УДК 546(561.682.722.221)

ИЗУЧЕНИЕ ВЗАИМОДЕЙСТВИЙ В СИСТЕМЕ CuInS₂-FeS

© 2019 г. И. Б. Бахтиярлы*, Ш. С. Абдуллаева, Р. Дж. Курбанова, Ф. М. Мамедова, Ш. Б. Гусейнова

Институт катализа и неорганической химии имени академика М. Нагиева Национальной академии наук Азербайджана, пр. Г. Джавида 113, Баку, Az1143 Азербайджан *e-mail: ibbakhtiyarli@mail.ru

> Поступило в Редакцию 20 декабря 2018 г. После доработки 27 июня 2019 г. Принято к печати 29 июня 2019 г.

Методами дифференциально-термического, рентгенофазового и микроструктурного анализа, а также измерением микротвердости и плотности изучена тройная система Cu_2S – In_2S_3 –FeS по разрезу $CuInS_2$ –FeS. Установлено, что данный разрез эвтектического типа и является квазибинарным сечением тройной системы.

Ключевые слова: тройные системы, эвтектика, квазибинарные системы

DOI: 10.1134/S0044460X19080183

Изучение химических взаимодействий в сложной тройной системе $Cu_2S-In_2S_3$ -FeS представляет большой интерес с точки зрения возможности получения новых фаз с практически полезными оптическими свойствами [1]. Двойные системы, составляющие данную тройную систему, были исследованы ранее в работах [2–6]. Имеются также краткие сведения по одному внутреннему квазибинарному сечению CuInS₂-FeS [6], которое участвует в триангуляции тройной системы Cu₂S-In₂S₃-FeS и является объектом наших исследований. Основная цель данной работы – изучение химических взаимодействий в разрезе CuInS₂-FeS.

Физико-химические исследования исследуемой системы проводили с применением комплекса методов, включающего микроструктурный, рентгенофазовый (РФА), дифференциально-термический (ДТА) анализ, измерение микротвердости и определение плотности.Для изучения фазового равновесия в системе CuInS₂—FeS было синтезировано 15 образцов различного состава.

На термограммах образцов, с большим содержанием CuInS₂ (~40 мол% FeS) имеются по 3-4эффекта, которые соответствуют ликвидусу и фазовым превращениям твердых растворов на основе CuInS₂. CuInS₂ испытывает три полиморфных превращения в твердом состоянии.

Согласно данным микроструктурного анализа, образцы с содержанием 0–12 мол% FeS однофазные, остальные – двухфазные. Однофазность образцов в интервале 90–100 мол% FeS не была изучена вследствие трудности синтеза высокотемпературных образцов. В зависимости от состава для сплавов получены два ряда значений микротвердости, 2800 и 2600 МПа, относящихся к твердому раствору на основе CuInS₂ и FeS соответственно.

На дифрактограммах образцов, содержащих 30 и 70 моль% FeS, наблюдаются только линии исходных компонентов. Значения плотности образцов лежат в пределах их значений для исходных компонентов. Состав, результаты ДТА (термические эффекты), значения микротвердости и плотности образцов системы CuInS₂–FeS представлены в таблице.

Полученные результаты хорошо согласуются между собой и дополняют друг друга. Фазовая диаграмма разреза CuInS₂–FeS представлена на рисунке. Как видно из рисунка, разрез является квазибинарным сечением тройной системы Cu₂S–In₂S₃–FeS. Ликвидус разреза состоит из ветвей

БАХТИЯРЛЫ и др.

Состав, мол%			Микротвердость, МПа		
CuInS ₂	FeS	Термические эффекты, К	светлая фаза	темная фаза	Плотность, г/см ³
100	_	1365, 1320, 1250	2800	_	4.80
97	3	1350,1300, 1225	2700	_	4.80
95	5	1340,1305, 1230	2700	_	4.82
90	10	1345, 1315, 1260, 1220, 1180	2750	_	4.85
85	15	1320,1195, 1160	2750	_	4.80
80	20	1275, 1240, 1175, 1130	2800	_	4.85
75	25	1290, 1235, 1170, 1130, 1150	2800	_	4.85
70	30	1250, 1225 , 1125, 1150	2700	_	4.85
65	35	1200, 1135, 1155	_	_	4.80
60	40	1200, 1135	_	_	_
50	50	1140	_	_	_
40	60	1220, 1135	_	2500	4.85
30	70	1280, 1120	_	2500	4.88
20	80	1365, 1125	_	2600	4.90
10	90	1415, 1130	_	2600	4.90
0	100	1465	_	2600	4.84

Состав, термические эффекты, значения микротвердости и плотности образцов системы CuInS₂-FeS

первичной кристаллизации γ (CuInS₂), β (CuInS₂) и α (CuInS₂) твердых растворов на основе CuInS₂ и FeS.

По данным микроструктурного и рентгенофазового анализа установлено, что на основе $CuInS_2$ образуется твердый раствор, содержащий до 12 мол% FeS при комнатной температуре.

Из рисунка также следует, что фазовая диаграмма относится к эвтектическому типу. Состав эвтектики отвечает 50 мол% FeS и температуре 1130 К. Горизонталь при 1130 К соответствует равновесию жидкость $\leftrightarrow \alpha$ (CuInS₂) + FeS.

Данные РФА находятся в хорошем согласии с результатами дифференциально-термического и микроструктурного анализа. Изотерма при 1150 К соответствует фазовому переходу α CuInS₂ $\rightarrow\beta$ CuInS₂, а при 1225 К соответствует фазовому переходу β CuInS₂ $\rightarrow\gamma$ CuInS₂. Под действием FeS модификационный переход $\gamma \rightarrow \beta \rightarrow \alpha$ осуществляется эвтектоидно [6, 7].

Таким образом, в результате изучения физико-химических взаимодействий между $CuInS_2$ и FeS построена фазовая диаграмма разреза $CuInS_2$ –FeS тройной системы Cu_2S –In₂S₃–FeS. Установлено, что разрез является квазибинарным сечением тройной системы, и фазовая диаграмма его относится к эвтектическому типу.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Исследования микроструктуры осуществляли на металлографическом микроскопе МИМ-7. Микротвердость фаз в сплавах измеряли по известной методике [8] на приборе ПМТ-3. Нагрузка на алмазную пирамиду составляла 20 г. Дифференциально-термический анализ выполняли с помощью прибора Yupiter STA 449 F3 NETZSCH

Фазовая диаграмма разреза $CuInS_2\text{-}FeS.$

в системе синхронного термического анализа. Точность определения температуры тепловых эффектов составляла ±1°С. Скорость нагревания и охлаждения – 10 град/мин. Рентгенофазовый анализ образцов проводили на рентгенодифрактометре D2 Phaser Bruker. Плотность определяли при 300 К пикнометрическим методом (наполнитель – толуол).

Синтез образцов проводили из предварительно полученных лигатур CuInS₂ и FeS. Лигатуры были синтезированы из элементов марок: In – 000– 99.9995, S – 99.999, Cu – MO–99.995, Fe – восстановленное–99.99. Синтез исходных компонентов и образцов системы проводили в вакуумированных до 1.33 Па и запаянных кварцевых ампулах. CuInS₂ синтезировали при 1400 К. С целью достижения полноты процесса расплав выдерживали при этой температуре 4–5 ч, затем подвергали гомогенизирующему отжигу при 1050 К в течение ~150 ч. Полученный образец имел серый цвет с металлическим блеском [9–11].

FeS был синтезирован при температуре ~1500 К. Отжиг проводили при 1200 К в течение 130 ч. Получали образец темно-коричневато-серого цвета с металлическим блеском [7, 12]. После завершения синтеза образцов системы сплавы гомогенизировали при 1080 К. Навеска каждого образца составляла 2–3 г. Полученные слитки имели цилиндрическую форму высотой ~1 см и диаметром ~0.7 см.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Amara A., Rezaiki W., Ferdi A., Hendaoui A., Drice A., Gueriane M., Bernede G.C., Morsli M. // Solar Energy Mater. Solar Cells. 2007. Vol. 91. P. 1916. doi 10.1016/j. solmat.2007.07.007
- Binsma J.J.M., Giling L.J., Bloem J. // J. Cryst. Growth. 1980. Vol. 50. N 2. P. 429. doi 10.1016/0022-0248(80)90090-1
- Gonzalelez M., Patino F., Salinas E. // Rev. Soc. Quim. Mexico. 2001. Vol. 45. P. 13.
- Рустамова П.Г., Бабаева Б.К., Аллазов М.Р. // ЖНХ. 1979. Т. 24. № 8. С. 2208.
- Raghavan V.H. // J. Pages Equilibr. 1998. Vol. 9. N 3. P. 270.
- Tomashik V. // Phys. Chem. Book. 2006. Vol. 11 C1. Pt 1. P. 1. doi 10.1007/b96193
- Gonzales J., Alberto Torres J., Sancher Peris G. // J. Phys. Status Solidi. 1982. Vol. A69. N 1. P. 37.
- Глазов В.М., Вигодорович В.К. Микротвердость металлов и полупроводников. М.: Металлургия, 1969. 248 с.
- Hwang H.L., Cheng C.L., Liu L.M., Liu C., Sun C.Y. // Thin Films Thin Solid Films. 1980. Vol. 67. N 1. P. 83. doi 10.1016/0040-6090(80)90291-6
- Fearheily M.L., Dietz N., Bunholz M., Höphner C. // J. Electr. Mater. 1991. Vol. 20. N 2. P. 175.
- Walden P., Pelton A.D. // J. Phase Equilbr. Diffus. 2005. Vol. 26. N 1. P. 23. doi 10.1361/15477030522455
- Asadov M.M., Mustafayeva S.N., Hasanova U.A., Mamedov F.M., Aliev O.M., Yanushkevich K.I., Nikitov S.A., Kulizade E.S. // Defect Diffusion Forum. 2018. Vol. 385. P. 175. doi 10.4028/wwwscientific.net/ DDF.385.175

БАХТИЯРЛЫ и др.

Study of Interactions in CuInS₂–FeS System

I. B. Bakhtiyarly*, Sh. S. Abdullayeva, R. J. Gurbanova, F. M. Mammadova, Sh. B. Guseynova

M. Nagiyev Institute of Catalysis and Inorganic Chemistry of the National Academy of Sciences of Azerbaijan, pr. G. Dzhavida 113, Baku, Az1143 Azerbaijan *e-mail: ibbakhtiyarli@mail.ru

Received December 20, 2018; revised June 27, 2019; accepted June 29, 2019

The ternary $Cu_2S-In_2S_3$ -FeS system was studied in the section $CuInS_2$ -FeS by differential thermal, X-ray diffraction and microstructural analysis methods, as well as microhardness and density were measurer. This eutectic type section was found to be a quasi-binary section of the ternary system.

Keywords: triple systems, eutectics, quasi-binary systems