УДК 546.791.6

СИНТЕЗ И ИССЛЕДОВАНИЕ ГЕКСАУРАНАТА РУБИДИЯ СОСТАВА Rb₂[(UO₂)₆O₃(OH)₈]·6H₂O И ПРОДУКТОВ ЕГО ТЕРМОРАСПАДА

© 2019 г. О. В. Нипрук*, Н. Г. Черноруков, М. О. Бахметьев, Е. В. Елипашева, М. И. Лелет, К. А. Чаплиёва

Нижегородский государственный университет имени Н. И. Лобачевского, пр. Гагарина 23а, Нижний Новгород, 603950 Россия *e-mail: nipruk@yandex.ru

> Поступило в Редакцию 18 февраля 2019 г. После доработки 18 февраля 2019 г. Принято к печати 22 февраля 2019 г.

Взаимодействием гидратированного оксида урана(VI) $UO_3 \cdot 2.25H_2O$ (скупита) с водным раствором гидроксида рубидия в автоклаве при 100°С получен уранат рубидия состава $Rb_2[(UO_2)_6O_3(OH)_8] \cdot 6H_2O$. Методами химического анализа, ИК спектроскопии, рентгенографии, дифференциального термического анализа установлен состав и строение полученного соединения, изучен процесс его дегидратации и термораспада.

Ключевые слова: гексауранат рубидия, гидратированные уранаты, скупит, термический анализ

DOI: 10.1134/S0044460X19080134

Уранаты представляют собой группу малоизученных кислородсодержащих соединений урана сразличными элементами Периодической системы. Некоторые из синтетических уранатов являются аналогами известных минералов, таких как компреньясит $K_2[(UO_2)_6O_4(OH)_6] \cdot 8H_2O_5$, протасит $Ba[(UO_2)_3O_3(OH)_2] \cdot 3H_2O_1$ беккерелит $Ca[(UO_2)_6O_4(OH)_6] \cdot 4H_2O_5$ ванденбрандеит Cu[(UO₂)(OH)₄], кюрит Pb₃[(UO₂)₈O₆(OH)₁₀]·*n*H₂O. Обладая высокой химической активностью, уранаты участвуют в трансформациях минералоподобных соединений в окружающей среде. Они образуются при взаимодействии оксидов урана с катионными формами различных элементов [1-4] и в результате гидролиза более сложных минеральных образований [5-8]. Сведения об условиях получения гидратированных уранатов и их физико-химических свойствах важны для понимания механизмов процессов, которые могут протекать на всех этапах ядерного топливного цикла от переработки урановой руды до иммобилизации радиоактивных отходов [9, 10].

Немногочисленные исследования гидратированных уранатов щелочных элементов относятся лишь компреньяситу [11], а также к синтезированным в лабораторных условиях соединениям следующих составов: Li₂U₃O₁₀·6H₂O [12], $Na[(UO_2)_4O_2(OH)_5] \cdot 2H_2O[13], Na_2[(UO_2)_3O_3(OH)_2]$ [14, $K_{5}[(UO_{2})_{10}O_{8}(OH)_{9}] \cdot (H_{2}O)$ 15]. [16]. $Rb_4[(UO_2)_8O_7(OH)_6] \cdot H_2O[17], Cs_3[(UO_2)_{12}O_7(OH)_{13}]$ 3H₂O [18, 19]. Данные уранаты имеют слоистую структуру, в которой отрицательно заряженные слои, образованные полиэдрами урана(VI), связаны друг с другом посредством катионных форм атомов щелочного элемента и молекул воды. Рассмотренная выше группа соединений не является достаточно представительной для обсуждения закономерностей изменения состава, строения и свойств гидратированных уранатов щелочных элементов. В целом наблюдается тенденция увеличения отношения числа атомов урана к числу атомов щелочного элемента U:МІ в ряду от лития к цезию, что может быть обусловлено возрастанием размерных параметров атомов М^I и,

Таблица 1. Результаты химического анализа ураната рубидия $Rb_2U_6O_{19}$ · $10H_2O$ ($Rb_2O\cdot 6UO_3\cdot 10H_2O$)

Оксид	Найдено, мас%	Вычислено, мас%
Rb ₂ O	8.93±0.09	8.97
UO ₃	82.05±0.93	82.38
H ₂ O	8.17±0.07	8.65

как следствие, их координационных возможностей $[r(\text{Li}^+) = 0.76 \text{ Å} > r(\text{Na}^+) = 1.02 \text{ Å} > r(\text{K}^+) =$ 1.38 Å > $r(\text{Rb}^+) = 1.52 \text{ Å} > r(\text{Cs}^+) = 1.67 \text{ Å}]$ [20]. В данной работе представлены результаты по синтезу и исследованию неизвестного ранее ураната рубидия $\text{Rb}_2[(\text{UO}_2)_6\text{O}_3(\text{OH})_8]\cdot 6\text{H}_2\text{O}$. Изучен химический и функциональный состав данного соединения, установлено состояние и роль воды в формировании структуры. Методами ДТА и ИК спектроскопии исследованы процессы дегидратации и термораспада, идентифицированы продукты термораспада. Строение полученного соединения сопоставлено со строением известных уранатов щелочных элементов.

Взаимодействие гидратированного оксида урана (VI) UO₃·2.25H₂O, синтетического аналога минерала скупита [(UO₂)₈O₂(OH)₁₂]·12H₂O, с водным раствором RbOH при температуре 20-25°С в течение нескольких месяцев сопровождается уменьшением щелочности раствора и приводит к образованию новой кристаллической фазы. Результаты химического анализа этой фазы свидетельствуют о том, что она имеет постоянный и воспроизводимый в параллельных экспериментах состав, который отвечает общей формуле Rb₂U₆O₁₉·10H₂O (табл. 1). В соответствии с этой формулой, неизвестное ранее соединение рубидия принадлежит ряду гексауранатов $M^{I,II}_{,x}U_6O_{19} \cdot nH_2O$ (x = 2, M^{I} = K, Na; x = 1, M^{II} = Ca, Ba). Возможность образования соединения указанного состава в исследуемой системе определяется такими факторами, как температура и кислотность среды. Увеличение температуры до 100°С и проведение реакции в гидротермальных условиях позволяет уменьшить время синтеза и увеличить степень кристалличности продукта.

 $6UO_3 \cdot 2.25H_2O_{(\kappa)} + 2RbOH \rightarrow Rb_2U_6O_{19} \cdot 10H_2O_{(\kappa)}$ $+ 4.5H_2O.$

Однако дальнейшее увеличение температуры нецелесообразно, поскольку приводит к появлению в твердой фазе примесей продуктов дегидратации скупита и уменьшению степени выхода ураната рубидия. Оптимальным для образования $Rb_2U_6O_{19} \cdot 10H_2O$ является интервал pH = 7–10. В кислой среде реакция не протекает и в твердой фазе остается гидратированный оксид урана. В более щелочных растворах образуется кристаллическая фаза иного состава $Rb_2U_4O_{13} \cdot 2H_2O$ $\{Rb_4[(UO_2)_8O_7(OH)_6] \cdot H_2O\}$, исследованная нами ранее в работе [17]. Образование полиуранатов в указанном интервале кислотности вполне закономерно и согласуется с преобладанием в растворе в этих условиях полимерных форм урана(VI).

Результаты рентгенографических измерений показывают, что соединение Rb₂U₆O₁₉·10H₂O является хорошо сформированной индивидуальной кристаллической фазой с воспроизводимыми при повторных синтезах дифракционными максимумами отражения. Представленные в табл. 2 рентгенографические данные содержат серию отражений от плоскостей с индексами типа 001, что вместе с интенсивным максимумом отражения при $2\theta = 11.68$ Å свидетельствует о типично слоистом характере структуры исследуемого гексаураната. Из табл. З видно, что параметры элементарной ячейки и ее объем в рамках орторомбической сингонии весьма близки к аналогичным значениям для компреньясита K₂U₆O₁₉·10H₂O [11], рассчитанным на основании рентгеноструктурных исследований природного минерала.

Формульная единица $Rb_2U_6O_{19} \cdot 10H_2O$ не дает представления о функциональном составе и строении соединения. Для его изучения было выполнено ИК спектроскопическое исследование. Как следует из представленных табл. 4 данных, в ИК спектре гексаураната рубидия можно выделить несколько групп независимых колебаний. Среди них колебания уранильного фрагмента $UO_2^{\delta+}$, колебания H_2O и колебания гидроксидных групп в составе кислородных полиэдров урана(VI).

Валентные колебания уранильного фрагмента $v(UO_2^{\delta+})$ представлены интенсивной полосой v_{as} при 915 см⁻¹ и плечом v_s при 834 см⁻¹, что указывает на нелинейную либо неравноплечную кон-

		1 01		r			
hkl	d	Ι	hkl	d	Ι		
Rb ₂ U ₆ O ₁₉ ·10H ₂ O							
002	7.578	60	332	1.990	19		
110	6.194	3	062	1.974	15		
013	4.670	4	340	1.884	4		
004	3.776	30	334	1.811	12		
200	3.585	35	325	1.793	9		
130	3.557	58	260	1.776	6		
202	3.234	70	262	1.728	8		
132	3.214	100	335	1.703	9		
042	2.848	10	019	1.664	12		
134	2.590	24	404	1.617	4		
006	2.521	4	074	1.591	4		
240	2.328	12	247	1.586	4		
320	2.223	4	327	1.549	4		
313	2.124	4	280	1.410	4		
145	2.064	31	059	1.387	10		
136	2.057	23	093	1.316	3		
331	2.043	22	2410	1.269	3		
		Rb ₂ U ₆ O	P [.] 7H ₂ O				
002	7.437	87	035	2.372	4		
012	6.268	4	135	2.343	7		
300	4.773	4	206	2.331	11		
220	4.582	5	235	2.256	3		
004	3.697	32	251	2.239	6		
400	3.573	56	514	2.223	8		
231	3.387	3	540	2.062	21		
402	3.216	100	541	2.046	9		
214	3.162	3	701	2.021	23		
033	3.095	4	450	1.984	21		
015	2.870	5	632	1.970	19		
233	2.847	10	227	1.919	9		
404	2.565	29	453	1.842	5		
315	2.459	5					

Таблица 2. Рентгенографические характеристики уранатов рубидия

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 89 № 8 2019

Соединение	<i>a</i> , Å	b, Å	<i>c</i> , Å	<i>V</i> , Å ³
$Rb_2U_6O_{19}$ ·10H ₂ O	7.1537±0.0017	12.2647±0.0024	15.1163±0.0034	1326.3±0.4
$K_2 U_6 O_{19} \cdot 10 H_2 O_{19}$	7.1747±0.0003	12.1871±0.0005	14.8591±0.0007	1299.3±0.2
$Rb_2U_6O_{19}$ ·7H ₂ O	14.2751±0.0060	11.9334±0.0056	14.7809±0.0055	2517.9±1.3

Таблица 3. Параметры элементарных ячеек гексауранатов различных элементов

наолица 4. Данные и спектроскопии для уранатов рубидия и продуктов их термораспад	Таблица 4	. Данные	• ИК спект	роскопии для	уранатов р	убидия и п	родуктов их	х термораспада
--	-----------	----------	------------	--------------	------------	------------	-------------	----------------

	v, см ⁻¹						
Отнесение	$Rb_2U_6O_{19}\cdot nH_2O$		DLUO	Dh II O	UO		
	<i>n</i> = 10	<i>n</i> = 7	K0 ₂ 0 ₇ 0 ₂₂	K0 ₂ 0 ₄ 0 ₁₃	0308		
ν(H ₂ O)	3439 пл, 3509 с, 3608 пл	3441 пл, 3509 с, 3609 пл	_	_	-		
ν(UO–H)	3288 пл	3315 пл	_	_	-		
$\delta({\rm H_2O})$	1631 cp	1626 cp	_	_	-		
δ(UO–H)	981 cp	980 cp	_	-	-		
$v_{as}(UO_2^{2+})$	915 c	917 c	919 cp, 932 c,	201 0	740 c,		
$v_s(UO_2^{2+})$	834 пл	809 пл	948 cp	0910	800 пл		
$v_{as}(U-O_{eq})$	459 с, 552 пл, 587 пл, 668 пл	448 с, 524 пл, 548 пл, 649 пл	419 ср, 459 пл, 506 с	406 ср, 458 пл, 492 с, 595 ср	425 c, 485 c, 520 c		

фигурацию уранильного фрагмента $UO_2^{\delta+}$. При этом положение полос vas и vs уранильного фрагмента хорошо согласуется с математической моделью, предложенной в работе [21]: $v_s = 0.912v_{as} -$ 1.04 (см⁻¹). Деформационные колебания $\delta(UO_2^{\delta^+})$ должны находится за пределами рабочего диапазона спектрометра в области 200-300 см⁻¹ и по этой причине не видны в ИК спектре. В соответствии с известными корреляциями [22], волновые числа в области 915 см⁻¹ для $v(UO_2^{\delta+})$ соответствуют семерной координации кислородных полиэдров урана. В целом, наличие в ИК спектре исследуемого соединения колебаний уранильного фрагмента $v(UO_2^{\delta^+})$, наряду со светло-желтой окраской уранатов, свидетельствуют о том, что уран в составе соединения имеет степень окисления +6 и в этом состоянии проявляет тенденцию к формированию структуры слоистого типа.

Наличие полосы поглощения в области 1631 см⁻¹, соответствующей деформационным колебаниям молекул воды, свидетельствуют о молекулярной форме нахождения, по крайней мере, части воды в кристаллической решетке ураната рубидия. Некоторое смещение этой полосы поглощения в коротковолновую область по сравнению с полосой 1595 см⁻¹, характерной для мономерных молекул H_2O в газовой фазе, является признаком участия молекул H_2O в образовании H-связей [23]. По этой же причине валентные колебания $v_{as}(H_2O)$ и $v_s(H_2O)$ смещены от 3756 и 3657 см⁻¹ и представлены интенсивной интегральной полосой с четко выраженным минимумом при 3509 см⁻¹ и плечом при 3608 см⁻¹. Такая структура полос поглощения $v(H_2O)$ в области валентных колебаний воды свидетельствует о разветвленной сети неравноценных H-связей.

Наряду с колебаниями молекулярной H₂O в спектре присутствует полоса 3288 см⁻¹, отнесенная нами к валентным колебаниям v[U(O–H)]. Соответствующая им полоса деформационных колебаний уран-кислородного фрагмента UOH может быть отнесена к единственной неидентифици-

рованной полосе 981 см⁻¹. Столь низкочастотное положение этой полосы вполне вероятно при весьма значительной приведенной массе колебательного фрагмента UOH. Примеры такого отнесения приведены в литературных источниках [22, 24] и кажутся вполне правдоподобными.

Низкочастотные колебания, наблюдаемые в интервале 400–670 см⁻¹, могут быть отнесены к колебаниям U–O в экваториальной плоскости полиэдра урана. Эти колебания наблюдаются и в других минералах и неорганических соединениях урана(VI) [25, 26]. Однако отнесение полос поглощения в этой области к экваториальным колебаниям U–O является не однозначным, поскольку полосы в указанном диапазоне длин волн могут быть также обусловлены колебаниями γ(UOH) и либрационными колебаниями молекул воды [22].

Для получения более детальной информации о состоянии воды и ее роли в стабилизации структуры ураната рубидия, а также для оценки его термической устойчивости было проведено термографическое исследование в сочетании с методом рентгенографии и ИК спектроскопии. Термограмма ураната рубидия приведена на рис. 1, а схема процесса дегидратации и термораспада представлена на схеме 1. Термическое разложение Rb₂U₆O₁₉·10H₂O протекает в несколько стадий и начинается уже при 42°С, что соответствует началу первого эндоэффекта на кривой ДТА. При нагревании до 74°С уранат рубидия одностадийно теряет три молекулы воды на формульную единицу соединения, что приводит к смещению дифракционных максимумов на рентгенограмме в сторону больших углов 20, изменению набора межплоскостных расстояний в целом и образованию нового кристаллогидрата состава Rb₂U₆O₁₉·7H₂O (схема 1, табл. 2). Весьма низкая температура дегидратации этой части H₂O (ниже 100°С) указывает на то, что данные молекулы H₂O не принимают участия в координационном окружении атомов Rb, не занимают в структуре соединения самостоятельных кристаллографических позиций и удерживаются в структуре ураната рубидия весьма слабыми Н-связями. О природе этих Н-связей можно судить по присутствию узкой и интенсивной полосы поглощения v_{as}(HO-H) в ИК

Рис. 1. Термограммауранатарубидия состава $Rb_2U_6O_{19}$. 10 H_2O .

спектре, форма которой характерна для молекул H_2O , участвующих в образовании только одной из двух возможных (v_{as} и v_s) в расчете на молекулу воды H-связей [23].

Cxema 1.

$$Rb_2[(UO_2)_6O_3(OH)_8] \cdot 6H_2O_{(\kappa p)}$$

 $74^\circ C \downarrow -3H_2O$
 $Rb_2[(UO_2)_6O_3(OH)_8] \cdot 3H_2O_{(\kappa p)}$
 $142^\circ C \downarrow -3H_2O$
 $Rb_2[(UO_2)_6O_3(OH)_8]_{(aM)}$
 $287^\circ C \downarrow -3H_2O$
 $Rb_2[(UO_2)_6O_6(OH)_2]_{(aM)}$
 $368^\circ C \downarrow -H_2O$
 $[Rb_2 \cdot 6UO_3]_{(aM)}$
 $555^\circ C \downarrow$
 $1/3Rb_2U_4O_{13(\kappa p)} + 2/3Rb_2U_7O_{22(\kappa p)}$
 $912^\circ C \downarrow -1/3H_2O$
 $Rb_2U_4O_{13(\kappa p)} + 2/3U_3O_{8(\kappa p)}$

Следующий тепловой эффект на кривой ДТА также протекает эндотермически, завершается одностадийным удалением 3 молекул H_2O и образованием практически аморфной фазы состава $Rb_2U_6O_{19}\cdot 4H_2O$. Удаляемую при 142°C воду сле-

Рис. 2. Рентгенограммы ураната рубидия и продуктов его дегидратации.

дует считать структурной, принимающей участие в формировании координационного окружения атомов Rb. Для рубидия в силу высокой ионной составляющей связей Rb-O характерна их ненаправленность и ненасыщаемость. В результате, функцию компенсатора координационной емкости рубидия могут выполнять наряду с молекулами H₂O другие элементы структуры ураната Rb, такие как атомы кислорода полиздров урана. Поэтому разрушение координационных связей Rb←OH₂ при 142°С кажется вполне вероятным. При этом наблюдаются изменения и в ИК спектре продукта дегидратации. В нем исчезают полосы δ(H₂O) 1631см⁻¹ и v(H₂O) 3608 см⁻¹, но сохраняются полосы б(UOH) 981 см⁻¹ и v[U(O-H)] 3288 см⁻¹. Такое изменение возможно, если в продукте дегидратации содержатся не молекулы H₂O, а эквивалентное им количество гидроксильных групп, и данное соединение имеет состав Rb₂(UO₂)₆O₃(OH)₈. В нем слои вида $[(UO_2)_6O_3(OH)_8]_{2\infty}^{\delta_{-}}$ объединены в трехмерную решетку ионизированными формами атомов рубидия и Н-связями, образованными гидроксильными группами противолежащих слоев.

Последние два эндоэффекта наблюдаются при 287 и 368°С. Они сопровождаются убылью массы, эквивалентной 3 и 1 молекулам воды соответственно (схема 1). Удаление гидроксигрупп, участвующих в связывании слоев, приводит к нарушению дальнего порядка и полной аморфизации твердой фазы (рис. 2).

В интервале температур 520–555°С начинается кристаллизация аморфного продукта, что сопро-

вождается экзоэффектом на кривой ДТА (рис. 1). Постоянство массы образца в этом интервале температур позволяет исключить образование соединений урана(IV) в кристаллической фазе. Это подтверждается и ярко-оранжевой окраской образца, характерной для соединений урана в степени окисления +6. Рентгенографическое исследование твердой фазы свидетельствуют о формировании двух известных в литературе кристаллических соединений урана и рубидия [27]:

$$3Rb_2U_6O_{19} \rightarrow 2Rb_2U_7O_{22} + Rb_2U_4O_{13}$$

Дальнейшее нагревание образца в широком интервале температур от 555 до 850° С не приводит к образованию каких-либо новых соединений. Наблюдается лишь увеличение степени кристалличности уже существующих фаз состава $Rb_2U_7O_{22}$ и $Rb_2U_4O_{13}$. При более высокой температуре происходит разрушение структуры $Rb_2U_7O_{22}$ и выделение O_2 , что приводит к образованию при температуре выше 912°С смеси $Rb_2U_4O_{13}$ и U_3O_8 :

$$Rb_2U_7O_{22} \rightarrow Rb_2U_4O_{13} + U_3O_8 + 0.5O_2\uparrow$$

Рассмотренный процесс термического разложения $Rb_2U_7O_{22}$ находит отражение на кривой ДТА в резком изменении хода базовой линии, что согласуется с известными теоретическими представлениями [28]. Убыль массы образца в количестве 0.51%, наблюдаемая на кривой ТГ, соответствует предложенной схеме термического распада (1/3O₂ по отношению к $Rb_2U_6O_{19} \cdot 10H_2O$). В ИК спектре твердой фазы исчезают полосы поглощения v($UO_2^{\delta+}$) соединения $Rb_2U_7O_{22}$ и появляются полосы поглощения U_3O_8 [29].

Таким образом, синтезированное соединение является кристаллогидратом ураната рубидия $Rb_2[(UO_2)_6O_3(OH)_8] \cdot 6H_2O$. Его кристаллическая решетка имеет слоистое строение. Катионные формы $Rb^{\delta+}$ и молекулы H_2O расположены между слоями $[UO_2)_5O_3(OH)_8]^{\delta_{2\infty}}$ и вместе с уран-гидроксидными группами осуществляют их связывание в трехмерную решетку.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для синтеза соединений использовали реактивы квалификации XЧ.

Для синтеза гексаураната рубидия навеску скупита UO₃·2.25H₂O массой 0.5 г помещали в ЖУРНАЛ ОБЩЕЙ ХИМИИ том 89 № 8 2019 тефлоновый стакан объемом 100 мл, приливали 50 мл 1×10^{-3} М. раствора RbOH и производили нагревание реагентов в герметичном стальном автоклаве при 100°С в течение 15 сут. Образовавшийся осадок желтого цвета отделяли фильтрованием, промывали дистиллированной водой и сушили на воздухе до постоянной массы.

Синтетический аналог скупита, необходимый для синтеза ураната рубидия, получали по методике, подробно изложенной в работе [30]. Для этого осаждали пероксид урана $UO_4 \cdot 2H_2O$ сливанием 25 мл 0.34 М. $UO_2(NO_3)_2$ и 100 мл H_2O_2 (1:10) при 40°С. Полученный раствор с осадком выдерживали при комнатной температуре в течение 1 ч, после чего осадок отделяли от раствора центрифугированием, промывали дистиллированной водой и сушили на воздухе при комнатной температуре. Образовавшийся осадок $UO_4 \cdot 2H_2O$ разлагали до UO_3 нагреванием в течение 1 ч в сушильном шкафу при 300°С. Свежеприготовленный оксид урана(VI) гидратировали парами H_2O при температуре кипения воды в течение 1 ч.

Массовую долю H_2O в уранате рубидия устанавливали весовым методом, прокаливая исследуемый образец при 700°C в течение 2 ч. Полученный сухой остаток растворяли в HNO₃ и определяли содержания U и Rb в растворе методом рентгенофлуоресцентной спектрометрии по линиям UL_β (17.220 кэВ) и Rb K_β (14.961 кэВ). Анализ проводили методом градуировочного графика с использованием рентгенофлуоресцентного спектрометра с энергетической дисперсией EDX-900 HS Shimadzu. Образцы сравнения готовили растворением UO₃ и RbNO₃ в разбавленной HNO₃. Результаты анализа пересчитывали на массовые доли оксидов соответствующих элементов.

Кристаллографическую индивидуальность и рентгенографические характеристики образцов устанавливали методом порошковой рентгенографии. Рентгенограммы записывали на дифрактометре XRD-6000 Shimadzu с использованием CuK_{α} -излучения и сцинтилляционного счетчика. Высокотемпературные исследования проводили с использованием приставки HA-1001 этой же фирмы. Шаг сканирования составлял 0.02°. Для минимизации инструментальных систематических погрешностей юстировку прибора проверяли по порошкообразному высокочистому кремнию с заданным размером частиц. Аналитическое индицирование полученных рентгенограмм и расчет параметров элементарной ячейки исследуемых соединений проводили с помощью программы Appleman-Evan.

С целью изучения термической устойчивости ураната рубидия и структурных изменений, происходящих с ним при нагревании, использовали метод термического анализа в сочетании с высокотемпературной рентгенографией. Кривые ТГ и ДТА записывали с помощью синхронного термического анализатора DTG-60H (Shimadzu, Япония) в атмосфере воздуха в интервале температур 20–1000°С со скоростью подъема температуры 10 град/мин. Точность определения температур составляла ±1°С.

Функциональный состав полученного соединения, продуктов его дегидратации и термораспада исследовали с помощью метода ИК спектроскопии. ИК спектры записывали с помощью спектрометра FTIR-8400S Shimadzu в диапазоне волновых чисел 4000–400 см⁻¹. Исследуемые образцы готовили в виде таблеток с КВг или тонкодисперсных взвесей в вазелиновом масле в кюветах, изготовленных из селенида цинка.

ФОНДОВАЯ ПОДДЕРЖКА

Работа выполнена при финансовой поддержке Министерства образования и науки РФ (грант № 4.5706.2017/БЧ) в рамках базовой части государственного задания.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Baker J. R. // Coord. Chem. Rev. 2013. Vol. 266–267. P. 123. doi 10.1016/j.ccr.2013.10.004
- Sandino M.C.A., Grambow B. // Radiochim. Acta. 1994. Vol. 66–67. P. 37.
- Sowder A.G., Clark S.B., Fjeld R.A. // Radiochim. Acta. 1996. Vol. 74. P. 45.
- Sowder A.G., Clark S.B., Fjeld R.A. // Environ. Sci. Technol. 1999. Vol. 33. P. 3552. doi 10.1021/es9901516

НИПРУК и др.

- Нипрук О.В., Черноруков Н.Г., Пыхова Ю.П., Годованова Н.С., Еремина А.А. // Радиохимия. 2011.
 т. 53. № 5. С. 410; Nipruk O.V., Chernorukov N.G., Pykhova Y.P., Godovanova N.S., Eremina А.А. // Radiochemistry. 2011. Vol. 53. N 5. P. 483. doi 10.1134/ S1066362211050067
- Nipruk O.V., Chernorukov N.G., Zakharycheva N.S., Kostrova, E. // J. Radioanal. Nucl. Chem. 2013. Vol. 298. P. 519. doi 10.1007/s10967-013-2544-5
- Нипрук О.В., Черноруков Н.Г., Еремина А.А., Кострова Е.Л., Чаплиёва К.А. // Радиохимия. 2014.
 Т. 56. № 4. С. 332; Nipruk O.V., Chernorukov N.G., Eremina A.A., Kostrova E.L., Chaplieva K.A. // 2014.
 Vol. 56. N 4. P. 392. doi 10.1134/S106636221404006
- Nipruk O.V., Chernorukov N.G., Zakharycheva N.S., Kostrova E.L. // J. Radioanal. Nucl. Chem. 2017. V. 311. N 1. P. 519. doi 10.1007/s10967-016-5044-6
- Yuferov V.B., Katrechko V.V., Ilichova V.O., Shariy S.V., Svichkar A.S., Buravilov I.V., Khizhnyak S.N. // Problems of Atomic Science and Technology. 2017. N 3. P. 31.
- Reynolds J.G., Cooke G.A., Page J.S., Warrant R.W. // J. Radioanal. Nucl. Chem. 2018. Vol. 316. P. 289. doi 10.1007/s10967-018-5724-5
- 11. Burns P.C. // Can. Mineral. 1998. 36. P. 1061.
- Черноруков Н.Г., Нипрук О.В., Арова М.И. // ЖНХ. 2013. Т. 58. № 6. С. 707. doi 10.1134/ S0036023613060077; Chernorukov N.G., Nipruk O.V., Arova M.I. // Russ. J. Inorg. Chem. 2013. Vol. 58. N 6. P. 621. doi 10.1134/S0036023613060077
- Burns P.C., Deely K.M. // Can. Mineral. 2002. V. 40. P. 1579. doi 10.2113/gscanmin.40.6.1579
- Нипрук О.В., Черноруков Н.Г., Кострова Е.Л., Черноруков Г.Н. // ЖНХ. 2016. Т. 61. № 5. С. 600. doi 10.7868/S0044457X16050159; Nipruk O.V., Chernorukov N.G., Kostrova E.L., Chernorukov G.N. // Russ. J. Inorg. Chem. 2016. Vol. 61. N 5. P. 572. doi 10.1134/S0036023616050156
- Кузнецов Л.М., Цвигунов А.Н. // Радиохимия. 1980. Т. 22. № 4. С. 600.
- Burns P.C., Hill F.C. // Can. Mineral. 2000. Vol. 38. P. 163. doi 10.2113/gscanmin.38.1.163

- Черноруков Н.Г., Нипрук О.В., Черноруков Г.Н., Кострова Е.Л., Чаплиева К.А. // Радиохимия. 2015.
 Т. 57. № 5. С. 417. doi 10.1134/S1066362215050069; Chernorukov N.G., Nipruk O.V., Chernorukov G.N., Kostrova E.L., Chaplieva K.A. // Radiochemistry. 2015.
 Vol. 57. N 5. P. 488. doi 10.1134/S1066362215050069
- Черноруков Н.Г., Нипрук О.В., Кострова Е.Л. // ЖНХ. 2015. Т. 60. № 11. С. 1452. doi 10.7868/ S0044457X15110021; Chernorukov N.G., Nipruk O.V., Kostrova E.L. // Russ. J. Inorg. Chem. 2015. Vol. 60. N 11. P. 1329. doi 10.1134/S0036023615110029
- Hill F.C., Burns P.C. // Can. Mineral. 1999. Vol. 37. 1283.
- 20. Shannon R.D. // Acta Crystallogr. 1976. N 32. P. 751.
- 21. Bagnall K.W., Wakerley M.W. // J. Inorg. Nucl. Chem. 1975. Vol. 37. P. 329.
- Володько М.В., Комяк А.И., Умрейко Д.С. Ураниловые соединения. Минск.: БГУ, 1981. Т. 1. 431 с.
- Юхневич Г.В. Инфракрасная спектроскопия воды. М.: Наука, 1973. 207 с.
- Botto I.L., Barone V.L. // J. Mater. Sci. 2000. Vol. 37.
 P. 177. doi 10.1023/A:1013182917829
- Čejka J. // Rev. Mineral. Geochem. 1999. Vol. 38. P. 520.
- Yagoubi S., Obbade S., Dion C., Abraham F. // J. Solid State Chem. 2005. Vol. 178. P. 3218. doi 10.1016/j. jssc.2005.07.017
- Van Egmond A.B., Cordfunke E.H.P. // J. Inorg. Nucl. Chem. 1976. Vol. 38. P. 2245.
- Топор Н.В., Огородова Л.П., Мельчакова Л.В. Термический анализ минералов и неорганических соединений. М.: МГУ, 1987. 190 с.
- Allen G.C., Holmes N.R. // Appl. Spectrosc. 1994. Vol. 48. N 4. P. 525. doi 10.1366/000370294775268893
- Нипрук О.В., Князев А.В., Черноруков Г.Н., Пыхова Ю.П. // Радиохимия. 2011. Т. 53. № 2. С. 128; Nipruk O.V., Knyazev A.V., Chernorukov G.N., Pykhova Y.P. // Radiochemistry. 2011. Vol. 53. N 5. P. 146. doi 10.1134/S1066362211020044

1252

Synthesis and Study of Rubidium Hexauranate Rb₂(UO₂)₆O₃(OH)₈·6H₂O and the Products of Its Thermal Decomposition

O. V. Nipruk*, N. G. Chernorukov, M. O. Bakhmetiev, E. V. Elipasheva, M. I. Lelet, and K. A. Chaplieva

N.I. Lobachevskii Nizhny Novgorod State University, pr. Gagarina 23a, Nizhny Novgorod, 603950 Russia *e-mail: nipruk@yandex.ru

Received February 18, 2019; revised February 18, 2019; accepted February 22, 2019

The interaction of hydrated uranium(VI) oxide $UO_3 \cdot 2.25H_2O$ (schoepite) with an aqueous solution of rubidium hydroxide in an autoclave at 100°C yielded rubidium uranate $Rb_2(UO_2)_6O_3(OH)_8 \cdot 6H_2O$. Composition and structure of the obtained compound were determined by chemical analysis, IR spectroscopy, X-ray diffraction, and differential thermal analysis methods. The processes of its dehydration and thermal decomposition were studied.

Keywords: rubidium hexauranate, hydrated uranates, schoepite, thermal analysis