СИНТЕЗ И СТРОЕНИЕ КИСЛОРОДСОДЕРЖАЩИХ КОМПЛЕКСОВ СУРЬМЫ (Ar₂SbO)₄(O₂)₂

© 2019 г. В. В. Шарутин, О. К. Шарутина, А. В. Рыбакова*, П. В. Андреев

Южно-Уральский государственный университет, пр. Ленина 76, Челябинск, 454080 Россия *e-mail: rybakovaav@susu.ru

> Поступило в Редакцию 6 марта 2019 г. После доработки 6 марта 2019 г. Принято к печати 21 марта 2019 г.

Триарилсурьма $Ar_3Sb (Ar = 4-FC_6H_4, 3-MeC_6H_4)$ окисляется пероксидом водорода с образованием четырехъядерных комплексов [(4-FC_6H_4)_2SbO]_4(O_2)_2 и [(3-MeC_6H_4)_2SbO]_4(O_2)_2 (сольват с диметилсульфоксидом). Структура полученных соединений изучена методом рентгеноструктурного анализа.

Ключевые слова: трис(4-фторфенил)сурьма, трис(3-метилфенил)сурьма, тетра(µ₂-оксо)ди(µ₄-пероксо)тетра[диарилсурьма(V)]

DOI: 10.1134/S0044460X19080146

Практическая значимость органических производных сурьмы не столь велика по сравнению с комплексами переходных металлов. Однако установлено, что некоторые арилпроизводные сурьмы проявляют селективное действие против различных раковых клеток [1]. Наряду с противоопухолевым действием производные сурьмы обладают бактерицидными, фунгицидными, цитостатическими свойствами [2–4], проявляют фотокаталитическую активность [5].

Соединения сурьмы часто обладают необычным строением. К соединениям с разнообразным дизайном можно отнести оксиды Sb(V), в которых мостиковые атомы кислорода μ_2 - или μ_3 -координированы [6–13]. Среди оксидов Sb(V) можно выделить каркасные соединения (Ar₂SbO)₄(O₂)₂, включающие две лигандные молекулы кислорода, координированные со всеми четырьмя атомами сурьмы. Впервые такое соединение было получено последовательным окислением (1) дистибана Ar₂Sb–SbAr₂ (Ar = *o*-Tol) в присутствии воздуха с добавлением на последней стадии пероксида водорода [14].

$$(R_2Sb)_2 \rightarrow (R_2Sb)_2O \rightarrow (R_2Sb)_4O_6 \rightarrow (R_2SbO)_4(O_2)_2.$$
 (1)

Такой путь синтеза неудивителен, поскольку дистибаны очень реакционноспособны по от-

ношению к кислороду. Однако в нескольких работах сообщалось о том, что такие четырехъядерные кластеры были выделены как незапланированные продукты реакций, например, реакции оксида трифенилсурьмы с циклобутанкарбоновой кислотой в хлороформе [15] при окислении триарилпроизводных сурьмы пероксидом водорода в присутствии 4-хлорфенола, 4-иодфенола, 4-нитрозофенола, ацетофеноноксима [16, 17].

В подавляющем большинстве случаев триарилсурьма в реакциях с органическими НХкислотами в присутствии пероксида количественно превращается в соединения Ar₃SbX₂ (мольное соотношение 1:2:1) или (Ar₃SbX)₂O (мольное соотношение 1:1:1) [18]. Подобное взаимодействие с аренсульфоновыми кислотами в зависимости от соотношения исходных реагентов может приводить к образованию моно-, би- и трехъядерных комплексов сурьмы [19]. В окислительных реакциях триарилсурьмы с этиленгликолем или пирокатехином в присутствии *п*-донорных молекул получают производные шестикоординированной сурьмы [20, 21]. В качестве продукта реакции трифенилсурьмы, трет-бутилгидропероксида и ацетилацетона получен гидроксиацетилацетонат трифенилсурьмы [22].

В продолжение исследования окислительного метода синтеза производных Sb(V) нами изучены реакции трис(4-фторфенил)- и трис(3-метилфенил)сурьмы с ацетилацетоном и пероксидом водорода (2). Реакции проводили в диэтиловом эфире при мольном соотношении реагентов 1:1:1. Были выделены высокоплавкие вещества, хорошо растворимые в ароматических и хуже – в алифатических растворителях. Однако вместо ожидаемых комплексов с ацетилацетонатным лигандом, по результатам рентгеноструктурных исследований, продуктами реакций были четырехъядерные кластеры $[(4-FC_6H_4)_2SbO]_4(O_2)_2$ (1), [(3-MeC₆H₄)₂SbO]₄(O₂)₂ (2). Выход соединений 1 и 2 составил 79 и 84% в пересчете на исходное количество триарилсурьмы. Соединение 2 после перекристаллизации из спирта с добавлением диметилсульфоксида было выделено в форме сольвата с диметилсульфоксидом.

По данным PCA, в кристалле соединения 1 присутствуют два типа кристаллографически независимых молекул 1а и 1б, в кристалле соединения 2 – молекулы центросимметричны. Атомы сурьмы в кристаллах соединений 1 и 2 имеют искаженную октаэдрическую координацию с окружением $[C_2O_4]$ и связаны четырьмя мостиковыми атомами кислорода и двумя перексогруппами, координированными всеми четырьмя атомами сурьмы (см. рисунок).

Основные кристаллографические данные и результаты уточнения структур комплексов 1 и 2 приведены в табл. 1, основные длины связей и валентные углы – в табл. 2.

Атомы углерода арильных групп, атомы кислорода пероксогрупп (O_n) и мостиковые атомы кислорода (O_м) находятся в *транс*-вершинах октаздра. Четыре атома сурьмы образуют практически

плоский квадрат (углы SbSbSb близки к 90°), по обе стороны плоскости расположены мостиковые атомы кислорода, входящие в состав восьмичленного цикла [Sb₄O₄] и пероксогруппы. Расстояния Sb...Sb [3.217(3)-3.242(3), 3.218(2)-3.244(3) (1a, б) и 3.256(5), 3.267(6) Å (2)] значительно меньше удвоенного ван-дер-ваальсова радиуса атомов (4.40 Å) [23], что объясняется жесткой структурой центрального фрагмента. Транс-углы при атомах сурьмы $CSbO_{\Pi}$ и $O_{M}SbO_{M}$ в комплексах 1a, б и 2 изменяются в интервалах 160.5(3)-164.2(3), 160.4(3)-164.2(3), 158.9(2)-165.3(2) и 153.4(3)- $154.6(3), 153.5(3)-154.6(2), 154.8(1)-155.2(1)^{\circ}$ coответственно. Углы SbO_мSb в металлоциклах изменяются в узком интервале значений [(110.9(3)-111.5(3)° (1), 111.4(2)–111.9(2)° (2)] и близки к тетраэдрическому углу. Расстояния Sb-O_м в кристалле соединения 1 [1.943(5)-1.964(5) Å] немного короче, чем соединения 2 [1.964(3)–1.979(3) Å].

Углы при пероксидных атомах кислорода SbO_nSb немного превышают 93°, SbO_nO_n – 113°. Расстояния Sb–O_n в кристалле соединения **1** [2.217(5)–2.235(5) Å] также превышают аналогичные расстояния в кристалле соединения **2** [2.234(3)–2.249(3) Å] и больше, чем связь Sb–O_м. Длины связей О–О в пероксо-группах: 1.457(7)–1.471(7) Å (**1**), 1.457(4), 1.466(4) Å (**2**). Арильные кольца при каждом атоме сурьмы расположены

ШАРУТИН и др.

Парадата	Значение			
Параметр	1	2		
Брутто-формула	$C_{96}H_{64}F_{16}O_{16}Sb_8$	$C_{58}H_{60}O_9Sb_4S$		
M	2751.47	1420.18		
Сингония	Триклинная	Тетрагональная		
Т, К	293.15	293.15		
Пространственная группа	$P\overline{1}$	$I4_1/a$		
<i>a</i> , Å	16.130(11)	15.203(3)		
<i>b</i> , Å	16.195(12)	15.203		
<i>c</i> , Å	24.96(2)	50.088(12)		
α, град	89.21(4)	90.00		
β, град	71.21(4)	90.00		
ү, град	60.21(3)	90.00		
<i>V</i> , Å ³	5270(7)	11576(4)		
Ζ	2	8		
d _{выч} , г/см ³	1.734	1.542		
μ, мм ⁻¹	2.104	1.895		
<i>F</i> (000)	2640.0	5280		
Размер кристалла, мм	$0.23 \times 0.22 \times 0.14$	$0.43 \times 0.39 \times 0.14$		
Область сбора данных по θ, град	5.48–51	3.04-37.81		
Интервалы индексов отражений	$-19 \le h \le 19,$	$-22 \le h \le 26,$		
	$-19 \le k \le 19,$	$-26 \le k \le 23,$		
	$-50 \leq l \leq 50$	$-86 \le l \le 86$		
Измерено отражений	107480	185716		
Независимых отражений	19449 ($R_{\rm int} = 0.0601$)	15491 ($R_{\rm int} = 0.0568$)		
Переменных уточнения	1225	334		
GOOF	1.073	1.060		
<i>R</i> -Факторы по	$R_1 = 0.0431,$	$R_1 = 0.0665$		
$F^2 > 2\sigma(F^2)$	$wR_2 = 0.1115$	$wR_2 = 0.1459$		
R-Факторы по всем отражениям	$R_1 = 0.0777,$	$R_1 = 0.1459$		
	$wR_2 = 0.1349$	$wR_2 = 0.1878$		
Остаточная электронная плотность (max/min), $e/Å^3$	1.34/-0.69	2.75/-2.01		

Таблица 1. Кристаллографические данные, параметры эксперимента и результаты уточнения структуры соединений 1 и **2**

по разные стороны плоскости $[Sb_4]$. Длины связей Sb–C варьируют в пределах 2.092(8)–2.121(8) Å (1), 2.119(5)–2.125(5) Å (2) и не зависят от природы арильного заместителя.

Таким образом, при взаимодействии трис(4фторфенил)сурьмы или трис-(3-метилфенил)сурьмы с пероксидом водорода в присутствии ацетилацетона наблюдается не только их окисление, но и

1256

Связь	d, Å	Связь	<i>d</i> , Å	Угол	ω, град	Угол	ω, град		
1									
Sb7–Sb8	3.218(3)	Sb ⁶ –Sb ⁵	3.225(3)	O ⁹ Sb ⁷ O ¹²	74.31(17)	O ¹⁴ Sb ⁵ O ¹⁵	154.6(2)		
Sb7–Sb6	3.244(3)	Sb6-O16	1.963(5)	O ¹³ Sb ⁷ O ¹⁶	153.5(2)	O ¹⁵ Sb ⁵ O ¹¹	74.5(2)		
Sb7-O ¹⁶	1.962(5)	Sb ⁶ –O ⁹	2.218(5)	C ¹²¹ Sb ⁷ O ¹²	163.8(2)	C ⁸¹ Sb ⁵ O ¹⁰	164.2(3)		
Sb ⁷ –O ⁹	2.230(5)	Sb6-O11	2.221(5)	C ¹²¹ Sb ⁷ C ¹³¹	108.5(3)	C ⁸¹ Sb ⁵ C ⁹¹	106.8(3)		
Sb7-O12	2.231(5)	Sb6O15	1.961(5)	C ¹³¹ Sb ⁷ O ⁹	160.4(2)	C ⁹¹ Sb ⁵ O ¹¹	161.5(2)		
Sb7-O13	1.951(5)	Sb6-C101	2.105(8)	O ⁴ Sb ² O ¹	74.47(18)	$O^8Sb^4O^3$	74.6(2)		
Sb7-C121	2.106(7)	Sb6-C111	2.109(8)	O ⁶ Sb ² O ⁵	153.4(2)	O ⁸ Sb ⁴ O ⁷	154.6(2)		
Sb7-C131	2.113(7)	Sb ¹ –Sb ⁴	3.225(3)	C ²¹ Sb ² O ⁴	164.0(2)	$C^{71}Sb^4O^3$	161.4(2)		
Sb ² –Sb ³	3.217(3)	Sb1–O1	2.217(5)	C ²¹ Sb ² C ³¹	108.5(3)	C ⁷¹ Sb ⁴ C ⁶¹	107.0(3)		
Sb2–Sb1	3.242(3)	Sb1–O5	1.964(5)	C ³¹ Sb ² O ¹	160.5(2)	C ⁶¹ Sb ⁴ O ²	164.2(3)		
Sb^2-O^1	2.234(5)	Sb ¹ –O ³	2.225(5)	O ⁶ Sb ³ O ⁷	153.8(2)	Sb ⁸ O ¹⁰ Sb ⁵	93.38(18)		
Sb ² –O ⁴	2.226(5)	Sb ¹ –O ⁸	1.959(5)	O ⁷ Sb ³ O ²	75.1(2)	O ⁹ O ¹⁰ Sb ⁸	112.6(3)		
Sb ² –O ⁵	1.959(5)	Sb1-C1	2.113(8)	C ⁴¹ Sb ³ O ⁴	162.1(2)	O ⁹ O ¹⁰ Sb ⁵	113.5(3)		
Sb ² –O ⁶	1.944(5)	Sb ¹ –C ¹¹	2.111(8)	C ⁵¹ Sb ³ O ²	161.9(2)	Sb ¹ O ¹ Sb ²	93.50(17)		
Sb ² –C ²¹	2.105(7)	Sb ⁵ –O ¹⁰	2.220(5)	C ⁵¹ Sb ³ C ⁴¹	109.4(3)	$O^2O^1Sb^2$	113.7(3)		
Sb2-C31	2.115(8)	Sb5O14	1.949(6)	O ¹⁴ Sb ⁸ O ¹⁰	75.0(2)	O ² O ¹ Sb ¹	113.4(3)		
Sb ³ –Sb ⁴	3.226(3)	Sb5-O11	2.215(5)	O13Sb8O14	153.9(2)	Sb ⁷ O ¹⁶ Sb ⁶	111.5(2)		
Sb ³ –O ⁴	2.217(5)	Sb5O15	1.949(5)	C ¹⁵¹ Sb ⁸ O ¹²	162.4(2)	Sb6O9Sb7	93.64(17)		
Sb ³ –O ²	2.217(5)	Sb ⁵ –C ⁸¹	2.118(8)	C141Sb8O10	161.8(2)	O ¹⁰ O ⁹ Sb ⁷	114.0(3)		
Sb^3-O^6	1.957(5)	Sb ⁵ –C ⁹ 1	2.121(8)	C141Sb8C151	109.0(3)	O ¹⁰ O ⁹ Sb ⁶	113.4(3)		
Sb ³ –O ⁷	1.964(5)	Sb4–O ²	2.224(5)	O ¹⁵ Sb ⁶ O ¹⁶	154.3(2)	Sb ⁸ O ¹² Sb ⁷	92.51(18)		
Sb ³ –C ⁴¹	2.109(7)	Sb ⁴ –O ³	2.212(5)	O ¹⁵ Sb ⁶ O ¹¹	74.2(2)	O ¹¹ O ¹² Sb ⁷	113.4(3)		
Sb ³ –C ⁵¹	2.092(8)	Sb ⁴ –O ⁷	1.949(5)	C ¹⁰¹ Sb ⁶ O ¹¹	161.6(2)	O ¹¹ O ¹² Sb ⁸	113.5(3)		
Sb ⁸ –Sb ⁵	3.227(3)	Sb4–O8	1.949(6)	C ¹⁰¹ Sb ⁶ C ¹¹¹	105.3(3)	Sb ³ O ⁴ Sb ²	92.78(18)		
Sb ⁸ –O ¹⁰	2.216(5)	Sb4-C71	2.115(7)	C111Sb6O9	163.1(3)	O ³ O ⁴ Sb ²	113.6(3)		
Sb ⁸ –O ¹²	2.223(5)	Sb4–C ⁶¹	2.117(8)	$O^8Sb^1O^5$	154.3(2)	O ³ O ⁴ Sb ³	113.3(3)		
Sb ⁸ –O ¹⁴	1.965(5)	O ¹⁰ –O ⁹	1.459(6)	$O^8Sb^1O^3$	74.1(2)	Sb ⁵ O ¹⁴ Sb ⁸	111.1(2)		
Sb ⁸ –O ¹³	1.955(5)	O^1-O^2	1.460(6)	$C^1Sb^1O^3$	161.7(2)	Sb ⁷ O ¹³ Sb ⁸	110.9(2)		
Sb8-C151	2.109(7)	O ¹² -O ¹¹	1.468(7)	C ¹¹ Sb ¹ O ¹	163.4(3)	Sb ² O ⁵ Sb ¹	111.5(2)		
Sb8-C141	2.094(8)	O ⁴ -O ³	1.471(7)	$C^{11}Sb^1C^1$	105.0(3)	Sb ⁵ O ¹¹ Sb ⁶	93.27(18)		
2									
Sb ² –Sb ¹	3.2668(7)	Sb ¹ –O ⁴	1.969(3)	O ^{4a} Sb ² O ²	155.24(14)	$C^{11}Sb^1O^1$	158.90(16)		
Sb ² –Sb ^{1a}	3.2560(4)	Sb1–O2	1.964(3)	O ^{4a} Sb ² O ^{3a}	74.24(12)	Sb ² O ¹ Sb ¹	93.45(11)		
Sb2–O1	2.238(3)	Sb1–O3	2.233(3)	$O^2Sb^2C^{21}$	100.03(19)	O ^{1a} O ¹ Sb ²	112.7(2)		
Sb ² –O ⁴ a	1.971(3)	Sb1–C1	2.125(5)	C ³¹ Sb ² O ¹	159.63(15)	O ^{1a} O ¹ Sb ¹	114.0(2)		
Sb ² –O ²	1.979(3)	Sb1–C11	2.121(5)	$C^{21}Sb^2O^{3a}$	165.20(15)	Sb ¹ O ⁴ Sb ^{2a}	111.46(16)		
Sb ² –O ^{3a}	2.234(3)	O ¹ –O ¹ a	1.475(6)	O ² Sb ¹ O ¹	73.34(12)	Sb ¹ O ² Sb ²	111.86(15)		
Sb ² –C ³¹	2.121(4)	O ⁴ –Sb ^{2a}	1.971(3)	$O^2Sb^1O^4$	154.74(14)	Sb ¹ O ³ Sb ^{2a}	93.57(11)		
Sb ² –C ²¹	2.119(5)	O ³ –Sb ^{2a}	2.234(3)	$O^2Sb^1C^1$	100.42(18)	O ^{3a} O ³ Sb ^{2a}	113.6(2)		
Sb1-Sb2a	3.2560(5)	O ³ –O ³ a	1.467(6)	C ¹ Sb ¹ O ³	165.31(17)	O ^{3a} O ³ Sb ¹	114.0(2)		
Sb1-O1	2.249(3)								

Таблица 2. Основные длины связей и валентные углы в молекулах соединений 1 и 2

Преобразования симметрии: а 2-х, 3/2-у, +z

деарилирование с образованием четырехъядерных пероксидных комплексов сурьмы(V). Продуктов реакции сурьмы с ацетилацетонатными лигандами не обнаружено.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры записывали на ИК Фурьеспектрометре Shimadzu IRAffinity-1S в таблетках КВг (область поглощения 4000–400 см-¹).

Тетра(μ_2 -оксо)ди(μ_4 -пероксо)окта(4фторфенил)тетрасурьма (1). К раствору 200 мг (0.49 ммоль) трис(4-фторфенил)сурьмы в 20 мл диэтилового эфира прибавляли 45 мг (0.49 ммоль) ацетилацетона и медленно при перемешивании 55 мг (0.49 ммоль) 30%-ного водного раствора пероксида водорода. После испарения растворителя получили белый порошок, который перекристаллизовывали из смеси толуол–октан, 3:1. Выход 133 мг (79%) прозрачных кристаллов, т. пл. 199°С. ИК спектр, см⁻¹: 3170, 3093, 3064, 3034, 2956, 2926, 2856, 1583, 1490, 1458, 1392, 1300, 1274, 1230, 1161, 1089, 1070, 1016, 821, 665, 578, 561, 545, 507, 416. Найдено, %: С 41.77; Н 2.58. С₄₈H₃₂F₈O₈Sb₄. Вычислено, %: С 41.91; Н 2.34.

Тетра(µ₂-оксо)(µ₄-пероксо)окта(3-метилфенил)тетрасурьма (2) получена аналогично. Продукт реакции выделяли после перекристаллизации из этилового спирта с добавлением небольшого количества диметилсульфоксида в форме сольвата [(4-CH₃C₆H₄)₂SbO]₄(O₂)₂·DMSO. Выход 84%, т. пл. 235°С. ИК спектр, см⁻¹: 3048, 2947, 1587, 1531, 1472, 1440, 1398, 1308, 1167, 1099, 1036, 991, 777, 691, 671, 658, 561, 546, 500, 422. Найдено, %: С 48.87; H 4.24. C₅₈H₆₀O₉SSb₄. Вычислено, %: С 49.01; H 4.22.

Рентгеноструктурный анализ соединений **1** и **2** проведен на дифрактометре D8 Quest фирмы Bruker (Мо K_{α} -излучение, $\lambda = 0.71073$ Å, графитовый монохроматор) при 296(2) К. Сбор, редактирование данных и уточнение параметров элементарной ячейки, а также учет поглощения проведены по программам SMART и SAINT-Plus [24]. Все расчеты по определению и уточнению структур выполнены по программам SHELXL/PC [25] и OLEX2 [26]. Структуры определены прямым методом и уточнены методом наименьших квадратов в анизотропном приближении для неводородных атомов. Полные таблицы координат атомов, длин связей и валентных углов депонированы в Кембриджском банке структурных данных [CCDC 1576949 (1), 1869689 (2)].

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Hadjikakou S.K., Ozturk I.I., Banti C.N., Kourkoumelis N., Hadjiliadis N. // J. Inorg. Biochem. 2015. Vol. 153. P. 293. doi 10.1016/j.jinorgbio.2015.06.006
- Tiekink E.R.T. // Crit. Rev. Oncol. Hematol. 2002. Vol. 42. N 3. P. 217. doi 10.1016/S1040-8428(01)00217-7
- Ozturk I.I., Banti C.N., Manos M.J., Tasiopoulos A.J., Kourkoumelis N., Charalabopoulos K., Hadjikakou S.K. // J. Inorg. Biochem. 2012. Vol. 109. P. 57. doi 10.1016/j. jinorgbio.2012.01. 014
- Ali M.I., Rauf M.K., Badshah A., Kumar I., Forsyth C.M., Junk P.C., Kedzierski L., Andrews P.C. // Dalton Trans. 2013. Vol. 42. N 1. P. 16733. doi 10.1039/C3DT51382C
- Zhang X.Y., Cui L.S., Zhang X., Jin F., Fan Y.-H. // J. Mol. Struct. 2017. Vol. 1134. P. 742. doi 10.1016/j.molstruc.2017.01.039
- Ferguson G., Glidewell C., Kaitner B., Lloyd D., Metcalfe S. // Acta Crystallogr. (C). 1987. Vol. 43. N 5. P. 824. doi 10.1107/S0108270187093922
- Matano Y, Nomura H., Hisanaga T., Nakano H., Shiro M., Imahori H. // Organometallics. 2004. Vol. 23. N 23. P. 5471. doi 10.1021/om0494115
- Шарутин В.В., Молокова О.В., Шарутина О.К., Смирнова С.А. // ЖНХ. 2012. Т. 57. № 9. С. 1334; Sharutin V.V., Molokova O.V., Sharutina O.K., Smirnova S.A. // Russ. J. Inorg. Chem. 2012. Vol. 57. N 9. P. 1252. doi 10.1134/S0036023612090185
- Beckmann J., Finke P., Hesse M., Wettig B. // Angew. Chem. Int. Ed. 2008. Vol. 47. N 51. P. 9982. doi 10.1002/anie.200803997.
- Bordner J., Doak G. O., Everett T. S. // J. Am. Chem. Soc. 1986. Vol. 10. N 14. P. 4206. doi 10.1021/ ja00274a059.
- Jami A.K., Baskar V. // Dalton Trans. 2012. Vol. 41. P. 12524. doi 10.1039/c2dt30587a
- Brünig J., Hupf E., Lork E., Mebs S., Beckmann J. // Dalton Trans. 2015. Vol. 44. P. 7105 doi 10.1039/ c5dt00588d

- Breunig H.J., Kruger T., Lork E. // J. Organomet. Chem. 2002. Vol. 648. N. 2. P. 209. doi 10.1016/S0022-328X(01)01466-8
- Breunig H.J., Kruger T., Lork E. // Angew. Chem. Int. Ed. 1997. Vol. 36. P. 615. doi 10.1002/anie.199706151
- Betz R., Lindner C., Klufers P., Mayer P. // Acta Crystallogr. (E). 2009. Vol. 65. P. m253. doi 10.1107/ S160053680804419X
- Шарутин В.В., Пакусина А.П., Смирнова С.А., Шарутина О.К., Платонова Т.П., Пушилин М.А., Герасименко А.В. // Коорд. хим. 2004. Т. 30. № 5. С. 336; Sharutin V.V., Pakusina A.P., Sharutina O.K., Platonova T.P., Smirnova S.A., Pushilin M.A., Gerasimenko A.V. // Russ. J. Coord. Chem. Vol. 30. N 5. P. 336. doi 10.1023/B:RUCO.0000025999.14773.59
- Шарутин В.В., Шарутина О.К., Чагарова О.В., Молокова О.В. // ЖОХ. 2011. Т. 81. Вып. 11. С. 1793; Sharutin V.V., Sharutina O.K., Chagarova O.V., Molokova O.V. // Russ. J. Gen. Chem. 2011. Vol. 81. N 11. C. 2246. doi 10.1134/S1070363211110065
- Шарутин В.В., Сенчурин В.С. Именные реакции в химии элементоорганических соединений. Челябинск: Издательский центр ЮУрГУ, 2011. С. 148.
- Шарутин В.В., Шарутина О.К., Сенчурин В.С., Карцева М.К., Андреев П.В. // ЖНХ. 2018. Т. 63. № 7. С. 823. doi 10.1134/S0044457X18070188; Sharutin V.V., Sharutina O.K., Senchurin V.S., Kartseva M.K., Andreev P.V. // Russ. Inorg. Chem. 2018. Vol. 63. N. 7. P. 867. doi 10.1134/S0036023618070185

- Фукин Г.К., Захаров Л.Н., Домрачев Г.А., Федоров А.Ю., Забурдяева С.Н., Додонов В.А. // Изв. АН. Сер. хим. 1999. № 9. С. 1744; Fukin G.K., Zakharov L.N., Domrachev G.A., Fedorov A.Yu., Zaburdyaeva S.N., Dodonov V.A. // Russ. Chem. Bull. 1999. Vol. 48. N 9. P. 1722.
- Шарутин В.В., Шарутина О.К., Шалабанова Н.А. // Коорд. хим. 2018. Т. 44. № 6. С. 402. doi 10.1134/ S0132344X18060130; Sharutin V.V., Sharutina O.K., Shalabanova N.A. // Russ. J. Coord. Chem. 2018. Vol. 44. N 12. P. 765. doi 10.1134/S1070328418120138
- Гущин А.В., Додонов В.А., Усятинский Р.И., Корешкова Е.Р., Типанов Б.Б. // Изв. АН. Сер. хим. 1994. № 7. С. 1302.
- 23. Бацанов С.С. // ЖНХ. 1991. Т. 36. № 12. С. 3015.
- Bruker (1998). SMART and SAINT-Plus. Versions 5.0. Data Collection and Processing Software for the SMART System. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (1998). SHELXTL/PC. Versions 5.10. An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data. Bruker AXS Inc., Madison, Wisconsin, USA. *lomanov O.V., Bourhis L.J., Gildea R.J., Howard J.A.K., Puschmann H. //* J. Appl. Cryst. 2009. Vol. 42. P. 339. doi 10.1107/S0021889808042726

Synthesis and Structure of Oxygen-Containing Antimony Complex (Ar₂SbO)₄(O₂)₂

V. V. Sharutin, O. K. Sharutina, A. V. Rybakova*, and P. V. Andreev

South Ural State University, pr. Lenina 76, Chelyabinsk, 454080 Russia *e-mail: rybakovaav@susu.ru

Received March 6, 2019; revised March 6, 2019; accepted March 21, 2019

Triaryl antimony Ar₃Sb (Ar = 4-FC₆H₄, 3-MeC₆H₄) is oxidized by hydrogen peroxide to form four-nuclear complexes [(4-FC₆H₄)₂SbO]₄(O₂)₂ and [(3-MeC₆H₄)₂SbO]₄(O₂)₂ (as DMSO solvate). Structure of the compounds obtained was studied by single crystal X-ray diffraction analysis.

Keywords: tris(4-fluorophenyl)antimony, tris(3-methylphenyl)antimony, tetra(μ_2 -oxo)di(μ_4 -peroxo)tetra[di-arylantimony(V)]