УДК 541.49:546.(562+732):548.736:547.574

СИНТЕЗ, СТРОЕНИЕ И БИОЛОГИЧЕСКАЯ АКТИВНОСТЬ КООРДИНАЦИОННЫХ СОЕДИНЕНИЙ МЕДИ И КОБАЛЬТА С ЗАМЕЩЕННЫМИ 2-(2-ГИДРОКСИБЕНЗИЛИДЕН)-*N*-(ПРОП-2-ЕН-1-ИЛ)-ГИДРАЗИНКАРБОТИОАМИДАМИ

© 2019 г. А. П. Гуля^{*a*}, В. О. Граур^{*a*}, Ю. М. Чумаков^{*b,c*}, П. А. Петренко^{*b*}, Г. Г. Бэлан^{*d*}, О. С. Бурдунюк^{*d,e*}, В. И. Цапков^{*a*}, *, В. Ф. Рудик^{*f*}

^а Молдавский государственный университет, ул. Матеевича 60, Кишинев, Молдова *e-mail: vtsapkov@gmail.com

^b Институт прикладной физики, Кишинев, Молдова

^с Технический университет г. Гебзе, Гебзе, Турция

^d Государственный университет медицины и фармации имени Н. Тестемицану, Кишинев, Молдова

^е Национальное агентство общественного здоровья, Кишинев, Молдова

^fИнститут микробиологии и биотехнологии Академии наук Республики Молдова, Кишинев, Молдова

Поступило в Редакцию 29 ноября 2018 г. После доработки 29 ноября 2018 г. Принято к печати 22 февраля 2018 г.

Взаимодействием *N*-(проп-2-ен-1-ил)гидразинкарботиоамида с замещенными 2-гидроксибензальдегидами получены соответствующие азометины, которые были использованы для синтеза координационных соединений меди и кобальта составов Cu(HL¹⁻⁶)X·nH₂O (X = Cl⁻, NO₃⁻; n = 0–3), Co(HL²)₂NO₃ и Co(HL⁶)₂Cl. Строение полученных соединений установлено методами спектроскопии ЯМР и рентгеноструктурного анализа. Изучена противомикробная и противогрибковая активность синтезированных комплексов в отношении серии стандартных штаммов золотистого стафилококка, кишечных палочек и дрожжеподобных грибов, а также ингибирующее действие исходных тиоамидов и комплексов с биометаллами в отношении раковых клеток HL-60 миелоидной лейкемии человека.

Ключевые слова: координационные соединения, 2-гидроксибензальдегид, аллилтиосемикарбазоны, противомикробная и противораковая активность **DOI:** 10.1134/S0044460X19050159

2-(2-Гидроксибензилиден)-*N*-(проп-2-ен-1-ил)гидразинкарботиоамид обладает широким набором донорных атомов и образует с переходными металлами разнообразные по составу и строению координационные соединения [1–6], проявляющие селективную противораковую активность [7, 8]. Установлено, что биологическая активность таких веществ хорошо согласуется с их строением. В связи с этим синтез и исследование новых координационных соединений металлов с производными этого гидразинкарботиоамида представляет как научный, так и практический интерес.

Целью данной работы явился синтез координационных соединений меди и кобальта с 2-(5бром-2-гидроксибензилиден)- (H_2L^1) , 2-(3,5-дибром-2-гидроксибензилиден)- (H_2L^2) , 2-(2,3-дигидроксибензилиден)- (H_2L^3) , 2-(2,4-дигидроксибензилиден)- (H_2L^4) , 2-(2-гидрокси-3-нитробензилиден)- (H_2L^5) и 2-(2-гидрокси-3-метоксибензилиден)- (H_2L^6) -*N*-(проп-2-ен-1-ил)гидразинкарботиоамидами (схема 1), установление их состава, строения, физико-химических и биологических свойств.

Тиоамиды H_2L^{1-6} получали конденсацией *N*-(проп-2-ен-1-ил)гидразинкарботиоамида (4-аллилтиосемикарбазида) с замещенными 2-гидроксибензальдегидами в эквимолярном соотношении в этаноле. Выходы, температуры плавления и данные элементного анализа замещенных 2-(2-гидрокси-

 $R^{1} = R^{2} = H, R^{3} = Br (H_{2}L^{1}); R^{1} = R^{3} = Br, R^{2} = H (H_{2}L^{2});$ $R^{1} = OH, R^{2} = R^{3} = H (H_{2}L^{3}); R^{1} = R^{3} = H, R^{2} = OH (H_{2}L^{4});$ $R^{1} = NO_{2}, R^{2} = R^{3} = H (H_{2}L^{5}); R^{1} = OCH_{3}, R^{2} = R^{3} = H (H_{2}L^{6}).$

бензилиден)-*N*-(проп-2-ен-1-ил)гидразинкарботиоамидов H_2L^{1-6} приведены в табл. 1; данные спектроскопии ЯМР представлены в табл. 2. При перекристаллизации гидразинкарботиоамидов H_2L^{1-6} из этанола удалось получить монокристаллы соединений H_2L^{4-6} , структура которых была установлена методом рентгеноструктурного анализа (табл. 3).

На рис. 1, 2 приведены общий вид фрагментов кристаллических структур гидразинкарботиоамидов H₂L⁴⁻⁶ и нумерация атомов в них. Во всех исследованных соединениях, в отличие от других ранее тиосемикарбазидов описанных тиосемикарбазонов [12-15], заместители, расположенные относительно связей N¹-C¹ находятся в Zположении. Однако заместители, расположенные $N^{3}-C^{5}$, азометиновых связей относительно находятся в Е-положении, что находится в согласии с уже цитированными литературными данными. Фрагменты A $(S^{1}N^{1}N^{2}N^{3}C^{1}C^{5})$ в тиоамидах H₂L⁴⁻⁶ практически плоские, максимальные отклонения от определяемых ими плоскостей составляют 0.053, 0.07 и 0.062 Å соответственно. При ЭТОМ В целом все исследованные молекулы H₂L⁴⁻⁶ не являются плоскими. Так, среднеквадратичные плоскости $C^{6} - \hat{C}^{11}$ фенильных циклов ориентированы относительно фрагментов А под углами 17.3, 11.2 и 10.7°, а торсионные углы $N^1C^1C^2C^3$ и $C^1C^2C^3C^4$ принимают значения 92.2, -134.7°, 109.6, 2.9° и 142.1, 128.8° соответственно. В тиоамиде H_2L^6 оба расстояния S¹-C¹ и N¹-C¹ сокращены по сравнению с таковыми в тиоамидах H_2L^4 и H_2L^5 на 0.021. 0.026 Å и 0.024. 0.035 Å (табл. 4).

В кристалле тиоамида H₂L⁴ за счет двойной винтовой оси молекулы объединяются водородными связями $O^1 - H \cdots S^1$ и $C^2 - H \cdots O^1$ в цепочки вдоль оси b (рис. 3, табл. 5). В свою очередь, благодаря центру симметрии, цепочки связаны между собой водородными связями N²-H···S¹. В кристаллах тиоамидов H_2L^5 и H_2L^6 молекулы объединяются в центросимметричные димеры водородными связями N²-H···S¹, N²-H···O¹ и $O^{1}-\hat{H}\cdots S^{1}$ (рис. 4, 5, табл. 5). Между димерами в данных соединениях осуществляется в основном ван-дер-ваальсово взаимодействие. При этом, согласно критерию, предложенному в работе [16] (CgI···CgJ < 6.0 Å, $\beta < 60.0^\circ$, где β – угол между вектором CgICgJ и нормалью к ароматическому циклу CgI), в кристаллах тиоамидов H₂L⁴⁻⁶ наблюдается также п-п-стекинг взаимодействие между фенильными циклами (С⁶-С¹¹), которые в лигандах H₂L⁴ и H₂L⁵ связанны между собой центром инверсии, а в азометине H₂L⁶ – двойной винтовой осью. Расстояния между центроидами

Тиоамид	Выход, %	Т. пл., °С	н., °С Найдено, %		, %	Формула	Вы	числено	0, %
			C	Н	Ν		С	Н	Ν
H_2L^1	87	172–174	41.82	3.73	13.21	C ₁₁ H ₁₂ BrN ₃ OS	42.05	3.85	13.37
H_2L^2	90	210-212	33.72	2.65	10.93	$C_{11}H_{11}Br_2N_3OS$	33.61	2.82	10.69
H_2L^3	75	198–200	52.76	5.35	16.44	$C_{11}H_{13}N_3O_2S$	52.57	5.21	16.72
H_2L^4	78	186–188	52.36	5.18	16.56	$C_{11}H_{13}N_3O_2S$	52.57	5.21	16.72
H_2L^5	85	151–153	47.00	4.02	20.24	$C_{11}H_{12}N_4O_3S$	47.13	4.32	19.99
H_2L^6	92	225-227	54.14	5.54	15.77	$C_{12}H_{15}N_3O_2S$	54.32	5.70	15.84

Таблица 1. Некоторые характеристики замещенных 2-(2-гидроксибензилиден)-*N*-(проп-2-ен-1-ил)-гидразинкарботиоамидов H₂L^{1-6 a}

^а Некоторые характеристики тиоамидов H₂L¹, H₂L⁴ и H₂L⁶ приведены в работах [9–11].

Тиоамид	δ _н , м. д. (ацетон- <i>d</i> ₆)	δ _с , м. д. (ацетон- <i>d</i> ₆)
H_2L^1	10.56 уш. с (1H, OH), 9.41 уш. с (1H, NH), 8.47 уш. с (1H, NH), 8.45 с (1H, CH=N), 7.90 д (1H, CH, Ar, <i>J</i> = 2.5 Гц), 7.38 м (1H, CH, Ar), 6.91 д (1H, CH, Ar, <i>J</i> = 8.8 Гц), 5.97 м (1H, CH, Allyl), 5.15 м (2H, CH ₂ =C), 4.35 м (2H, CH ₂ N)	177.42 (C=S), 155.74, 133.52, 129.87, 122.24, 118.30, 111.44 (Ar), 139.48 (CH=N), 134.73 (CH, Allyl), 115.24 (CH ₂ =), 46.37 (CH ₂ N)
H_2L^2	10.71 уш. с (1H, OH), 9.88 уш. с (1H, NH), 8.45 уш. с (1H, NH), 8.40 с (1H, CH=N), 7.77 д (1H, CH, Ar, $J = 2.4$ Гц), 7.73 д (1H, CH, Ar, $J = 2.4$ Гц), 5.98 м (1H, CH, Allyl), 5.16 м (2H, CH ₂ =C), 4.37 м (2H, CH ₂ N)	177.43 (C=S), 152.49, 135.66, 131.14, 122.35, 111.49, 111.35 (Ar), 141.38 (CH=N), 134.51 (CH, Allyl), 115.41 (CH ₂ =), 46.58 (CH ₂ N)
H_2L^3	10.48 уш. с (1H, OH), 8.73 уш. с (1H, OH), 8.47 с (1H, CH=N), 8.27 уш. с (2H, NH), 7.15 д (1H, CH, Ar, <i>J</i> = 7.9 Гц), 6.91 д (1H, CH, Ar, <i>J</i> = 7.9 Гц), 6.76 т (1H, CH, Ar, <i>J</i> = 7.9 Гц), 5.99 м (1H, CH, Allyl), 5.17 м (2H, CH ₂ =C), 4.36 м (2H, CH ₂ N)	178.32 (C=S), 145.31, 145.06, 142.92, 119.66, 119.61, 116.79 (Ar), 142.96 (CH=N), 134.75 (CH, Allyl), 115.26 (CH ₂ =), 46.40 (CH ₂ N)
H_2L^4	10.29 уш. с (1H, OH), 9.44 уш. с (1H, OH), 8.92 уш. с (1H, NH), 8.35 с (1H, CH=N), 8.11 уш. с (1H, NH), 7.38 д (1H, CH, Ar, <i>J</i> = 8.5 Гц), 6.45 д (1H, CH, Ar, <i>J</i> = 8.5 Гц), 6.41 с (1H, CH, Ar), 5.98 м (1H, CH, Allyl), 5.15 м (2H, CH ₂ =C), 4.35 м (2H, CH ₂ N)	177.85 (C=S), 160.84, 158.84, 131.50, 111.22, 108.10, 102.71 (Ar), 145.01 (CH=N), 134.86 (CH, Allyl), 115.15 (CH ₂ =), 46.41 (CH ₂ N)
H_2L^5	10.80 уш. с (1H, OH), 10.69 уш. с (1H, NH), 8.52 уш. с (1H, NH), 8.58 с (1H, CH=N), 8.37 м, 8.16 м, 7.13 м (3H, CH, Ar), 5.98 м (1H, CH, Allyl), 5.16 м (2H, CH ₂ =C), 4.36 м (2H, CH ₂ N)	178.56 (C=S), 161.61, 135.83, 133.55, 126.21, 119.85, 116.74 (Ar), 152.76 (CH=N), 134.63 (CH, Allyl), 115.33 (CH ₂ =), 46.31 (CH ₂ N)
H_2L^{66}	11.52 уш. с (1H, OH), 9.23 уш. с (1H, NH), 8.62 уш. с (1H, NH), 8.42 с (1H, CH=N), 7.58 д (1H, CH, Ar, <i>J</i> = 7.9 Гц), 6.97 д (1H, CH, Ar, <i>J</i> = 7.9 Гц), 6.79 т (1H, CH, Ar, <i>J</i> = 7.9 Гц), 5.92 м (1H, CH, Allyl), 5.13 м (2H, CH ₂ =C), 4.22 м (2H, CH ₂ N), 3.82 с (3H, CH ₃)	177.46 (C=S), 148.39, 139.62, 121.30, 119.40, 118.57, 113.23 (Ar), 146.42 (CH=N), 135.66 (CH, Allyl), 115.94 (CH ₂ =), 56.35 (CH ₃), 46.22 (CH ₂ N)

Таблица 2. Данные спектроскопии ЯМР для тиоамидов H₂L^{1-6 a}

^а Некоторые характеристики тиоамидов H₂L¹, H₂L⁴ и H₂L⁶ приведены в работах [9–11]. ⁶ В ДМСО-*d*₆.

этих фрагментов составляет 5.334, 5.613, 4.46 Å соответственно, а величины β принимают значения 53.5, 57.0, 12.2°. Наряду с указанным π - π -взаимодействием в соединении H₂L⁵ осуществляется также Y-X···Cg (π -кольцо) взаимодействие (X···Cg < 4.0 Å, γ < 30.0°, где γ – это угол между вектором XCg и нормалью к ароматическому циклу), а в соединении H₂L⁶ – X-H···Cg (π -кольцо) взаимо-

Рис. 1. Общий вид молекулы соединения H₂L⁴ в кристалле.

Рис. 2. Общий вид молекулы соединения H₂L⁶ в кристалле.

Соединение	H_2L^4	H_2L^5	H_2L^6	9
Формула	$C_{11}H_{13}N_3O_{2.75}S$	$C_{11}H_{12}N_4O_3S$	$C_{12}H_{15}N_3O_2S$	$C_{12}H_{20}N_4O_8SCu$
M	263.30	280.31	265.33	443.92
Сингония	Моноклинная	Моноклинная	Моноклинная	Триклинная
Пространственная группа	$P2_{1}/c$	$P2_{1}/c$	$P2_{1}/c$	<i>P</i> -1
Ζ	4	4	4	4
<i>a</i> , Å	15.236(4)	8.9728(5)	13.661(14)	6.8720(7)
<i>b</i> , Å	4.5098(13)	16.6764(7)	5.978(4)	14.0564(18)
<i>c</i> , Å	20.553(5)	8.8395(5)	16.834(6)	18.901(2)
α, град	90	90	90	79.178(10)
β, град	95.65(2)	104.396(6)	108.17(6)	89.523(9)
ү, град	90	90	90	87.640(10)
<i>V</i> , Å ³	1405.4(6)	1281.16(12)	1306.2(17)	1791.8(4)
$d_{\rm выч}, \Gamma/{\rm cm}^3$	1.244	1.453	1.349	1.646
λ, Å	0.71073	0.71073	0.71073	0.71073
μ, см ⁻¹	0.232	0.263	0.246	1.384
Т, К	293(2)	293(2)	293(2)	293(2)
Размеры образца, мм	$0.80 \times 0.05 \times 0.02$	0.20×0.18×0.30	0.40×0.03×0.01	0.50×0.27×0.04
θ _{max} , град	25.05	25.04	28.96	25.05
Пределы h, k, l	$-16 \le h \le 18$ $-3 \le k \le 5$ $-24 \le l \le 15$	$-7 \le h \le 10$ $-17 \le k \le 19$ $-9 \le l \le 10$	$ \begin{array}{r} -18 \le h \le 18 \\ -7 \le k \le 7 \\ -22 \le l \le 22 \end{array} $	$-8 \le h \le 8$ $-16 \le k \le 15$ $-22 \le l \le 14$
Число отражений	4482/2409	2785/1926	4767/4915	9835/6197
измеренных/независимых (N_1) R_{int} с $I > 2\sigma(I) (N_2)$	0.0699	0.0186	0.00	0.0507
Число параметров	156	172	150	485
R_1/wR_2 по N_1	0.0739/0.1345	0.0425/0.0851	0.0736/0.1064	0.0866/0.1625
R_1/wR_2 по N_2	0.1822/0.1703	0.0657/0.0960	0.2974/0.2091	0.1751/0.2013
S	0.883	1.004	0.828	0.962
$\Delta \rho_{\text{max}} / \Delta \rho_{\text{min}}, e / A^3$	0.291/-0.224	0.144/-0.201	0.310/-0.304	1.776/-0.473

Таблица 3. Кристаллографические характеристики, данные эксперимента и уточнения структуры соединений H_2L^{4-6} и 9

расстояние Н····Сд равно 2.83 Å, а значение угла γ равно 7.6°.

Взаимодействием горячих (50–55°С) этанольных растворов хлоридов или нитратов меди и кобальта с тиоамидами H_2L^{1-6} в мольном соотношении 1:1

или 1:2 получены координационные соединения 1– 10, для которых на основании данных элементного анализа (табл. 6) предложен состав Cu(HL¹⁻⁶)X· nH₂O (1, 3–9) [X = Cl⁻ (1, 5, 7, 8), NO₃⁻ (3, 4, 6, 9); n = 0 (1, 5, 7, 8), 1 (3, 4, 6), 3 (9)], Co(HL²)₂NO₃ (2) и Co(HL⁶)₂Cl (10). Полученные координационные соединения 1–10 нерастворимы в диэтиловом эфире, малорастворимы в воде, лучше растворимы в спиртах, хорошо растворимы в ДМФА, ДМСО и ацетонитриле. Выходы и некоторые физикохимические характеристики полученных комплексов приведены в табл. 6.

При перекристаллизации комплексов 1-10 из этанола получены монокристаллы соединения 9. структура которого была установлена методом РСА (табл. 3). Независимая элементарная ячейка кристаллической структуры комплекса 9 содержит лва неэквивалентных комплексных катиона $[Cu(HL^{6})H_{2}O]^{+},$ нитрат-иона лва И четыре молекулы воды. В каждом комплексе атом меди координируют однократно депротонированную трехдентатную молекулу H_2L^6 с образованием двух хелатных циклов и молекулу воды (рис. 6). Длины связей металла с донорными атомами равны Cu^1-O^1 1.9152(2) [1.9112(2)], Cu^1-S^1 2.2636(3) [2.2591(3)], Cu¹-N³ 1.9270(2) [1.9331(2)], Cu¹O¹W1.9430(2) [1.9605(3)] Å (табл. 7). Шестичленные и пятичленные металлоциклы в обоих комплексах практически одной лежат в плоскости, соответствующие двугранные углы равны 3.83 и 3.79°. В кристалле комплексы связаны между собой нитратными группами и молекулами воды, образуя трехмерную систему межмолекулярных водородных связей (рис. 7). При этом, согласно

Рис. 3. Фрагмент кристаллической упаковки соединения H₂L⁴.

Таблица	4.	Некоторые	межатомные	расстояния	И
валентные	угл	ны для соедин	нений H ₂ L ^{4–6}		

	<i>d</i> , Å						
Связь	H_2L^4	H_2L^5	H_2L^6				
S^1-C^1	1.687(5)	1.683(3)	1.662(7)				
C^5-N^3	1.283(5)	1.276(3)	1.264(7)				
$C^{5}-C^{6}$	1.460(6)	1.461(3)	1.448(8)				
$N^{3}-N^{2}$	1.397(5)	1.374(3)	1.399(6)				
$N^1 - C^1$	1.330(5)	1.325(3)	1.295(8)				
$N^1 - C^2$	1.437(5)	1.455(3)	1.476(9)				
$N^2 - C^1$	1.355(5)	1.354(3)	1.356(8)				
$C^{2}-C^{3}$	1.463(7)	1.478(4)	1.462(10)				
Угол	ω, град						
$N^{3}C^{5}C^{6}$	122.0(4)	121.4(2)	121.0(6)				
$C^5N^3N^2$	115.9(4)	115.4(2)	115.9(5)				
$C^1N^1C^2$	125.3(4)	123.9(2)	124.2(7)				
$C^1 N^2 N^3$	120.1(4)	121.1(2)	122.4(5)				
$N^1C^1N^2$	117.0(4)	115.7(2)	115.5(6)				
$N^1C^1S^1$	123.9(4)	125.43(19)	125.0(6)				
$N^2C^1S^1$	119.1(4)	118.87(18)	119.5(5)				
$C^9C^8C^7$	119.3(5)	119.6(2)	119.8(6)				
$N^1C^2C^3$	115.6(5)	112.3(2)	112.3(7)				
$C^4C^3C^2$	127.2(5)	126.0(3)	125.7(10)				

критерию, предложенному в работе [16] (CgI···CgJ < 6.0 Å, β < 60.0°, где β – угол между вектором CgICgJ и нормалью к ароматическому циклу CgI), в кристалле наблюдается π - π -стекинг взаимодействие между металлоциклами Cu²O^{1A}C^{11A}C^{6A}C^{5A}N^{3A}, связанными центром симметрии. Расстояние Cg¹···Cg¹ (1–x, 1–y, –z) между центроидами этих фрагментов составляет 3.513 Å, а величина

Рис. 4. Образование фрагмента H-связанной цепочки в молекуле тиоамида H_2L^5 .

		Расстояние, А	Å				
Связь D–Н…А	D-H	H···A	D…A	Угол DHA, град	Координаты атома А		
H_2L^4							
O^1 – H ··· N^3	0.82	1.95	2.672	147	<i>x</i> , <i>y</i> , <i>z</i>		
$N^2 \cdots H \cdots S^1$	0.86	2.60	3.448	171	1- <i>x</i> , 2- <i>y</i> , 1- <i>z</i>		
$N^1 \! \cdots \! H \! \cdots \! N^3$	0.86	2.26	2.659	108	<i>x</i> , <i>y</i> , <i>z</i>		
$C^2 \cdots H \cdots S^1$	0.97	2.61	3.109	112	<i>x</i> , <i>y</i> , <i>z</i>		
	T.	H ₂]	L^5	'			
$O^1 \cdots H \cdots O^3$	0.82	1.90	2.594	142	<i>x</i> , <i>y</i> , <i>z</i>		
$O^1 \cdots H \cdots S^1$	0.82	2.82	3.367	126	-x, -1/2+y, 1/2-z		
$N^1 \! \cdots \! H \! \cdots \! N^3$	0.86	2.25	2.638	107	<i>x</i> , <i>y</i> , <i>z</i>		
$N^2 \cdots H \cdots S^1$	0.86	2.72	3.479	148	-x, -y, -z		
$C^2 \cdots H \cdots O^1$	0.97	2.46	3.349	153	-x, $1/2+y$, $1/2-z$		
	1	H_2	L^6	1	I.		
$N^2 \cdots H \cdots O^1$	0.86	2.19	2.978	151	- <i>x</i> , 2- <i>y</i> , - <i>z</i>		
$O^1 \cdots H \cdots O^2$	0.82	2.18	2.637	116	<i>x</i> , <i>y</i> , <i>z</i>		
$O^1 \cdots H \cdots S^1$	0.82	2.52	3.184	139	- <i>x</i> , 2- <i>y</i> , - <i>z</i>		
$N^1 \cdots H \cdots N^3$	0.86	2.26	2.664	109	<i>x</i> , <i>y</i> , <i>z</i>		
$C^5 \cdots H \cdots O^1$	0.93	2.43	2.754	100	<i>x</i> , <i>y</i> , <i>z</i>		
$C^2 \cdots H \cdots S^1$	0.97	2.64	3.081	108	<i>x</i> , <i>y</i> , <i>z</i>		
	I	9		I	I		
$N^1 \cdots H \cdots O^{2N2}$	0.86	2.04	2.897	174	<i>x</i> , <i>y</i> , <i>z</i>		
$N^{1A} \cdots H \cdots O^{2N1}$	0.86	2.02	2.870	169	1-x, 1-y, -z		
$N^2 \cdots H \cdots O^{1N2}$	0.86	1.93	2.783	169	<i>x</i> , <i>y</i> , <i>z</i>		
$N^{2A} \cdots H \cdots O^{1N1}$	0.86	1.96	2.815	170	1-x, 1-y, -z		
$O^{1W} \! \cdots \! H \! \cdots \! O^{4W}$	0.85	2.21	2.685	115	-x, 1-y, 1-z		
$O^{1W} \! \cdots \! H \! \cdots \! O^{4W}$	0.85	2.41	2.685	100	-x, 1-y, 1-z		
$O^{1WA} \cdots H \cdots O^{2W}$	0.87	1.88	2.743	171	<i>x</i> , <i>y</i> , <i>z</i>		
$O^{1WA} \cdots H \cdots O^{5W}$	0.87	190	2.655	144	<i>x</i> , <i>y</i> , <i>z</i>		
$O^{2W} \cdots H \cdots O^{1N1}$	0.85	2.34	3.090	148	<i>x</i> , <i>y</i> , <i>z</i>		
$O^{2W} \cdots H \cdots O^{1A}$	0.85	2.22	2.926	141	<i>x</i> , <i>y</i> , <i>z</i>		
$O^{2W} \cdots H \cdots O^{2A}$	0.85	2.27	3.022	147	<i>x</i> , <i>y</i> , <i>z</i>		
$O^{3W} \cdots H \cdots O^{5W}$	0.85	2.51	3.343	167	-1+x, y, z		
$O^{4W} \!\!\cdots \! H \!\!\cdots \! O^{1A}$	0.85	2.23	2.977	146	<i>x</i> , <i>y</i> , <i>z</i>		
$O^{4W} \! \cdots \! H \! \cdots \! O^{2A}$	0.85	2.48	3.233	147	<i>x</i> , <i>y</i> , <i>z</i>		
$O^{5W} \cdots H \cdots O^{1N2}$	0.85	206	2.893	167	<i>x</i> , <i>y</i> , <i>z</i>		
$O^{5W} \cdots H \cdots O^1$	0.85	2.18	3.005	163	1-x, 1-y, 1-z		
$C^{2A} \cdots H \cdots S^{1A}$	0.97	2.62	3.089	110	<i>x</i> , <i>y</i> , <i>z</i>		
$C^2 \cdots H \cdots S^1$	0.97	2.60	3.112	113	<i>x</i> , <i>y</i> , <i>z</i>		

Таблица 5. Геометрические параметры водородных связей для соединений H_2L^{4-6}

Связь	<i>d</i> , Å	Связь	d, Å	Угол	ω, град	Угол	ω, град
$Cu^1 - O^1$	1.915(5)	S^1-C^1	1.705(8)	$O^1Cu^1N^3$	93.6(3)	O ^{1WA} Cu ² S ^{1A}	92.68(18)
Cu ¹ –N ³	1.927(6)	$C^{5}-N^{3}$	1.277(9)	$O^1Cu^1O^{1W}$	86.6(2)	$N^{3}C^{5}C^{6}$	126.1(8)
$Cu^1 - S^1$	2.264(2)	$C^{5}-C^{6}$	1.458(10)	$N^{3}Cu^{1}O^{1W}$	175.4(3)	$C^5N^3N^2$	116.5(6)
$Cu^1 - O^{1W}$	1.943(5)	$N^3 - N^2$	1.393(8)	$O^1Cu^1S^1$	173.98(19)	$C^1N^1C^2$	125.6(8)
$Cu^2 - O^{1A}$	1.911(5)	N^1-C^1	1.325(9)	$N^{3}Cu^{1}S^{1}$	86.7(2)	$C^1 N^2 N^3$	118.7(7)
Cu ² –N ^{3A}	1.933(6)	N^1-C^2	1.472(10)	$O^{1W}Cu^1S^1$	93.54(17)	$N^1C^1N^2$	116.1(8)
Cu ² –S ^{1A}	2.259(2)	$N^2 - C^1$	1.325(9)	O ^{1A} Cu ² N ^{3A}	93.8(2)	$N^1C^1S^1$	122.6(7)
$Cu^2 - O^{1WA}$	1.961(6)	$C^{2}-C^{3}$	1.389(14)	$O^{1A}Cu^2O^{1WA}$	86.8(2)	$N^2C^1S^1$	121.3(6)
				N ^{3A} Cu ² O ^{1WA}	176.8(3)	$C^9C^8C^7$	120.7(8)
				$O^{1A}Cu^2S^{1A}$	174.74(17)	$N^1C^2C^3$	113.2(9)
				$N^{3A}Cu^2S^{1A}$	86.99(19)	$C^4C^3C^2$	125.7(13)

Таблица 6. Некоторые межатомные расстояния и валентные углы для соединения 9

β принимает значение 13.8°. Наряду с указанным π-π-взаимодействием в комплексе 9 также осуществляется взаимодействие металл Cg (πкольцо) (Cu···Cg < 4.0 Å). Так, для взаимодействий Cu¹···Cg (C⁶C⁷C⁸C⁹C¹⁰C¹¹) (-*x*, 1-*y*, 1-*z*) и Cu²···Cg (C⁶A⁷C^{7A}C^{8A}C^{9A}C^{10A}C^{11A}) (1-*x*, 1-*y*, -*z*) расстояния Cu···Cg равны 3.517 и 3.487 Å соответственно. Для установления индивидуальности состава и строения полученных комплексов использовали методы элементного анализа, молярной электропроводности, магнетохимии и ИК спектроскопии (табл. 6). На основании данных, полученных при определении молярной электропроводности (æ) синтезированных соединений в ДМФА установ-

Рис. 5. Фрагмент кристаллической упаковки соединения H_2L^6 .

Рис. 6. Общий вид молекулы соединения 9 в кристалле.

Ma	Выход,	$\mu_{9\Phi_{1}}$	æ,		Найде	ено, %		Форуция		Вычис	лено, %	
JNG	%	М. Б. ^а	$Om^{-1} \cdot cm^2 \cdot monb^{-1}a$	Cl	М	Ν	S	Формула	Cl	М	Ν	S
1	80	1.75	4	8.47	15.19	9.90	7.48	C ₁₁ H ₁₁ BrClCuN ₃ OS	8.60	15.42	10.19	7.78
2	75	б	70	_	6.25	10.57	6.94	$C_{22}H_{20}Br_4CoN_7O_5S_2$	_	6.51	10.83	7.09
3	82	1.82	57	_	11.60	10.17	5.70	$C_{11}H_{12}Br_2CuN_4O_5S$	_	11.86	10.46	5.99
4	67	1.81	65	_	15.87	13.98	7.91	$C_{11}H_{14}CuN_4O_6S$	_	16.13	14.22	8.14
5	78	1.92	4	9.88	17.93	11.94	8.89	$C_{11}H_{12}ClCuN_3O_2S$	10.15	18.19	12.03	9.18
6	69	1.83	67	_	15.87	14.01	7.99	$C_{11}H_{14}CuN_4O_6S$	_	16.13	14.22	8.14
7	77	1.79	2	9.14	16.59	14.60	8.31	C ₁₁ H ₁₁ ClCuN ₄ O ₃ S	9.37	16.80	14.81	8.48
8	73	1.78	3	9.55	17.32	11.39	8.74	C ₁₂ H ₁₄ ClCuN ₃ O ₂ S	9.76	17.49	11.57	8.83
9	69	1.87	61	_	14.17	12.47	6.98	$C_{12}H_{20}CuN_4O_6S$	_	14.31	12.62	7.22
10	72	б	54	5.47	9.17	13.32	10.07	$C_{24}H_{28}ClCoN_6O_4S_2$	5.69	9.46	13.49	10.29

Таблица 7. Физико-химические характеристики координационных соединений меди и кобальта с замещенными 2-(2-гидроксибензилиден)-*N*-(проп-2-ен-1-ил)гидразинкарботиоамидами **1–10**

^а При 294 К. ^б Диамагнитен.

лено, что комплексы **1**, **5**, **7**, **8** являются неэлектролитами ($\alpha = 2-4$ Ом⁻¹·см²·моль⁻¹), а комплексы **2–4**, **6**, **9**, **10** относятся к бинарным электролитам ($\alpha = 54-70$ Ом⁻¹·см²·моль⁻¹).

Магнетохимическое исследование комплексов 1–10 при комнатной температуре (294 К) показало, что кобальтовые комплексы 2 и 10 диамагнитны, и, судя по их магнетохимическим характеристикам, центральные атомы в них находятся в степени окисления +3 в псевдооктаэдрическом лигандном окружении (табл. 6). Для соединений меди величины эффективных магнитных моментов соответствуют спиновым значениям для одного неспаренного электрона. Эти экспериментальные данные дают основание предположить для них мономерное строение.

С целью определения способа координации лигандов с центральными ионами проведен сравнительный анализ ИК спектров синтезированных комплексов 1–10, исходных тиоамидов

Рис. 7. Фрагмент кристаллической упаковки соединения 9.

			I · · · ·							
No	Staphylococcus aureus ATCC 25923		<i>Bacillus cereus</i> ГИСК 8035		Escherichia coli ATCC 25922		Salmonella abony ГИСК 03/03		Candida albicans ATCC 90028	
	МПК	МБК	МПК	МБК	МПК	МБК	МПК	МБК	МПК	МБК
Исходные соли ^а	>1000	>1000	>1000	>1000	>1000	>1000	>1000	>1000	>1000	>1000
H_2L^1	15	60	1.5	15	>1000	>1000	>1000	>1000	3	3
1	3	15	1.5	3	>1000	>1000	>1000	>1000	3	30
H_2L^2	1.5	3	1.5	3	>1000	>1000	>1000	>1000	1.5	3
2	3	7	>1000	>1000	>1000	>1000	>1000	>1000	1.5	3
3	1.5	1.5	1.5	3	>1000	>1000	>1000	>1000	1.5	3
H_2L^3	15	30	30	60	120	250	250	500	30	120
4	7	15	7	15	30	60	60	120	7	7
H_2L^4	3	15	30	60	>1000	>1000	>1000	>1000	3	15
5	7	15	7	15	500	500	250	500	3	7
6	3	7	3	7	12	250	12	60	3	7
H_2L^5	60	250	15	120	120	500	120	500	3	30
7	15	120	1.5	15	15	120	120	120	3	15
H_2L^6	>1000	>1000	>1000	>1000	>1000	>1000	>1000	>1000	>1000	>1000
8	7	60	7	30	30	120	15	60	15	60
9	7	7	120	120	500	500	500	500	7	7

Таблица 8. Минимальные подавляющие (МПК) и бактерицидные (МБК) концентрации (мкг/мл) координационных соединений **1–10** по отношению к тест-микробам

^a CuCl₂·2H₂O; Cu(NO₃)₂·3H₂O; CoCl₂·6H₂O; Co(NO₃)₂·6H₂O.

H₂L¹⁻⁶, а также координационного соединения 9. строение которого установлено методом РСА. Установлено, что в ИК спектрах синтезированных соединений присутствуют полосы поглошения в областях 3450-3100, 1660-1580 и 1400-1100 см⁻¹. которые характеризуют валентные колебания координированных молекул соответствующих лигандов. В области 3450-3100 см⁻¹ ИК спектров всех комплексов исчезает полоса поглощения ν(O–H), что указывает на депротонизацию фенольной ОН-группы в молекулах лигандов. Такой же вывод можно сделать по изменению колебаний v(C-O), которые в лигандах H₂L¹⁻⁶ наблюдаются в диапазоне 1260–1190 см⁻¹. В спектрах комплексов 1-10 ее положение смещается на 40-50 см⁻¹ в низкочастотную область. Кроме того, в спектрах наблюдается смещение полосы поглощения v(C=N) в низкочастотную область на 20-30 см⁻¹ и полосы поглощения v(C=S) в высокочастотную область на 25-40 см⁻¹. Это указывает на координацию тиоамидов H₂L¹⁻⁶ к

центральным атомам посредством депротонированного фенольного атома кислорода, азометинового атома азота и атома серы в тионной форме. На вышеуказанную координацию тиоамидов H_2L^{1-6} указывает и то, что в ИК спектрах всех комплексов появляется ряд новых полос поглощения в области 530–405 см⁻¹, обусловленных v(M–N) при 525–505, 430–405 см⁻¹ и v(M–S) при 450–440 см⁻¹. Участие других функциональных групп тиоамидов H_2L^{1-6} в координации с центральным ионом исключается, поскольку их характеристические полосы поглощения проявляются в тех же областях, что и в исходных тиосемикарбазонах.

Полученные физико-химические данные позволяют представить распределение химических связей в комплексах 1–10 в виде структур A (1, 5, 7, 8), Б (3, 4, 6, 9) и B (2, 10) (схема 2).

В работах [7, 8] установлено, что комплексы биометаллов с 2-(2-гидроксибензилиден)-*N*-(проп-2-ен-1-ил)гидразинкарботиоамидом избирательно

подавляют рост и размножение некоторых видов раковых клеток и некоторых видов микроорганизмов. В связи с этим нами была изучена in противомикробная противогрибковая vitro И активность синтезированных координационных соединений 1–10 в отношении серии стандартных штаммов грамположительных бактерий Staphylococcus aureus и Bacillus cereus, грамотрицательных кишечных палочек Escherichia coli и Salmonella abony и представителя дрожжеподобных грибов Candida albicans. Полученные экспериментальные данные приведены в табл. 8, из которой видно, что все исходные соли кобальта и меди не проявляют противомикробной активности в отношении вышеуказанных микроорганизмов, в то время как гидразинкарботиоамиды H₂L¹, H₂L² H_2L^4 И проявляют активность только в отношении к грамположительным микроорганизмам и грибам и мало активны в отношении грамотрицательных микроорганизмов. Установлено, что комплексы 1проявляют селективную 10. как бактериостатическую, так и бактерицидную активность в концентраций 1.5 - 120диапазоне мкг/мл в отношении стафилококков и грибов и 15-500 мкг/мл в отношении кишечных палочек. Как показал

Таблица 9. Концентрация полумаксимального ингибирования IC₅₀ исследуемых веществ в отношении клеток HL-60 и MDCK

Coorregion	IC ₅₀ , мкМ.				
Соединение	HL-60	MDCK			
H_2L^1	8.0	>100			
1	1.8	18			
H_2L^2	>10	> 100			
2	>10	>100			
3	3.8	92			
H_2L^3	>10	>100			
4	3.8	4.8			
H_2L^4	>10	>100			
6	>10	50			
H_2L^5	>10	>100			
7	0.6	>100			
H_2L^6	7.2	>100			
8	0.4	>100			
10	>10	>100			

эксперимент, на минимальную подавляющую (МПК) и минимальную бактерицидную (МБК) концентрации исследуемых комплексов 1–10 основное влияние оказывает природа центрального атома и заместителя в азометинах H_2L^{1-6} . Наиболее активным в отношении грамположительных микроорганизмов является комплекс 3, а в отношении грамотрицательных микроорганизмов – комплекс 8. Кроме того, близость значений МПК и МБК для многих соединений указывает на бактерицидный характер их действия.

Изучение антипролиферативной активности выше приведенных веществ в отношении клеток HL-60 миелоилной лейкемии человека и модельной линии нормальных клеток млекопитающих MDCK (Madin-Darby Canine Kidney) показали, что как и в случае комплексов 3dметаллов с 2-(2-гидроксибензилиден)-*N*-(проп-2-ен-1-ил)гидразинкарботиоамидом, серия ланная веществ проявляет противораковую активность в интервале концентраций 0.1-10 мкМ (табл. 9). При этом следует отметить, что введение заместителей в бензольное кольцо салицилиденового фрагмента приводит к изменению активности как тиоамидов H₂L¹⁻⁶, так и координационных соединений исследуемых металлов с ними. Так, введение двух атомов брома в бензольное кольцо (тиоамил H_2L^2) приводит к полной потере активности. Наибольшая активность тиоамида наблюдается в случае введения в салицилиденовый фрагмент азометина пятое положение атома брома В или метоксигруппы в третье положение. Данные тиоамиды подавляют рост и размножение раковых клеток более чем на 50% при концентрации 10 мкМ. Комплексы меди с этими лигандами проявляют самую высокую активность по сравнению с другими комплексами данной серии. Установлено, что, противораковая активность координационных соединений сильно зависит от природы центрального атома. Комплексы меди проявляют более высокую активность по сравс соответствующими тиоамидами, а нению комплексы кобальта малоактивны. Наиболее высокую цитостатическую активность среди изученных соединений данной серии проявил комплекс 8, который подавляет рост и размножение раковых клеток на 100% при концентрациях 10 и 1 мкМ., но практически полностью теряет активность при более низкой концентрации.

Для определения селективности антипролиферативного действия тиоамидов H_2L^{1-6} и комплексов 1-10 определена их ингибирующая активность в отношении и здоровых клеток МDСК. В табл. 8 представлены значения концентрации полумаксимального ингибирования IC₅₀, являющегося показателем эффективности цитостатического действия исследуемых веществ в отношении клеток HL-60 и MDCK. Как вилно. в большинстве случаев антипролиферативное действие исследуемого ряда веществ в отношении здоровых клеток в 10 и более раз слабее их действия в отношении раковых клеток HL-60 миелоидной лейкемии человека. Эти экспериментальные данные указывают на то, что исследуемые вещества проявляет селективную противораковую активность в отношении клеток HL-60 миелоидной лейкемии человека, практически не негативного оказывая влияния на рост И размножение здоровых клеток.

Вышеприведенные экспериментальные данные указывают на перспективность дальнейшего поиска противомикробных, противогрибковых и противораковых веществ среди координационных соединений биометаллов с биолигандами на основе тиоамидов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

РСА соединений Н₂L⁴⁻⁶ и 9 проведены на дифрактометре Xcalibur от Oxford Diffraction [18]. Их структуры решены прямыми методами и уточнены МНК в анизотропном приближении для неводородных атомов по программам SHELX-97 [19], при этом кристаллическую структуру азометина H₂L⁴ уточняли как рацемический двойник. Атомы водорода включены в уточнение в геометрически рассчитанных позициях, а их температурные факторы U_H приняты в 1.2 раза большими, чем у связанных с ними атомов углерода и кислорода. Основные параметры эксперимента, решение и уточнение структур приведены в табл. 1, а некоторые межатомные расстояния и валентные углы – в табл. 2. Координаты базисных атомов исследованных структур депонированы в Кембриджский банк данных (CCDC 929459-929461, 1872426). Геометрические расчеты и рисунки выполнены с помощью программы PLATON [16], для представления упаковок структур оставлены только те атомы водорода, которые участвуют в водородных связях. Для анализа полученных структур использовались данные Кембриджского банка данных (версия. 5.39) [20, 21].

Сопротивление растворов комплексов 1–10 в ДМФА (20°С, c = 0.001 моль/л) измеряли с помощью реохордного моста Р-38. ИК спектры регистрировали на спектрометре ALPHA (4000– 400 см⁻¹). Эффективные магнитные моменты определяли методом Гуи. Расчет молярной магнитной восприимчивости с поправкой на диамагнетизм проводили исходя из теоретических значений магнитной восприимчивости органических соединений.

Противомикробную, противогрибковую и противораковую активности изучали по стандартным методикам описанным в работе [22].

2-(5-Бром-2-гидроксибензилиден)-N-(проп-2-ен-1-ил)гидразинкарботиоамид (H_2L^1) получен по методике, описанной в работе [9].

2-(3,5-Дибром-2-гидроксибензилиден)-Л-(проп-2-ен-1-ил)гидразинкарботиоамил $(H_2L^2).$ К горячему (55-60°С) спиртовому раствору, содержащему 10 ммоль 3,5-дибром-2-гидроксибензальдегида в 15 мл этанола, приливали раствор 10 ммоль *N*-(проп-2-ен-1-ил)гидразинкарботиоамида (4-аллилтиосемикарбазида) в 35 мл этанола. При охлаждении реакционной смеси наблюдалось образование осадка светло-желтого цвета, который отфильтровывали на стеклянном фильтре, промывали небольшим количеством спирта и сушили на воздухе.

Аналогично, используя в качестве исходных веществ *N*-(проп-2-ен-1-ил)гидразинкарботиоамид (4-аллилтиосемикарбазид) и 2,3-дигидрокси- или 2гидрокси-3-нитробензальдегиды, взятые в молярном отношении 1:1 синтезировали остальные тиоамиды. Азометины H_2L^4 и H_2L^6 получали по методикам, описанным в работах [10, 11]. Некоторые характеристики замещенных 2-(2гидроксибензилиден)-*N*-(проп-2-ен-1-ил)гидразинкарботиоамидов H_2L^{1-6} приведены в табл. 1, 2. Тиоамиды H_2L^{1-6} хорошо растворимы в ДМФА, ДМСО, при нагревании – в спиртах.

Хлоро-[2-(5-бром-2-гидроксибензилиден)-N-(проп-2-ен-1-ил)гидразин-карботиоамидо]медь (1). К раствору 10 ммоль 2-(5-бром-2-гидрокибензилиден)-N-(проп-2-ен-1-ил)гидразинкарботиоамида H_2L^1 в 50 мл этанола при непрерывном перемешивании и нагревании (50–55°С) прибавляли раствор 10 ммоль дигидрата хлорида меди(II) в 20 мл этилового спирта. После этого реакционную смесь кипятили в течение 50–60 мин. После охлаждения до комнатной температуры осадок отфильтровывали на стеклянном фильтре, промывали небольшим количеством спирта, эфира и сушили на воздухе до постоянной массы.

Аналогично, используя в качестве исходных веществ тиоамиды H_2L^{2-6} и гидраты хлоридов или нитратов кобальта(II) или меди(II), взятые в мольном отношении 2:1 и 1:1 синтезировали соединения 2–10.

Авторы выражают благодарность профессору Д. Пуарье (Университет Лаваль, Квебек, Канада) и О.С. Гарбуз за помощь при проведении биологических испытаний синтезированных веществ.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Bal-Demirci T. // Polyhedron. 2008. Vol. 27. P. 440. doi 10.1016/j.poly.2007.10.001
- Bal-Demirci T., Akkurt M., Yalcm S. P, Buyukgungor O. // Trans. Met. Chem. 2010. Vol. 35. P. 95. doi 10.1007/ s11243-009-9300-2
- Бонь В.В., Орысык С.И., Пехньо В.И. // Коорд. хим. 2011. Т. 37. № 2. С. 151; Bon V.V., Orysyk S.I., Pekhnyo V.I. // Russ. J. Coord. Chem. 2011. Vol. 37. N 2. P. 149. doi 10.1134/s1070328411010027
- Bon V.V. // Acta Cryst. 2010. Vol. 66. P. 300. doi 10.1107/50108270110035754
- Orysyk S.I., Bon V.V., Obolentseva O.O., Zborovskii Yu.L., Orysyk V.V., Pekhnyo V.I., Staninets V.I., Vovk M.V. // Inorg. Chim. Acta. 2012. Vol. 382. P. 127. doi 10.1016/j.ica.2011.10.027
- Orysyk S.I., Repich G.G., Bon V.V., Dyakonenko V.V., Orysyk V.V., Zborovskii Yu.I., Shishkin O.V., Pekhnyo V.I., Vovk M.V. // Inorg. Chim. Acta. 2014. Vol. 423. P. 496. doi 10.1016/j.ica.2014.08.056
- Kalinowski D.S., Quach P., Richardson D.R. // Future Med. Chem. 2009. Vol. 1. N 6. P. 1143. doi 10.4155/ FMC.09.80
- Lovejoy D.B., Richardson D.R. // Blood. 2002. Vol. 100. P. 666. doi 10.1182/blood.V100.2.666
- Ülküseven B., Bal-Demirci T., Akkurt M., Yalçın, Ş.P., Büyükgüngör O. // Polyhedron. 2008. Vol. 27. N 18. P. 3646. doi 10.1016/j.poly.2008.08.024
- Scott A.W., McCall M.A. // J. Am. Chem. Soc. 1945. Vol. 67. N 10. P. 1767. doi 10.1021/ja01226a043
- Bal-Demirci T., Akkurt M., Yalçın, Ş.P., Büyükgüngör O. // Trans. Metal Chem. 2010. Vol. 35. N 1. P. 95. doi 10.1007/s11243-009-9300-2

- Duan C.-Y., Tian Y.-P., Zhao C.-Y., You X.-Z., Mak T.C.W. // Polyhedron. 1997. Vol. 16. P. 2857. doi 10.1016/S0277-5387(97)00013-2
- Vrdoljak V., Cindric M., Milic D., Dubravka M.C., Predrag N., Kamenar B. // Polyhedron. 2005. Vol. 24. P. 1717. doi 10.1016/j.poly.2005.05.002
- Боурош П.Н., Ревенко М.Д., Гданец М., Стратулат Е.Ф., Симонов Ю.А. // ЖСХ. 2009. Т. 30. № 3. С. 532; Bourosh P.N., Revenko M.D., Gdaniec M., Stratulat E.F., Simonov Yu.A. // J. Struct. Chem. 2009. Vol. 50. N 3. P. 510. doi 10.1007/s10947-009-0078-z
- Чумаков Ю.М., Биюшкин В.Н., Бодю В.Г. // ЖСХ. 1985. Т. 26. № 6. С. 114; Chumakov Y.M., Biyushkin V.N., Bodyu, V.G. // J. Struct. Chem. 1986. Vol. 26. N 6. P. 929. doi 10.1007/BF00748365
- Spek A.L. // J. Appl. Cryst. 2003. Vol. 36. P. 7. doi 10.1107/S0021889802022112

- Malone J.F., Murray C.M., Charlton M.H., Docherty R., Lavery A.J. // J. Chem. Soc. Faraday Trans. 1997. Vol. 93. P. 3429. doi 10.1039/A700669A
- CrysAlisPro, Version 1.171.33.52 (release 06-11-2009 CrysAlis171.NET). Oxford Diffraction Ltd.
- Sheldrich G.M. // Acta Cryst. (A). 2008. Vol. 64. P. 112. doi 10.1107/S0108767307043930
- Allen F.H. // Acta Cryst. (B). 2002.Vol. 58. P. 380. doi 10.1107/S0108768102003890
- Addison A.W., Rao T.N., Reedijk J, Verschoor G.C. // J. Chem. Soc. Dalton Trans. 1984. N 7. P. 1349. doi 10.1039/DT9840001349
- Gulea A., Poirier D., Roy J., Stavila V., Bulimestru I., Tapcov V., Birca M., Popovschi L. // J. Enzyme Inhib. Med. Chem. 2008. Vol. 23. N 6. P. 806. doi 101080/147563607017443002

Synthesis, Structure and Biological Activity of Copper and Cobalt Coordination Compounds with Substituted 2-(2-Hydroxybenzylidene)-*N*-(prop-2-en-1-yl)hydrazine Carbothioamides

A. P. Gulea^{*a*}, V. O. Graur^{*a*}, Yu. M. Chumakov^{*b,c*}, P. A. Petrenko^{*b*}, G. G. Balan^{*d*}, O. S. Burduniuc^{*d,e*}, V. I. Tsapkov^{*a*,*}, and V. F. Rudic^{*f*}

^a State University of Moldova, ul. Mateevicha 60, Kishinev, Moldova *e-mail: vtsapkov@gmail.com ^b Institute of Applied Physics, Kishinev, Moldova ^c Gebze Institute of Technology, Gebze/Kocaeli, Çayirova, Turkey ^d State University of Medicine and Pharmacy "Nicolae Testemitanu", Kishinev, Moldova ^e National Agency of Public Health, Kishinev, Moldova ^f Institute of Microbiology and Biotechnology of Academy of Sciences of Moldova, Kishinev, Moldova

Received November 29, 2018; revised November 29, 2018; accepted February 22, 2018

Reaction of *N*-(prop-2-en-1-yl)hydrazine carbothioamide with substituted 2-hydroxybenzaldehydes yielded the corresponding azomethines, which were used to synthesize coordination compounds with copper and cobalt $Cu(HL^{1-6})X \cdot nH_2O$ ($X = Cl^-$, NO_3^- ; n = 0-3), $Co(HL^2)_2NO_3$, and $Co(HL^6)_2Cl$. Structure of the compounds obtained was established by NMR spectroscopy and X-ray diffraction data. Antimicrobial and antifungal activity of the synthesized complexes was studied in relation to a series of standard strains of *Staphylococcus aureus*, *Escherichia coli* and yeast-like fungi, as well as the inhibitory effect of the original thioamides and their complexes with biometals relative to HL-60 cancer cells of human myeloid leukemia.

Keywords: coordination compounds, 2-hydroxybenzaldehyde, allylthiosemicarbazones, antimicrobial and anticancer activity