
$C^5 \cdots H \cdots O^1$	0.93	2.43	2.754	100	x, y, z
$C^2 \!\cdots\! H \!\cdots\! S^1$	0.97	2.64	3.081	108	x, y, z
	'	9	! 	ı	1
$N^1{\cdots}H{\cdots}O^{2N2}$	0.86	2.04	2.897	174	x, y, z
$N^{1A} \!\cdots\! H \!\cdots\! O^{2N1}$	0.86	2.02	2.870	169	1-x, 1-y, -z
$N^2 \! \cdots \! H \! \cdots \! O^{1N2}$	0.86	1.93	2.783	169	x, y, z
$N^{2A} \cdots H \cdots O^{1N1}$	0.86	1.96	2.815	170	1-x, 1-y, -z
$O^{1W} \cdots H \cdots O^{4W}$	0.85	2.21	2.685	115	-x, 1-y, 1-z
$O^{1W} \!\cdots\! H \!\cdots\! O^{4W}$	0.85	2.41	2.685	100	-x, 1-y, 1-z
$O^{1WA} \cdots H \cdots O^{2W}$	0.87	1.88	2.743	171	x, y, z
$O^{1WA} \cdots H \cdots O^{5W}$	0.87	190	2.655	144	x, y, z
$O^{2W} \!\!\cdots\! H \!\!\cdots\!\! O^{1N1}$	0.85	2.34	3.090	148	x, y, z
$O^{2W} \!\cdots\! H \!\cdots\! O^{1A}$	0.85	2.22	2.926	141	x, y, z
$O^{2W} \cdots H \cdots O^{2A}$	0.85	2.27	3.022	147	x, y, z
$O_{3M}\cdots H\cdots O_{2M}$	0.85	2.51	3.343	167	-1+x, y, z
$O^{4W} \cdots H \cdots O^{1A}$	0.85	2.23	2.977	146	x, y, z
$O^{4W} \cdots H \cdots O^{2A}$	0.85	2.48	3.233	147	x, y, z
$O^{5W} \cdots H \cdots O^{1N2}$	0.85	206	2.893	167	x, y, z
$O^{5W} \cdots H \cdots O^1$	0.85	2.18	3.005	163	1-x, 1-y, 1-z
$C^{2A} \cdots H \cdots S^{1A}$	0.97	2.62	3.089	110	x, y, z
$C^2 \cdots H \cdots S^1$	0.97	2.60	3.112	113	x, y, z

Таблица 6. Некоторые межатомные расстояния и валентные углы для соединен	ла О

Связь	d, Å	Связь	d, Å	Угол	ω, град	Угол	ω, град
Cu ¹ -O ¹	1.915(5)	S1-C1	1.705(8)	O¹Cu¹N³	93.6(3)	O ^{1WA} Cu ² S ^{1A}	92.68(18)
Cu^1-N^3	1.927(6)	C^5-N^3	1.277(9)	$O^1Cu^1O^{1W}$	86.6(2)	$N^3C^5C^6$	126.1(8)
Cu^1-S^1	2.264(2)	$C^{5}-C^{6}$	1.458(10)	$N^3Cu^1O^{1W}$	175.4(3)	$C^5N^3N^2$	116.5(6)
Cu^1 – O^{1W}	1.943(5)	N^3-N^2	1.393(8)	$O^1Cu^1S^1$	173.98(19)	$C^1N^1C^2$	125.6(8)
Cu^2 – O^{1A}	1.911(5)	N^1 – C^1	1.325(9)	$N^3Cu^1S^1$	86.7(2)	$C^1N^2N^3$	118.7(7)
Cu^2-N^{3A}	1.933(6)	N^1 – C^2	1.472(10)	$O^{1W}Cu^1S^1$	93.54(17)	$N^1C^1N^2$	116.1(8)
Cu^2-S^{1A}	2.259(2)	N^2 – C^1	1.325(9)	$O^{1A}Cu^2N^{3A}$	93.8(2)	$N^1C^1S^1$	122.6(7)
Cu^2 – O^{1WA}	1.961(6)	C^2 – C^3	1.389(14)	$O^{1A}Cu^2O^{1WA}$	86.8(2)	$N^2C^1S^1$	121.3(6)
				$N^{3A}Cu^2O^{1WA}\\$	176.8(3)	$C^9C^8C^7$	120.7(8)
				$O^{1A}Cu^2S^{1A}$	174.74(17)	$N^1C^2C^3$	113.2(9)
				$N^{3A}Cu^2S^{1A}$	86.99(19)	$C^4C^3C^2$	125.7(13)

β принимает значение 13.8°. Наряду с указанным π−π-взаимодействием в комплексе 9 также осуществляется взаимодействие металл Cg (π-кольцо) (Cu···Cg < 4.0 Å). Так, для взаимодействий Cu¹···Cg (C6C7C8C9C¹0C¹¹) (−x, 1−y, 1−z) и Cu²···Cg (C6AC7AC8AC9AC¹0AC¹1A) (1−x, 1−y, −z) расстояния Cu···Cg равны 3.517 и 3.487 Å соответственно.

Для установления индивидуальности состава и строения полученных комплексов использовали методы элементного анализа, молярной электропроводности, магнетохимии и ИК спектроскопии (табл. 6). На основании данных, полученных при определении молярной электропроводности (æ) синтезированных соединений в ДМФА установ-

Рис. 5. Фрагмент кристаллической упаковки соединения $\mathrm{H}_2\mathrm{L}^6$.

Рис. 6. Общий вид молекулы соединения 9 в кристалле.

			/ 1	/				•					
№	Выход,	$\mu_{9\Phi_3}$	μ_{20} ω ,		Найде	ено, %		Формация	Вычислено, %				
Νō	%		Cl	M	N	S	Формула	Cl	M	N	S		
1	80	1.75	4	8.47	15.19	9.90	7.48	C ₁₁ H ₁₁ BrClCuN ₃ OS	8.60	15.42	10.19	7.78	
2	75	б	70	_	6.25	10.57	6.94	$C_{22}H_{20}Br_4CoN_7O_5S_2$	_	6.51	10.83	7.09	
3	82	1.82	57	_	11.60	10.17	5.70	$C_{11}H_{12}Br_2CuN_4O_5S$	_	11.86	10.46	5.99	
4	67	1.81	65	_	15.87	13.98	7.91	$C_{11}H_{14}CuN_4O_6S$	_	16.13	14.22	8.14	
5	78	1.92	4	9.88	17.93	11.94	8.89	C ₁₁ H ₁₂ ClCuN ₃ O ₂ S	10.15	18.19	12.03	9.18	
6	69	1.83	67	_	15.87	14.01	7.99	$C_{11}H_{14}CuN_4O_6S$	_	16.13	14.22	8.14	
7	77	1.79	2	9.14	16.59	14.60	8.31	C ₁₁ H ₁₁ ClCuN ₄ O ₃ S	9.37	16.80	14.81	8.48	
8	73	1.78	3	9.55	17.32	11.39	8.74	C ₁₂ H ₁₄ ClCuN ₃ O ₂ S	9.76	17.49	11.57	8.83	
9	69	1.87	61	_	14.17	12.47	6.98	$C_{12}H_{20}CuN_4O_6S$	_	14.31	12.62	7.22	
10	72	б	54	5.47	9.17	13.32	10.07	C ₂₄ H ₂₈ ClCoN ₆ O ₄ S ₂	5.69	9.46	13.49	10.29	

Таблица 7. Физико-химические характеристики координационных соединений меди и кобальта с замещенными 2-(2-гидроксибензилиден)-*N*-(проп-2-ен-1-ил)гидразинкарботиоамидами **1–10**

лено, что комплексы **1**, **5**, **7**, **8** являются неэлектролитами ($\alpha = 2-4$ Ом⁻¹·см²·моль⁻¹), а комплексы **2–4**, **6**, **9**, **10** относятся к бинарным электролитам ($\alpha = 54-70$ Ом⁻¹·см²·моль⁻¹).

Магнетохимическое исследование комплексов 1–10 при комнатной температуре (294 K) показало, что кобальтовые комплексы 2 и 10 диамагнитны, и, судя по их магнетохимическим характеристикам, центральные атомы в них находятся в степени окисления +3 в псевдооктаэдрическом лигандном

окружении (табл. 6). Для соединений меди величины эффективных магнитных моментов соответствуют спиновым значениям для одного неспаренного электрона. Эти экспериментальные данные дают основание предположить для них мономерное строение.

С целью определения способа координации лигандов с центральными ионами проведен сравнительный анализ ИК спектров синтезированных комплексов 1–10, исходных тиоамидов

Рис. 7. Фрагмент кристаллической упаковки соединения 9.

^а При 294 К. ^б Диамагнитен.

Таблица 8. Минимальные подавляющие (МПК) и бактерицидные (МБК) концентрации (мкг/мл) координационных соединений **1–10** по отношению к тест-микробам

соединении 1–10 п	соединении 1–10 по отношению к тест-микрооам									
№	Staphylococcus aureus ATCC 25923		Bacillus cereus ГИСК 8035		Escherichia coli ATCC 25922		Salmonella abony ГИСК 03/03		Candida albicans ATCC 90028	
	МПК	МБК	МПК	МБК	МПК	МБК	МПК	МБК	МПК	МБК
Исходные соли ^а	>1000	>1000	>1000	>1000	>1000	>1000	>1000	>1000	>1000	>1000
H_2L^1	15	60	1.5	15	>1000	>1000	>1000	>1000	3	3
1	3	15	1.5	3	>1000	>1000	>1000	>1000	3	30
H_2L^2	1.5	3	1.5	3	>1000	>1000	>1000	>1000	1.5	3
2	3	7	>1000	>1000	>1000	>1000	>1000	>1000	1.5	3
3	1.5	1.5	1.5	3	>1000	>1000	>1000	>1000	1.5	3
H_2L^3	15	30	30	60	120	250	250	500	30	120
4	7	15	7	15	30	60	60	120	7	7
H_2L^4	3	15	30	60	>1000	>1000	>1000	>1000	3	15
5	7	15	7	15	500	500	250	500	3	7
6	3	7	3	7	12	250	12	60	3	7
H_2L^5	60	250	15	120	120	500	120	500	3	30
7	15	120	1.5	15	15	120	120	120	3	15
H_2L^6	>1000	>1000	>1000	>1000	>1000	>1000	>1000	>1000	>1000	>1000
8	7	60	7	30	30	120	15	60	15	60
9	7	7	120	120	500	500	500	500	7	7

^a CuCl₂·2H₂O; Cu(NO₃)₂·3H₂O; CoCl₂·6H₂O; Co(NO₃)₂·6H₂O.

 H_2L^{1-6} , а также координационного соединения **9**, строение которого установлено методом РСА. Установлено, что в ИК спектрах синтезированных соединений присутствуют полосы поглошения в областях 3450–3100, 1660–1580 и 1400–1100 см⁻¹. которые характеризуют валентные колебания координированных молекул соответствующих лигандов. В области 3450-3100 см-1 ИК спектров всех комплексов исчезает полоса поглощения $\nu(O-H)$ что указывает на депротонизацию фенольной ОН-группы в молекулах лигандов. Такой же вывод можно сделать по изменению колебаний ν (С-О), которые в лигандах H_2L^{1-6} наблюдаются в диапазоне 1260–1190 см⁻¹. В спектрах комплексов 1-10 ее положение смещается на 40-50 см⁻¹ в низкочастотную область. Кроме того, в спектрах наблюдается смещение полосы поглощения v(C=N) в низкочастотную область на 20-30 см⁻¹ и полосы поглощения $\nu(C=S)$ в высокочастотную область на 25-40 см-1. Это указывает на координацию тиоамидов H₂L¹⁻⁶ к

центральным атомам посредством депротонированного фенольного атома кислорода, азометинового атома азота и атома серы в тионной форме. На вышеуказанную координацию тиоамидов H_2L^{1-6} указывает и то, что в ИК спектрах всех комплексов появляется ряд новых полос поглощения в области $530-405~{\rm cm}^{-1}$, обусловленных v(M-N) при 525-505, $430-405~{\rm cm}^{-1}$ и v(M-S) при $450-440~{\rm cm}^{-1}$. Участие других функциональных групп тиоамидов H_2L^{1-6} в координации с центральным ионом исключается, поскольку их характеристические полосы поглощения проявляются в тех же областях, что и в исходных тиосемикарбазонах.

Полученные физико-химические данные позволяют представить распределение химических связей в комплексах 1-10 в виде структур A (1, 5, 7, 8), F (3, 4, 6, 9) и F (2, 10) (схема 2).

В работах [7, 8] установлено, что комплексы биометаллов с 2-(2-гидроксибензилиден)-*N*-(проп-2-ен-1-ил)гидразинкарботиоамидом избирательно

подавляют рост и размножение некоторых видов раковых клеток и некоторых видов микроорганизмов. В связи с этим нами была изучена іп противомикробная противогрибковая vitro И активность синтезированных координационных соединений 1-10 в отношении серии стандартных штаммов грамположительных бактерий Staphylococcus aureus и Bacillus cereus, грамотрицательных кишечных палочек Escherichia coli и Salmonella abony и представителя дрожжеподобных грибов Candida albicans. Полученные экспериментальные данные приведены в табл. 8, из которой видно, что все исходные соли кобальта и меди не проявляют противомикробной активности в отношении вышеуказанных микроорганизмов, в то время как гидразинкарботиоамиды H_2L^1 , H_2L^2 проявляют активность только в отношении к грамположительным микроорганизмам и грибам и мало активны в отношении грамотрицательных микроорганизмов. Установлено, что комплексы 1проявляют селективную как бактериостатическую, так и бактерицидную активность в концентраций 1.5 - 120диапазоне мкг/мл отношении стафилококков и грибов и 15-500 мкг/мл в отношении кишечных палочек. Как показал

Таблица 9. Концентрация полумаксимального ингибирования IC_{50} исследуемых веществ в отношении клеток HL-60 и MDCK

Соединение	IС ₅₀ , мкМ.					
Соединение	HL-60	MDCK				
H_2L^1	8.0	>100				
1	1.8	18				
H_2L^2	>10	> 100				
2	>10	>100				
3	3.8	92				
H_2L^3	>10	>100				
4	3.8	4.8				
H_2L^4	>10	>100				
6	>10	50				
H_2L^5	>10	>100				
7	0.6	>100				
$\mathrm{H_2L}^6$	7.2	>100				
8	0.4	>100				
10	>10	>100				

эксперимент, на минимальную подавляющую (МПК) и минимальную бактерицидную (МБК) концентрации исследуемых комплексов 1-10 основное влияние оказывает природа центрального атома и заместителя в азометинах H_2L^{1-6} . Наиболее активным в отношении грамположительных микроорганизмов является комплекс 3, а в отношении грамотрицательных микроорганизмов – комплекс 8. Кроме того, близость значений МПК и МБК для многих соединений указывает на бактерицидный характер их действия.

Изучение антипролиферативной активности выше приведенных веществ в отношении клеток миелоидной лейкемии человека модельной линии нормальных клеток млекопитающих MDCK (Madin-Darby Canine Kidney) показали, что как и в случае комплексов 3dметаллов с 2-(2-гидроксибензилиден)-N-(проп-2-ен-1-ил)гидразинкарботиоамидом, данная веществ проявляет противораковую активность в интервале концентраций 0.1-10 мкМ (табл. 9). При этом следует отметить, что введение заместителей в бензольное кольцо салицилиденового фрагмента приводит к изменению активности как тиоамидов H_2L^{1-6} , так и координационных соединений исследуемых металлов с ними. Так, введение двух атомов брома в бензольное кольцо (тиоамид H₂L²) приводит к полной потере активности. Наибольшая активность тиоамида наблюдается в случае введения в салицилиденовый фрагмент азометина пятое положение атома брома В метоксигруппы в третье положение. Данные тиоамиды подавляют рост и размножение раковых клеток более чем на 50% при концентрации 10 мкМ. Комплексы меди с этими лигандами проявляют самую высокую активность по сравнению с другими комплексами данной серии. Установлено, что, противораковая активность координационных соединений сильно зависит от природы центрального атома. Комплексы меди проявляют более высокую активность по сравс соответствующими тиоамидами, а нению комплексы кобальта малоактивны. высокую цитостатическую активность среди изученных соединений данной серии проявил комплекс 8, который подавляет рост и размножение раковых клеток на 100% при концентрациях 10 и 1 мкМ., но практически полностью теряет активность при более низкой концентрации.

Для определения селективности антипролиферативного действия тиоамидов H_2L^{1-6} и

комплексов 1-10 определена их ингибирующая активность в отношении и здоровых клеток МОСК. В табл. 8 представлены значения концентрации полумаксимального ингибирования ІС50, являющегося показателем эффективности цитостатического действия исследуемых веществ в отношении клеток HL-60 и MDCK. Как видно. в большинстве случаев антипролиферативное действие исследуемого ряда веществ в отношении здоровых клеток в 10 и более раз слабее их действия в отношении раковых клеток HL-60 миелоидной лейкемии человека. Эти экспериментальные данные указывают на то, что исследуемые вещества проявляет селективную противораковую активность в отношении клеток НС-60 миелоидной лейкемии человека, практически не негативного оказывая влияния на рост размножение здоровых клеток.

Вышеприведенные экспериментальные данные указывают на перспективность дальнейшего поиска противомикробных, противогрибковых и противораковых веществ среди координационных соединений биометаллов с биолигандами на основе тиоамилов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

РСА соединений $H_{2}L^{4-6}$ и **9** проведены на дифрактометре Xcalibur от Oxford Diffraction [18]. Их структуры решены прямыми методами и уточнены МНК в анизотропном приближении для неводородных атомов по программам SHELX-97 [19], при этом кристаллическую структуру азометина H_2L^4 уточняли как рацемический двойник. Атомы водорода включены в уточнение в геометрически рассчитанных позициях, а их температурные факторы $U_{\rm H}$ приняты в 1.2 раза большими, чем у связанных с ними атомов углерода и кислорода. Основные параметры эксперимента, решение и уточнение структур приведены в табл. 1, а некоторые межатомные расстояния и валентные углы – в табл. 2. Координаты базисных атомов исследованных структур депонированы в Кембриджский банк данных (CCDC 929459-929461, 1872426). Геометрические расчеты и рисунки выполнены с помощью программы PLATON [16], для представления упаковок структур оставлены только те атомы водорода, которые участвуют в водородных связях. Для анализа полученных структур использовались данные Кембриджского банка данных (версия. 5.39) [20, 21].

Сопротивление растворов комплексов 1–10 в ДМФА (20°С, c=0.001~моль/л) измеряли с помощью реохордного моста P-38. ИК спектры регистрировали на спектрометре ALPHA (4000–400 см $^{-1}$). Эффективные магнитные моменты определяли методом Гуи. Расчет молярной магнитной восприимчивости с поправкой на диамагнетизм проводили исходя из теоретических значений магнитной восприимчивости органических соединений.

Противомикробную, противогрибковую и противораковую активности изучали по стандартным методикам описанным в работе [22].

2-(5-Бром-2-гидроксибензилиден)-N-(проп-2-ен-1-ил)гидразинкарботиоамид (H_2L^1) получен по методике, описанной в работе [9].

2-(3,5-Дибром-2-гидроксибензилиден)-*N*-(проп-2-ен-1-ил)гидразинкарботиоамил (H_2L^2) . горячему (55-60°С) спиртовому раствору, содержащему 10 ммоль 3,5-дибром-2-гидроксибензальдегида в 15 мл этанола, приливали раствор 10 ммоль N-(проп-2-ен-1-ил)гидразинкарботиоамида (4-аллилтиосемикарбазида) в 35 мл этанола. При охлаждении реакционной смеси наблюдалось образование осадка светло-желтого цвета, который отфильтровывали на стеклянном фильтре, промывали небольшим количеством спирта и сушили на воздухе.

Аналогично, используя в качестве исходных веществ N-(проп-2-ен-1-ил)гидразинкарботиоамид (4-аллилтиосемикарбазид) и 2,3-дигидрокси- или 2-гидрокси-3-нитробензальдегиды, взятые в молярном отношении 1:1 синтезировали остальные тиоамиды. Азометины H_2L^4 и H_2L^6 получали по методикам, описанным в работах [10, 11]. Некоторые характеристики замещенных 2-(2-гидроксибензилиден)-N-(проп-2-ен-1-ил)гидразинкарботиоамидов H_2L^{1-6} приведены в табл. 1, 2. Тиоамиды H_2L^{1-6} хорошо растворимы в ДМФА, ДМСО, при нагревании — в спиртах.

Хлоро-[2-(5-бром-2-гидроксибензилиден)-*N***-(проп-2-ен-1-ил)гидразин-карботиоамидо]медь** (1). К раствору 10 ммоль 2-(5-бром-2-гидрокибензилиден)-*N*-(проп-2-ен-1-ил)гидразинкарботиоамида H_2L^1 в 50 мл этанола при непрерывном перемешивании и нагревании (50–55°C) прибавляли раствор 10 ммоль дигидрата хлорида меди(II) в 20 мл этилового спирта. После этого реакционную смесь кипятили в течение 50–60 мин. После охлаждения до комнатной температуры

осадок отфильтровывали на стеклянном фильтре, промывали небольшим количеством спирта, эфира и сушили на воздухе до постоянной массы.

Аналогично, используя в качестве исходных веществ тиоамиды H_2L^{2-6} и гидраты хлоридов или нитратов кобальта(II) или меди(II), взятые в мольном отношении $2{:}1$ и $1{:}1$ синтезировали соединения $2{-}10$.

Авторы выражают благодарность профессору Д. Пуарье (Университет Лаваль, Квебек, Канада) и О.С. Гарбуз за помощь при проведении биологических испытаний синтезированных веществ.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Bal-Demirci T.* // Polyhedron. 2008. Vol. 27. P. 440. doi 10.1016/j.poly.2007.10.001
- 2. Bal-Demirci T., Akkurt M., Yalcm S. P, Buyukgungor O. //
 Trans. Met. Chem. 2010. Vol. 35. P. 95. doi 10.1007/ s11243-009-9300-2
- 3. Бонь В.В., Орысык С.И., Пехньо В.И. // Коорд. хим. 2011. Т. 37. № 2. С. 151; Bon V.V., Orysyk S.I., Pekhnyo V.I. // Russ. J. Coord. Chem. 2011. Vol. 37. N 2. P. 149. doi 10.1134/s1070328411010027
- 4. *Bon V.V.* // Acta Cryst. 2010. Vol. 66. P. 300. doi 10.1107/50108270110035754
- 5. Orysyk S.I., Bon V.V., Obolentseva O.O., Zborovskii Yu.L., Orysyk V.V., Pekhnyo V.I., Staninets V.I., Vovk M.V. // Inorg. Chim. Acta. 2012. Vol. 382. P. 127. doi 10.1016/j.ica.2011.10.027
- 6. Orysyk S.I., Repich G.G., Bon V.V., Dyakonenko V.V., Orysyk V.V., Zborovskii Yu.I., Shishkin O.V., Pekhnyo V.I., Vovk M.V. // Inorg. Chim. Acta. 2014. Vol. 423. P. 496. doi 10.1016/j.ica.2014.08.056
- 7. *Kalinowski D.S.,Quach P., Richardson D.R.* // Future Med. Chem. 2009. Vol. 1. N 6. P. 1143. doi 10.4155/FMC.09.80
- 8. Lovejoy D.B., Richardson D.R. // Blood. 2002. Vol. 100. P. 666. doi 10.1182/blood.V100.2.666
- 9. Ülküseven B., Bal-Demirci T., Akkurt M., Yalçın, Ş.P., Büyükgüngör O. // Polyhedron. 2008. Vol. 27. N 18. P. 3646. doi 10.1016/j.poly.2008.08.024
- 10. Scott A.W., McCall M.A. // J. Am. Chem. Soc. 1945. Vol. 67. N 10. P. 1767. doi 10.1021/ja01226a043
- 11. *Bal-Demirci T., Akkurt M., Yalçın, Ş.P., Büyükgüngör O. //*Trans. Metal Chem. 2010. Vol. 35. N 1. P. 95. doi 10.1007/s11243-009-9300-2

12. Duan C.-Y., Tian Y.-P., Zhao C.-Y., You X.-Z., Mak T.C.W. // Polyhedron. 1997. Vol. 16. P. 2857. doi 10.1016/S0277-5387(97)00013-2

- 13. *Vrdoljak V., Cindric M., Milic D., Dubravka M.C., Predrag N., Kamenar B.* // Polyhedron. 2005. Vol. 24.
 P. 1717. doi 10.1016/j.poly.2005.05.002
- 14. Боурош П.Н., Ревенко М.Д., Гданец М., Стратулат Е.Ф., Симонов Ю.А. // ЖСХ. 2009. Т. 30. № 3. С. 532; Bourosh P.N., Revenko M.D., Gdaniec M., Stratulat E.F., Simonov Yu.A. // J. Struct. Chem. 2009. Vol. 50. № 3. P. 510. doi 10.1007/s10947-009-0078-z
- 15. Чумаков Ю.М., Биюшкин В.Н., Бодю В.Г. // ЖСХ. 1985. Т. 26. № 6. С. 114; Chumakov Y.M., Biyushkin V.N., Bodyu, V.G. // J. Struct. Chem. 1986. Vol. 26. N 6. P. 929. doi 10.1007/BF00748365
- 16. *Spek A.L.* // J. Appl. Cryst. 2003. Vol. 36. P. 7. doi 10.1107/S0021889802022112

- 17. *Malone J.F., Murray C.M., Charlton M.H., Docherty R., Lavery A.J.* // J. Chem. Soc. Faraday Trans. 1997. Vol. 93. P. 3429. doi 10.1039/A700669A
- 18. CrysAlisPro, Version 1.171.33.52 (release 06-11-2009 CrysAlis171.NET). Oxford Diffraction Ltd.
- Sheldrich G.M. // Acta Cryst. (A). 2008. Vol. 64.
 P. 112. doi 10.1107/S0108767307043930
- Allen F.H. // Acta Cryst. (B). 2002.Vol. 58. P. 380. doi 10.1107/S0108768102003890
- Addison A.W., Rao T.N., Reedijk J, Verschoor G.C. // J. Chem. Soc. Dalton Trans. 1984. N 7. P. 1349. doi 10.1039/DT9840001349
- Gulea A., Poirier D., Roy J., Stavila V., Bulimestru I., Tapcov V., Birca M., Popovschi L. // J. Enzyme Inhib. Med. Chem. 2008. Vol. 23. N 6. P. 806. doi 101080/147563607017443002

Synthesis, Structure and Biological Activity of Copper and Cobalt Coordination Compounds with Substituted 2-(2-Hydroxybenzylidene)-N-(prop-2-en-1-yl)hydrazine Carbothioamides

A. P. Gulea^a, V. O. Graur^a, Yu. M. Chumakov^{b,c}, P. A. Petrenko^b, G. G. Balan^d, O. S. Burduniuc^{d,e}, V. I. Tsapkov^{a,*}, and V. F. Rudic^f

^a State University of Moldova, ul. Mateevicha 60, Kishinev, Moldova
*e-mail: vtsapkov@gmail.com

^b Institute of Applied Physics, Kishinev, Moldova

^c Gebze Institute of Technology, Gebze/Kocaeli, Çayirova, Turkey

^d State University of Medicine and Pharmacy "Nicolae Testemitanu", Kishinev, Moldova

^e National Agency of Public Health, Kishinev, Moldova

^f Institute of Microbiology and Biotechnology of Academy of Sciences of Moldova, Kishinev, Moldova

Received November 29, 2018; revised November 29, 2018; accepted February 22, 2018

Reaction of N-(prop-2-en-1-yl)hydrazine carbothioamide with substituted 2-hydroxybenzaldehydes yielded the corresponding azomethines, which were used to synthesize coordination compounds with copper and cobalt $Cu(HL^{1-6})X \cdot nH_2O$ ($X = Cl^-$, NO_3^- ; n = 0-3), $Co(HL^2)_2NO_3$, and $Co(HL^6)_2Cl$. Structure of the compounds obtained was established by NMR spectroscopy and X-ray diffraction data. Antimicrobial and antifungal activity of the synthesized complexes was studied in relation to a series of standard strains of *Staphylococcus aureus*, *Escherichia coli* and yeast-like fungi, as well as the inhibitory effect of the original thioamides and their complexes with biometals relative to HL-60 cancer cells of human myeloid leukemia.

Keywords: coordination compounds, 2-hydroxybenzaldehyde, allylthiosemicarbazones, antimicrobial and anticancer activity