УДК 547.1; 547.233

РЕАКЦИИ 2-ФОСФОНЭТИНИЛИРОВАННЫХ 2-(АРИЛАМИНО)МАЛОНАТОВ С ОСНОВАНИЯМИ

© 2019 г. А. В. Егорова^{*a*, *b*}, Н. Б. Викторов^{*a*}, Г. Л. Старова^{*c*}, А. В. Догадина^{*a*, *}

^a Санкт-Петербургский государственный технологический институт (технический университет), Московский пр. 26, Санкт-Петербург, 190013 Россия *e-mail: dog_alla@mail.ru ^b Научно-исследовательский центр экологической безопасности Российской академии наук, Санкт-Петербург, Россия ^c Санкт-Петербургский государственный университет, Санкт-Петербург, Россия

> Поступило в Редакцию 15 мая 2019 г. После доработки 15 мая 2019 г. Принято к печати 21 мая 2019 г.

Реакция диалкил-2-[(диалкоксифосфорил)этинил]-2-(ариламино)малонатов с основаниями (CH₃CO-OK, *tert*-BuOK) может служить методом получения оригинальных дифосфонилированных 2,3-дигидро-1*H*-пирролов и 4-фосфонилированных 1-азабута-1,3-диенов. Предложена вероятная схема образования полученных новых соединений.

Ключевые слова: хлорэтинфосфонаты, аминомалонаты, фосфонилирование

DOI: 10.1134/S0044460X19090063

В результате систематических исследований реакционной активности хлорэтинфосфонатов показано, что их реакции с моно- и полигетеронуклеофильными реагентами являются удобным подходом к синтезу разнообразных классов фосфорсодержащих соединений, таких как амидины, амиды [1–4], формазаны [5], тиазолотриазолы [6], тиазолотетразолы [7–9], оксазолины [9, 10], имидазотиазолы [11–14], тиазолотиадиазолы [15], имидазопиридины [16], пирролы [17].

Недавно нами было установлено, что диалкил-2-[(диалкоксифосфорил)этинил]-2-(ариламино)малонаты, полученные реакцией хлорэтинфосфонатов с 2-(ариламино)малонатами [18], при действии кислот Льюиса (BF₃·Et₂O) претерпевают циклизацию с образованием фосфонилированных индолов (схема 1) [19, 20].

Опираясь на предположение, что действие оснований на 2-[(2-ариламиномалонил]этинфосфонаты может привести к образованию соединений азириновой структуры, мы провели исследования реакции последних с основаниями. В качестве оснований в работе были использованы как низкоосновные (CH₃COOK, KSCN), так и высокоосновные [CH₃ONa, (CH₃)₃COK, DIPEA] нуклеофилы. В качестве растворителей были выбраны метиловый, этиловый, изопропиловый спирты и тетрагидрофуран. Эксперименты проводили при различных сочетаниях растворителей и оснований. Установлено, что для достижения полной

 R^1 = Me, R^2 = 4-Br (**a**); R^1 = Et, R^2 = 4-Me (**б**); 4-OMe (**B**); 4-Cl (**Γ**).

конверсии этинфосфонатов требуется избыток основания.

В качестве модельной была выбрана реакция с этиниламиномалонатом 1г. Наиболее результативными оказались реакции с трет-бутилатом калия в абсолютном спирте (MeOH, EtOH, *i*-PrOH) и тетрагидрофуране или с ацетатом калия в ацетонитриле или изопропиловом спирте. Эти эксперименты привели к более селективному протеканию реакции. Добавление 50 мол% трет-бутилата калия привело к частичной конверсии. В спектре ЯМР ³¹Р реакционной смеси, помимо сигнала исходного хлорэтинфосфоната, наблюдались два слабоинтенсивных сигнала с бр 13 и 15 м. д., а также и сигналы равной интенсивности с бр 16 и 25 м. д. Увеличение количества трет-бутилата калия (до 100-150 мол%) привело к полной конверсии исходного этинилмалоната 1г. При этом в спектре ЯМР ³¹Р незначительно увеличивалась интенсивность сигналов с δ_P 16 и 25 м. д. (1:1). В качестве основного продукта реакции был выделен дигидропиррол 2г, в молекуле которого присутствуют две фосфонатных группы, и небольшое количество смесевых фракций изомеров азадиенов Зг. Аналогично были получены дигидропирролы 2а-в (схема 2). Дигидропироллы 2а, б, г были выделены в индивидуальном виде. Дигидропиролл 2в не удалось выделить в чистом виде, его спектральные данные аналогичны таковым для пироллов 2а, б, г.

Строение полученных фосфонилированных пирролов доказано с помощью спектроскопии ЯМР ¹H, ¹³C, ¹⁵N. Так, в спектре ЯМР ¹H дигидропиррола **2**г в сильном поле представлены четыре триплетных сигнала метильных групп этоксильного фрагмента у атомов фосфора при 0.99, 1.03, 1.10, 1.25 м. д. с константой ${}^{3}J_{\rm HH} = 7.2$ Гц и два триплета CH₃-групп карбоксильных фрагментов при 1.26 и 1.28 м. д. с константой ³*J*_{HH} = 7.2 Гц. Неэквивалетные протоны РСН₂-группы представлены дублет-дублетным сигналами при 2.95 ($^{2}J_{\rm HH}$ = 15.4, ²*J*_{HP} = 20.9 Гц) и 3.58 м д. (²*J*_{HH} = 15.4, ²*J*_{HP} = 22.6 Гц). Неэквивалентные протоны группы ОСН₂ у фосфорильных группировок резонируют мультиплетными сигналами (усложненная система АВ или ABM₃X): δ 3.69, 3.93, 4.06, 4.07 м. д. с константами взаимодействия ${}^{3}J_{\rm HH} = 7.2, {}^{2}J_{\rm HH} = 14.3$ и ${}^{3}J_{\rm HP} = 7.1$ Гц. В немного более слабом поле проявляются мультиплетные сигналы неэквивалентных протонов двух групп OCH2 карбоксильного фрагмента (4.06 и 4.09 м. д., ${}^{3}J_{\text{HH}} = 7.2, {}^{2}J_{\text{HH}} = 14.7$ Гц). Дублетным сигналом выходит =СНР-группа (5.59, $^{2}J_{\rm HP}$ = 8.0 Гц). В слабом поле (~6.60–7.20 м. д.) представлены характерными дублетными сигналами протоны пара-замещенного бензольного кольца. Аминная группа резонирует синглетным сигналом при 6.20 м. д. Интегральные интенсивности сигналов соответствуют приведенной структуре.

В спектре ЯМР ¹³С дигидропиррола **2г** в сильном поле наблюдаются сигналы метильных групп. Углерод группы РСН₂ регистрируется дублетным сигналом при 22.80 м. д. с ¹ J_{CP} = 141.9 Гц. Атомы ОСН₂-групп у фосфора представлены дублетными сигналами в области 61.43–62.50 м. д. с ² J_{CP} = 4.9–5.2 Гц соответственно. Синглетами резонируют углероды этоксикарбонильных групп (61.61, 62.58 м. д.). Углерод группы =СНР, связанной с дигидропиррольным кольцом, проявляется дублет-дублетным сигналом при 105.72 м. д. с ¹ J_{CP} = 196.1 и ⁴ J_{CP} = 2.4 Гц. Атом С² пирролинового

Общий вид молекулы дифосфонилированного 2,3-дигидро-1*H*-пиррола **2**г в кристалле (ССDС 1574363).

кольца регистрируется дублетным сигналом при 84.52 м. д. с ${}^{3}J_{CP}$ = 6.6 Гц. Углерод С⁴ кольца представлен дублет-дублетным сигналом при 160.01 м. д. с ${}^{2}J_{CP}$ = 4.3, ${}^{3}J_{CP}$ = 5.6 Гц. Дублетный сигнал при 144.27 м. д. с ${}^{3}J_{CP} = 8.8$ Гц соответствует атому C^5 . Атому C^3 дигидропиррольного кольца соответствует дублет-дублетный сигнал при 114.80 м. д. (²*J*_{CP} = 13.9, ³*J*_{CP} = 22.5 Гц). В спектре также присутствуют характерные интенсивные синглетные сигналы углеродных атомов двух фенильных колец в интервале ~116-128 м. д. и сигналы слабой интенсивности ипсо-углеродов в области ~123-141 м. д. В самом слабом поле регистрируются сигналы карбонильных углеродов. Карбонильный углерод у атома С⁵ цикла представлен дублет-дублетным сигналом при 161.57 м. д. (${}^{4}J_{CP} = 2.2, {}^{5}J_{CP} =$ 2.7 Гц). В более слабом поле дублетным сигналом резонирует углерод другой карбонильной группы (165.94 м. д., ⁵*J*_{CP} = 3.6 Гц).

В спектрах ЯМР ³¹Р соединений **2а**–г присутствуют дублетные сигналы в областях 16–18 и 24–27 м. д. с константой ⁵ $J_{\rm PP}$ = 2.1–2.4 Гц. В спектрах ЯМР ¹⁵N пирролинов **2а**–г регистрируются синглетные сигналы в области ~80 и ~114 м. д. Для более четкого отнесения сигналов проведены двумерные гетерокорреляционные эксперименты ¹H–¹³C HSQC и HMBC. Их данные однозначно подтверждают правильность интерпретации спектров. Для более убедительного доказательства правильности отнесения сигналов в спектрах ЯМР ¹Н соединений **2а**–г и азадиенов **3а**–г были сняты спектры двойного резонанса ${}^{1}H{}^{31}P{}$.

Молекулярная структура соединений **2а**–г была подтверждена данными РСА на примере дигидропиррола **2**г (см. рисунок).

Использование в реакции с фосфонилированными этинмалонатами **1а**-г менее сильного основания, чем *трет*-бутилат калия, ацетата калия в абсолютном изопропиловом спирте привело к преимущественному образованию 4-фосфонилированных 1-азабута-1,3-диенов E,Z-**3а**-г. Дигидропирролы **2а**-г образуются в следовых количествах. Азадиены **3а**-г оказались неустойчивыми как при хранении, так и в условиях хроматографирования на SiO₂, однако нам удалось выделить азадиен **3г** и разделить E,Z- геометрические изомеры.

Ход реакции контролировали методом ЯМР. В спектрах ЯМР ¹Н реакционной массы в области 5-5.5 м. д. наблюдались характерные сигналы протона у второго углеродного атома фрагмента РСН=СН с константами ${}^{3}J_{\text{HH}} = 14.1$ и ${}^{3}J_{\text{HP}} = 48.8$ Гц. Значения констант ${}^{3}J_{\text{HH}}$ и ${}^{3}J_{\text{HP}}$ соответствуют иис-расположению протонов. В спектрах ЯМР 31Р наблюдается интенсивный сигнал в области ~13 м. д. Повышение температуры до 60°С привело к почти полному исчезновению сигнала при ~13 м. д. и появлению сигнала в области ~15 м. д. В спектрах ЯМР ¹Н при этом появились сигналы фрагмента РСН=С<u>Н</u> с константами ${}^{3}J_{\rm HH} = 17.7$, ${}^{3}J_{\rm HP} = 21.6$ Гц, что соответствует *транс*-расположению протонов. На основании этих результатов мы предположили, что при нагревании имел место процесс изомеризации. Изомеризация наблюдается и при хранении при комнатной температуре, а также в условиях хроматографии. В спектрах ЯМР ³¹Р азадиенов **3а**-г наблюдается сигнал при ~13 м. д. (Z-изомер), с течением времени появляется сигнал в области ~15-16 м. д., соответствующий Е-изомеру. В дальнейшем проходит полная изомеризация Z-изомера в E-изомер.

Следует отметить, что, помимо упомянутых выше основных интенсивных сигналов фосфора, в спектрах ЯМР ³¹Р реакционной массы присутствовало большое количество сигналов малой интенсивности при ~12–16 и ~16–30 м. д.

Таким образом, проведение реакции в изопропиловом спирте с использованием CH₃COOK в ка-

честве основания приводит к образованию 4-фосфонилированных 1-азабута-1,3-диенов *E,Z-***3а**–г как основных продуктов. Пирролины **2а–г** образуются в следовых количествах.

В индивидуальном виде удалось выделить азадиены Z-3г и E-3г. Выделенные соединения 3а–г представляют собой вязкие жидкости желтого цвета. Строение полученных азадиенов установлено на основании данных спектроскопии ЯМР ¹H, ¹³C, ³¹P. Стоит отметить, что относительно близкие по строению, не имеющие в заместителях фосфорную группу и полученные иным путем, азадиены и пирролы описаны в литературе [21– 24], и данные нашей работы согласуются с ними. Как и в нашем случае, авторы работы [21] встретились с большими трудностями при выделении продуктов реакции и отмечают особую неустойчивость некоторых из них при хроматографировании на силикагеле.

На наш взгляд, можно предположить два вероятных пути протекания исследуемой реакции диалкил-2-[(диалкоксифосфорил)этинил]-2-(ариламино)малонатов с основаниями (схема 3). Поскольку в структуре дифосфорилированных 2,3-дигидро-1Н-пирролов 2 имеются лишь два карбоксилатных фрагмента, а в состав полученных фосфонилированных азадиенов 3 входит только одна карбоксильная группа, мы предположили, что под действием оснований реакция может начинаться с первичного монодекарбоксилирования этинилфосфонатов 1 с образованием интермедиата А (путь а) или циклизации с образованием азиридина **В** (путь δ). Оба пути могут привести к одному соединению алленовой структуры Б. По пути а аллен Б образуется через 1,3-миграцию протона в фосфонате А. В случае реализации пути б образование аллена протекает через декарбоксилирование азиридина **B** до интермедиата Γ , последующий 1,3-перенос протона приводит к образованию неустойчивого азирина Д – структурного изомера алленфосфоната Б. Находящиеся в динамическом равновесии структуры Б и Д димеризуются через раскрытие азиринового цикла с атакой по дигональному алленовому атому, образуя димер пиррольной структуры 2. Параллельно аллен Б может переходить в *Z*,*E*- аза-1,3-диен **3**.

Таким образом, реакция диэтил-2-[(диалкоксифосфорил)этинил]-2-(ариламино)малонатов с основаниями (CH₃COOK, *t*-BuOK) может служить удобным подходом к синтезу оригинальных дифосфонилированных 2,3-дигидро-1*H*-пирролов и 4-фосфонилированных 1-азабута-1,3-диенов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР зарегистрированы на спектрометрах Bruker Ascend 400 [400.13 (¹H), 100.61 (¹³C), 161.98 (³¹P) и 40.54 МГц (¹⁵N)] в CDCl₃. Химические сдвиги фосфора приведены относительно внешнего стандарта – 85%-ной фосфорной кислоты. Химические сдвиги азота ¹⁵N приведены относительно внешнего стандарта – аммиака. ИК спектры записаны на спектрометре Shimadzu FTIR-8400S в таблетках КВг. Масс-спектры высокого разрешения записаны на масс-спектрометре Bruker MicrOTOF при ионизации вещества распылением в электрическом поле (ESI); температура ионизационной камеры – 180°С, напряжение ионизации – 70 и 100 эВ). Температуры плавления измерены на столике Кофлера (VEB Wägetechnik Rapido, PHMK 81/2969).

Рентгеноструктурный анализ выполнен на дифрактометрах Bruker APEX II CCD и SuperNova. Кристаллы дигидропиррола **2**г моноклинные, $C_{32}H_{42}N_2O_{10}P_2Cl_2$, размер кристалла $0.30 \times 0.16 \times 0.08$ мм³; параметры элементарной ячейки: a = 11.9928(2) Å, b = 13.9791(3) Å, c = 21.1491(4) Å, $\beta = 97.9184(19)$ °, V = 3511.79(12) Å³, пространственная группа $P2_1/n$, Z = 4, $d_{\rm выч} = 1.414$ мг/м³. Значения *R*-фактора 0.0273, $R_w = 0.0368$ [8042 отражений с $I > 2\sigma(I)$].

Общая методика синтеза дифосфонилированных 2,3-дигидро-1*Н*-пирролов 2а-г. К раствору аминомалоната в абсолютном ТГФ (или в метиловом спирте) при интенсивном перемешивании при комнатной температуре добавляли 1.01.5 экв. *трет*-бутилата калия. Ход реакции контролировали методом ЯМР ³¹Р. Полная конверсия достигалась через 1.5 ч. После удаления растворителя, вязкий остаток очищали колоночной хроматографией (элюент – петролейный эфир–этилацетат, 1:1).

Z-2,5-Диэтил-1-(4-бромфенил)-2-[(4-бромфенил)амино]-4-[(диметоксифосфорил)метил]-3-[(диметоксифосфорил)метилиден]-2,3-дигидро-1Н-пиррол-2,5-дикарбоксилат (2а). Выход 25% (70% по данным ЯМР ³¹Р), желтые кристаллы, т. пл. 160-162°С (гексан-Еt₂O, 1:1). ИК спектр, v, см⁻¹: 760, 842, 887, 960, 1029, 1041, 1061, 1257, 1343, 1498, 1502, 1715, 1744, 2989, 3391. Спектр ЯМР ¹H, δ , м. д.: 1.01 т (3H, CH₃ ³J_{HH} = 7.2 Гц), 1.13 т (3Н, CH₃, ³J_{HH} = 7.2 Гц), 3.00 д. д (1H, PCH₂, ²J_{HH} = 15.4, ²J_{HP} = 20.9 Гц), 3.57 д. д (1H, PCH₂, ${}^{2}J_{\text{HH}} = 15.4$, ${}^{2}J_{\text{HP}} = 22.6$ Гц), 3.58 д (6H, РОСН₃, ${}^{3}J_{HP} = 11.2$ Гц), 3.74 д (6H, POCH₃, ${}^{3}J_{HP} =$ 10.9 Гц), 4.09 м (2H, OCH₂, ${}^{3}J_{\rm HH}$ = 7.2, ${}^{2}J_{\rm HH}$ = 10.8 Гц), 4.16 м (2H, OCH₂, ${}^{3}J_{HH} = 7.2$, ${}^{2}J_{HH} =$ 10.8 Гц), 5.59 д. д (1H, =CHP, ${}^{2}J_{HP} = 8.7, {}^{5}J_{HP} =$ 1.0 Гц), 6.14 с (1H, NH), 6.61 д (2H, α -Ph-NH, ${}^{3}J_{\text{HH}} =$ 8.8 Гц), 6.83 д (2H, α -Ph-N, ${}^{3}J_{\text{HH}} = 8.6$ Гц), 7.27 д (2H, β -Ph-NH, ${}^{3}J_{\text{HH}} = 8.8 \ \Gamma$ ц), 7.35 д (2H, β -Ph-N, ${}^{3}J_{\rm HH}$ = 8.6 Гц). Спектр ЯМР 13 С, $\delta_{\rm C}$, м. д.: 13.61 (CH₃), 13.90 (CH₃), 21.40 μ (PCH₃, ${}^{1}J_{CP} = 142.4 \Gamma \mu$), 22.19 д (РСН₂, ¹*J*_{СР} = 141.5 Гц), 51.85 д (РОСН₃, ${}^{2}J_{CP} = 5.3 \Gamma \mu$), 52.18 д (POCH₃, ${}^{2}J_{CP} = 5.9 \Gamma \mu$), 52.58 д (РОСН₃, ${}^{2}J_{CP} = 6.7$ Гц), 52.82 д (РОСН₃, ${}^{2}J_{CP} =$ 6.7 Гц), 61.76 (OCH₂), 62.80 (OCH₂), 84.29 д (C⁵, ${}^{3}J_{CP} = 6.1 \ \Gamma \mu$), 104.23 д (=CHP, ${}^{1}J_{CP} = 196.3 \ \Gamma \mu$), 114.45 д. д (С⁴, ²*J*_{CP} = 13.6, ³*J*_{CP} = 22.3 Гц), 111.14 (NH-Ph-Br), 117.26 (α-Ph-NH), 127.26 (α-Ph-N), 131.87 (β-Ph-N), 131.79 (β-Ph-NH), 120.23 (N-Ph-Br), 138.94 (N-*ipso*), 144.27 д (C², ${}^{3}J_{CP} = 8.8 \Gamma \mu$), 141.68 (NH-*ipso*), 144.69 д (С², ³*J*_{CP} = 8.8 Гц), 160.01 μ (C³, ² J_{CP} = 4.3, ³ J_{CP} = 5.6 Гц), 161.46 μ . μ (CO, ⁵ J_{CP} = 2.6, ⁴*J*_{CP} = 2.4 Гц), 165.973 д. д (СО, ⁵*J*_{CP} = 2.6 Гц). Спектр ЯМР ³¹Р, б_р, м. д.: 18.91 д (⁵*J*_{PP} = 2.1 Гц), 27.55 д (⁵*J*_{PP} = 2.1 Гц). Масс-спектр, *m/z*: 802.9948 $[M + Na]^+$ (вычислено для $C_{28}H_{34}Br_2N_2NaO_{10}P_2$: 802.9933.

Z-2,5-Диэтил-1-(4-метилфенил)-2-[(4-метилфенил)амино]-4-[(диэтоксифосфорил)метил]-3-[(диэтоксифосфорил)метилиден]-2,3-дигидро-1*Н*-пиррол]-2,5-дикарбоксилат (26). Выход

65% (75% по данным ЯМР³¹Р), желтое вязкое масло. Спектр ЯМР ¹H, δ , м. д.: 0.91 т (3H, CH₃, ³J_{HH} = 7.2 Гц), 0.95 т (3H, CH₃, ${}^{3}J_{\text{HH}} = 7.2$ Гц), 1.09 т (3H, CH_3 , ${}^3J_{HH} = 7.2$ Гц), 1.26 т (3H, CH_3 , ${}^3J_{HH} = 7.2$ Гц), $1.27 \text{ t} (3\text{H}, \text{CH}_3, {}^{3}J_{\text{HH}} = 7.2 \text{ G} \text{H}), 1.29 \text{ t} (3\text{H}, \text{CH}_3, {}^{3}J_{\text{HH}} =$ 7.2 Гц), 2.23 с (3H, CH₃-Ph), 2.27 с (3H, CH₃-Ph), 2.97 д. д (2H, PCH₂, ²*J*_{HH} = 15.4, ²*J*_{HP} = 20.7 Гц), 3.57 д. д (2H, PCH₂, ²J_{HH} = 15.4, ²J_{HP} = 22.4 Гц), 3.69 м $(2H, POCH_2, {}^{3}J_{HH} = 7.0, {}^{3}J_{HP} = 7.1, {}^{2}J_{HH} = 14.2 \Gamma \mu),$ 3.93 M (2H, POCH₂, ${}^{3}J_{HH} = 7.0$, ${}^{3}J_{HP} = 7.1$, ${}^{2}J_{HH} =$ 14.2 Гц), 4.06 м (2H, POCH₂, ${}^{3}J_{\text{HH}} = 7.0$, ${}^{3}J_{\text{HP}} =$ 7.1, ${}^{2}J_{\text{HH}} = 14.2$ Гц), 4.07 м (2H, POCH₂, ${}^{3}J_{\text{HH}} = 7.0$, ${}^{3}J_{\rm HP} = 7.1, {}^{2}J_{\rm HH} = 14.2 \,\Gamma \mu$, 4.09 m (2H, OCH₂, ${}^{3}J_{\rm HH} =$ 7.2 Гц), 4.15 м (2Н, ОСН₂, ³*J*_{НН} = 7.2 Гц), 5.53 д $(1H, =CHP, ^2J_{HP} = 8.0 \ \Gamma \mu), 6.03 \ c (1H, NH), 6.65 \ д$ (2H, α -Ph-NH ${}^{3}J_{HH} = 8.0 \ \Gamma \mu$), 6.96 μ (2H, α -Ph-N, ${}^{3}J_{\text{HH}}$ = 8.0 Γμ), 6.98 д (2H, β-Ph-NH, ${}^{3}J_{\text{HH}}$ = 8.0 Γμ), 7.00 д (2H, β -Ph-N, ${}^{3}J_{HH} = 8.0$ Гц). Спектр ЯМР 13 С, δ_C, м. д.: 13.49 (СН₃), 13.86 (СН₃), 15.90 д (СН₃, ³*J*_{CP} = 7.1 Гц), 16.27 д (СН₃, ³*J*_{CP} = 6.2 Гц), 16.29 д $(CH_3, {}^3J_{CP} = 6.8 \ \Gamma \mu), 16.35 \ д (CH_3, {}^3J_{CP} = 6.7 \ \Gamma \mu),$ 22.17 д (PCH₂, ${}^{1}J_{CP}$ = 142.2 Гц), 61.22 д (OCH₂, ${}^{2}J_{CP}$ = 5.2 Гц), 61.33 (ОСН₂), 61.59 д (ОСН₂, ${}^{2}J_{CP} = 5.5$ Гц), 61.95 д (ОСН₂, ${}^{2}J_{CP} = 5.7 \Gamma$ ц), 61.99 д (ОСН₂, ${}^{2}J_{CP} =$ 6.5 Гц), 62.28 (ОСН₂), 84.79 д (С⁴, ${}^{3}J_{CP} = 6.3$ Гц), 104.01 д (=СНР, ¹*J*_{СР} = 195.7 Гц), 112.81 д. д (С³, ${}^{2}J_{CP} = 13.7, {}^{3}J_{CP} = 22.1 \Gamma_{II}$, 115.64 (α -Ph-NH), 125.89 (α-Ph-N), 129.23 (β-Ph-N), 129.38 (β-Ph-NH), 127.00 (NH-Ph-CH₃), 136.30 (N-Ph-CH₃), 137.38 (PhN-*ipso*), 140.64 (PhNH-*ipso*), 145.37 \pm (C², ³*J*_{CP} = 8.8 Гц), 161.17 д. д (C³, ${}^{2}J_{CP} = 3.9, {}^{3}J_{CP} = 5.7$ Гц), 161.95 д (CO, ⁴*J*_{CP} = 2.3, ⁵*J*_{CP} = 2.7 Гц), 166.26 д (СО, ⁴*J*_{CP} = 3.3 Гц). Спектр ЯМР ³¹Р, б_Р, м. д.: 17.18 д (${}^{5}J_{\rm PP} = 2.4 \ \Gamma_{\rm H}$), 25.27 д (${}^{5}J_{\rm PP} = 2.4 \ \Gamma_{\rm H}$).

Z-2,5-Диэтил-1-(4-хлорфенил)-2-[(4-хлорфенил)амино]-4-[(диэтоксифосфорил)метил]-3-[(диэтоксифосфорил)метилиден]-2,3-дигидро-1*Н***-пиррол-2,5-дикарбоксилат (2г). Выход 35% (83% по данным ЯМР ³¹P), светло-желтые кристаллы, т. пл. 119–120°С (гексан–Еt₂O, 2:1). ИК спектр, v, см⁻¹: 762, 841, 884, 961, 1031,1041, 1061, 1260, 1343, 1490, 1505, 1718, 1746, 2988, 3390. Спектр ЯМР ¹H, \delta, м. д.: 0.99 т (3H, CH₃, ³J_{HH} = 7.2 Гц), 1.03 т (3H, CH₃, ³J_{HH} = 7.2 Гц), 1.10 т (3H, CH₃, ³J_{HH} = 7.2 Гц), 1.25 т (3H, CH₃, ³J_{HH} = 7.2 Гц), 1.26 т (3H, CH₃, ³J_{HH} = 7.2 Гц), 1.28 т (3H, CH₃, ³J_{HH} = 7.2 Гц), 2.95 д. д (2H, PCH₂, ²J_{HH} = 15.4, ²J_{HP} = 20.9 Гц), 3.61 д. д (2H, PCH₂, ²J_{HH} = 15.4, ²J_{HP} =** 22.6 Гц), 3.69 м (2H, POCH₂, ${}^{3}J_{HH} = 7.0$, ${}^{3}J_{HP} =$ 7.1, ${}^{2}J_{\rm HH} = 14.3$ Гц), 3.93 м (2H, POCH₂ ${}^{3}J_{\rm HH} =$ 7.0, ³*J*_{HP} = 7.1, ²*J*_{HH} = 14.3 Гц), 4.06 м (2H, POCH₂, ${}^{3}J_{\rm HH} = 7.0, \, {}^{3}J_{\rm HP} = 7.1, \, {}^{2}J_{\rm HH} = 14.3 \, \Gamma \mu$, 4.07 m (2H, РОСН₂, ${}^{3}J_{\text{HH}} = 7.0$, ${}^{3}J_{\text{HP}} = 7.1$, ${}^{2}J_{\text{HH}} = 14.3$ Гц), 4.09 м (2H, OCH₂, ${}^{3}J_{\text{HH}} = 7.2$, ${}^{2}J_{\text{HH}} = 14.7$ Гц), 4.15 м (2H, OCH₂, ${}^{3}J_{\text{HH}} = 7.2$, ${}^{2}J_{\text{HH}} = 14.7$ Гц), 5.59 д (1H, =CHP, ${}^{2}J_{\text{HP}}$ = 8.0 Гц), 6.19 с (1H, NH), 6.68 д (2H, α -Ph-NH, ${}^{3}J_{HH} = 8.7 \Gamma \mu$), 6.91 μ (2H, α -Ph-N, ${}^{3}J_{HH} =$ 8.6 Гц), 7.12 д (2H, β -Ph-NH, ${}^{3}J_{\text{HH}} = 8.7$ Гц), 7.20 д (2H, β-Ph-N, ${}^{3}J_{HH} = 8.6$ Гц). Спектр ЯМР 13 С, δ_{C} , м. д.: 13.59 (CH₃), 13.89 (CH₃), 15.98 д (CH₃, ³*J*_{CP} = 7.3 Гц), 16.29 д (CH₃, ${}^{3}J_{CP} = 6.6$ Гц), 16.31 д (CH₃, ${}^{3}J_{CP} = 6.6 \ \Gamma \mu$), 16.37 д (CH₃, ${}^{3}J_{CP} = 5.9 \ \Gamma \mu$), 22.19 д (PCH₂, ${}^{1}J_{CP} = 141.5$ Гц), 61.45 д (OCH₂, ${}^{2}J_{CP} =$ 4.9 Гц), 61.59 д (ОСН₂, ${}^{2}J_{CP}$ = 4.9 Гц), 61.61 (ОСН₂), 61.97 д (ОСН₂, ${}^{2}J_{CP} = 5.2$ Гц), 62.03 д (ОСН₂, $^{2}J_{CP} = 5.2 \ \Gamma$ ц), 62.58 (ОСН₂), 84.52 д (С⁵, $^{3}J_{CP} =$ 6.6 Гц), 105.72 д. д (=СНР, ${}^{1}J_{CP}$ =196.1, ${}^{4}J_{CP}$ =2.4 Гц), 114.85 д (C⁴, ${}^{2}J_{CP} = 13.9$, ${}^{3}J_{CP} = 22.5$ Гц), 116.83 (α-Ph-NH), 123.81 (NH-Ph-Cl), 126.98 (β-Ph-NH), 128.81 (α-Ph-N), 128.81 (β-Ph-N), 132.19 (N-Ph-Cl), 138.69 (PhN-ipso), 141.61 (PhNH-ipso), 144.27 д $(C^2, {}^3J_{CP} = 8.8 \Gamma \mu), 160.01 д (C^3, {}^2J_{CP} = 4.3, {}^3J_{CP} =$ 5.6 Гц), 161.57 д (СО, ${}^{4}J_{CP} = 2.2, {}^{5}J_{CP} = 2.7$ Гц), 165.94 д (СО, ${}^{4}J_{CP}$ = 3.6 Гц). Спектр ЯМР 31 Р, δ_{P} , м. д.: 16.35 д (⁵*J*_{PP} = 2.1 Гц), 24.91 д (⁵*J*_{PP} = 2.1 Гц). Масс-спектр, *m/z*: 769.1591 [*M* + Na]⁺ (вычислено для C₃₂H₄₂Cl₂N₂NaO₁₀P₂: 769.1584).

Общая методика синтеза фосфонилированных азадиенов (E,Z)-За-г. К раствору аминомалоната 1а-г в абсолютном изопропиловом спирте при интенсивном перемешивании при комнатной температуре добавляли 2–3 экв. ацетата калия. Контроль за ходом реакции осуществляли методом ЯМР ³¹Р. Полная конверсия достигалась через 3 ч. После удаления растворителя вязкий остаток очищали колоночной хроматографией (элюент – петролейный эфир–этилацетат, 5:1). В случае азадиена **3г** были выделены индивидуальные E- и Z-изомеры, кроме этого индивидуальные азодиены разделить хроматографией не удалось, их ЯМР спектры описаны в тексте статьи

Этиловый эфир (*3E*)-2-[(4-метилфенил)имино]-4-(диэтилфосфорил)бут-3-еновой кислоты (**36**). Спектр ЯМР ¹Н, δ, м. д.: 1.33 т (6Н, CH₃, ³*J*_{HH} = 7.0 Гц), 1.37 т (6Н, CH₃, ³*J*_{HH} = 7.0 Гц), 2.33 с (CH₃- Ph), 4.10 д. κ (4H, POCH₂, ${}^{3}J_{HH} = 7.0$, ${}^{3}J_{HP} = 7.9$ Γu), 4.16 κ (1H, OCH₂, ${}^{2}J_{HH} = 7.0$ Γu), 4.43 κ (1H, OCH₂, ${}^{2}J_{HH} = 7.0$ Γu), 6.45 д. д (1H, C¹, ${}^{3}J_{HH} = 17.8$, ${}^{2}J_{HP} = 17.7$ Γu), 6.95 д. д (1H, C², ${}^{3}J_{HH} = 17.8$ Гu, ${}^{3}J_{HP} = 23.4$ Гu), 7.43 д (2H, β-Ph, ${}^{3}J_{HH} = 8.2$ Гu), 7.16 д (2H, α-Ph, ${}^{3}J_{HH} = 8.2$ Гu). Спектр ЯМР 13 С, δ_{C} , м. д.: 14.18 (CH₃), 16.38 д (CH₃, ${}^{3}J_{CP} = 6.6$ Гu), 26.39 (CH₃-Ph), 61.74 (OCH₂), 62.45 д (OCH₂, ${}^{2}J_{CP} =$ 5.7 Гu), 119.54 (α-Ph), 127.04 д (C¹, ${}^{1}J_{CP} = 187.2$ Гu), 129.45 (β-Ph), 135.89 (Ph-CH₃), 143.09 д (C², ${}^{2}J_{CP} =$ 6.4 Гu), 146.70 (Ph-N), 157.99 д (C=N, ${}^{3}J_{CP} = 27.8$ Гu), 163.59 (CO). Спектр ЯМР 31 P: δ_{P} 15.51 м. д.

Этиловый эфир (3Z)-2-[(4-метоксифенил)имино]-4-(диэтилфосфорил)бут-3-еновой кис**лоты (3в).** Спектр ЯМР ¹Н, б, м. д.: 1.29 т (6Н, CH_3 , ${}^3J_{HH} = 7.0$ Гц), 1.35 т (3H, CH_3 , ${}^3J_{HH} = 7.0$ Гц), 4.04 д. к (4H, POCH₂, ${}^{3}J_{\text{HH}} = 7.0$, ${}^{3}J_{\text{HP}} = 8.5$ Гц), 4.32 к (2H, OCH₂, ²*J*_{HH} = 7.0 Гц), 6.01 д. д (1H, C¹, ${}^{3}J_{\rm HH}$ = 14.4, ${}^{2}J_{\rm HP}$ = 15.8 Гц), 6.56 д. д (1H, C², ${}^{3}J_{\rm HH}$ = 14.4, ${}^{3}J_{\rm HP}$ = 48.9 Гц), 6.79 д (2H, β-Ph, ${}^{3}J_{\rm HH}$ = 8.5 Гц), 6.91 д (2H, α -Ph, ${}^{3}J_{\text{HH}} = 8.5$ Гц). Спектр ЯМР ¹³C, δ_C, м. д.: 14.06 (CH₃), 16.27 д (CH₃, ³*J*_{CP} = 6.1 Гц), 55.33 (ОСН₃), 62.16 д (ОСН₂, ²J_{CP} = 5.8 Γμ), 62.22 (OCH₂), 113.88 (β-Ph), 123.40 (α-Ph), 125.01 д (C¹, ${}^{1}J_{CP}$ = 185.0 Гц), 140.46 (C²), 140.56 (Ph-N), 156.10 д (C=N, ${}^{3}J_{CP} = 7.4 \Gamma \mu$), 158.32 (Ph-ОСН₃), 164.09 (СО). Спектр ЯМР ³¹Р: $\delta_{\rm P}$ 13.57 м. д.

Этиловый эфир (3*Z*)- 2-[(4-хлорфенил)имино]-4-(диэтилфосфорил)бут-3-еновой кислоты (3г). Спектр ЯМР ¹Н, δ , м. д.: 1.29 т (6Н, CH₃, ³*J*_{HH} = 7.1 Гц), 1.38 т (3H, CH₃, ³*J*_{HH} = 7.2 Гц), 4.07 д. к (4H, POCH₂, ³*J*_{HH} = 7.1, ³*J*_{HP} = 8.0 Гц), 4.38 к (2H, OCH₂, ³*J*_{HH} = 7.2 Гц), 6.01 д. д (1H, C¹, ³*J*_{HH} = 14.1, ²*J*_{HP} = 15.8 Гц), 6.51 д. д (1H, C², ³*J*_{HH} = 14.1, ³*J*_{HP} = 48.6 Гц), 6.83 д (2H, β-Ph, ³*J*_{HH} = 8.6 Гц), 7.25 д (2H, α-Ph, ³*J*_{HH} = 8.5 Гц). Спектр ЯМР ¹³С, δ_{C} , м. д.: 14.06 (CH₃), 16.31 д (CH₃, ³*J*_{CP} = 6.0 Гц), 62.29 д (OCH₂, ²*J*_{CP} = 5.7 Гц), 62.46 (OCH₂), 121.69 (α-Ph), 125.84 д (C¹, ¹*J*_{CP} = 183.9 Гц), 128.90 (β-Ph), 131.31 (Ph-Cl), 139.81 (C²), 146.61 (Ph-N), 158.47 д (C=N, ³*J*_{CP} = 7.7 Гц), 163.55 (CO). Спектр ЯМР ³¹Р: δ_{P} 13.04 м. д.

Этиловый эфир (*3E*)-2-[(4-хлорфенил)имино)]-4-(диэтилфосфорил)бут-3-еновой кислоты (**3**г). Спектр ЯМР ¹Н, δ , м. д.: 1.30 т (6H, CH₃, ³*J*_{HH} = 7.0 Гц), 1.38 т (3H, CH₃, ³*J*_{HH} = 7.0 Гц), 4.13 к (1H, OCH₂, ³*J*_{HH} = 7.0 Гц), 4.18 д. к (4H, POCH₂, ³*J*_{HH} = 7.1, ³*J*_{HP} = 7.9 Гц), 4.45 к (1H, OCH₂, ³*J*_{HH} = 7.0 Гц), 6.49 д. д (1H, C¹, ${}^{3}J_{\rm HH} = 17.7$, ${}^{2}J_{\rm HP} = 16.4$ Гц), 7.20 д. д (1H, C², ${}^{3}J_{\rm HH} = 17.7$, ${}^{3}J_{\rm HP} = 21.6$ Гц), 6.84 д (2H, β-Ph, ${}^{3}J_{\rm HH} = 8.5$ Гц), 7.30 д (2H, α-Ph, ${}^{3}J_{\rm HH} = 8.5$ Гц). Спектр ЯМР 13 С, $\delta_{\rm C}$, м. д.: 13.74 (CH₃), 16.39 д (CH₃, ${}^{3}J_{\rm CP} = 6.0$ Гц), 62.01 (OCH₂), 62.54 д (OCH₂, ${}^{2}J_{\rm CP} = 6.1$ Гц), 120.74 (α-Ph), 128.05 д (C¹, ${}^{1}J_{\rm CP} = 182.3$ Гц), 128.90 (β-Ph), 131.40 (Ph-Cl), 142.60 д (C², ${}^{2}J_{\rm CP} = 6.6$ Гц), 146.60 (Ph-N), 158.94 д (C=N, ${}^{3}J_{\rm CP} = 28.2$ Гц), 162.95 (CO). Спектр ЯМР 31 Р: $\delta_{\rm P} = 15.12$ м. д.

ФОНДОВАЯ ПОДДЕРЖКА

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант № 19-03-00365) в рамках базовой части государственного задания Министерства образования и науки РФ (№ 4.5554.2017/8.9) с использованием оборудования Инжиниригового центра Санкт-Петербургского государственного технологического института.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Петров А.А., Догадина А.В., Ионин Б.И., Ионин Б.И., Гарибина В.А., Леонов А.А. // Усп. хим. 1983. Т. 52. С. 1793.
- 2. Гарибина В.А., Леонов А.А., Догадина А.В., Ионин Б.И., Петров А.А. // ЖОХ. 1987. Т. 57. Вып. 7. С. 1481.
- Erkhitueva E., Panikorovskii T., Svintsitskaya N., Trifonov R., Dogadina A. // Synlett. 2018. Vol. 29. P. 933. doi 10.1055/s-0036-1591919
- 4. Svintsitskaya N.I., Dogadina A.V. Trifonov R.E. // Synlett. 2016. Vol. 27. P. 241. doi 10.1055/s-0035-1560505
- Ляменкова Д.В., Викторов Н.Б., Поняев А.И., Догадина А.В. // ЖОХ. 2014. Т. 84. Вып. 12. С. 2054; Lyamenkova D.V., Viktorov N.B., Ponyaev A.I., Dogadina A.V. // Russ. J. Gen. Chem. 2014. Vol. 84. N 12. P. 2524. doi 10.1134/S1070363214120342
- Erkhitueva E.B., Dogadina A.V., Khramchikhin A.V., Ionin B.I.// Tetrahedron Lett. 2012. Vol. 53. N 33. P. 4304. doi 10.1016/j.tetlet.2012.05.157.

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 89 № 9 2019

- Erkhitueva E.B., Dogadina A.V., Khramchihin A.V., Ionin B.I. //Tetrahedron Lett. 2013. Vol. 54. N 38. P. 5174. doi 10.1016/j.tetlet.2013.07.032.
- Догадина А.В., Эрхитуева Е.Б., Ионин Б.И. // Изв. АН. Сер. хим. 2014. № 3. С. 716; Dogadina A.V., Erkhitueva E.B., Ionin B.I. // Russ. Chem. Bull. 2014. N 3. P. 716. doi 10.1007/s11172-014-0497-7
- Догадина А.В., Свинцицкая Н.И. // ЖОХ. 2015. Т. 85. Вып. 2. С. 177; Dogadina A.V., Svintsitskaya N.I. // Russ. J. Gen. Chem. 2015. Vol. 85. N 2. P. 351. doi 10.1134/S1070363215020012
- Храмчихин В.А., Догадина А.В., Храмчихин А.В., Ионин Б.И. // ЖОХ. 2012. Т. 82. Вып. 4. С. 694; Khramchikhin V.A., Dogadina A.V., Khramchikhin A.V., Ionin B.I. // Russ. J. Gen. Chem. 2012. Vol. 82. N 4. P. 776. doi 10.1134/S1070363212040299
- Егоров Д.М., Питерская Ю.Л., Догадина А.В. // ЖОХ. 2015. Т. 85. Вып. 2. С. 333; Egorov D.M., Piterskaya Yu.L., Dogadina A.V. // Russ. J. Gen. Chem. 2015. Vol. 85. N 2. P. 502. doi 10.1134/ S1070363215020255
- Егоров Д.М., Питерская Ю.Л., Миронов В.Ф., Догадина А.В. // ЖОХ. 2015. Т. 85. Вып. 9. С. 1564; Egorov D.M., Piterskaya Yu.L., Mironov V.F., Dogadina A.V. // Russ. J. Gen. Chem. 2015. 2015. Vol. 85. N 9. P. 2203. doi 10.1134/S1070363215090273
- Егоров Д.М., Питерская Ю.Л., Эрхитуева Е.Б., Свинцицкая Н.И., Догадина А.В. // ЖОХ. 2017. Т. 87. Вып. 9. С. 1440; Egorov D.M., Piterskaya Yu.L., Erkhitueva E.B., Svintsitskaya N.I., Dogadina A.V. // Russ. J. Gen. Chem. 2017. Vol. 87. N 9. P. 1924. doi 10.1134/S1070363217090067
- Егоров Д.М., Питерская Ю.Л., Карцев Д.Д., Полукеев В.А., Кривчун М.Н., Догадина А.В. // ЖОХ. 2018. Т. 88. Вып. 9. С. 1478. doi 10.1134/ S0044460X1809010X; Egorov D.M., Piterskaya Yu.L., Kartsev D.D., Polukeev V.A., Krivchun M.N., Dogadina A.V. // Russ. J. Gen. Chem. 2018. Vol. 88. N 9. P. 1824. doi 10.1134/S1070363218090104

- Egorov D.M., Piterskaya Y.L., Dogadina A.V., Svintsitskaya N.I. // Tetrahedron Lett. 2015. Vol. 56. N 12. P. 1552. doi 10.1016/j.tetlet.2015.02.027
- Krylov A.S., Kaskevich K.I., Erkhitueva E.B., Svintsitskaya N.I., Dogadina A.V., // Tetrahedron Lett. 2018. Vol. 59. N 49. P. 4326. doi 10.1016/j. tetlet.2018.10.052
- Gotsko M.D., Sobenina L.N., Tomilin D.N., Ushakov I.A., Dogadina A.V., Trofimov B.A. // Tetrahedron Lett. 2015. Vol. 56. N 32. P. 4657. doi 10.1016/j.tetlet.2015.06.043
- Егорова А.В., Викторов Н.Б., Ляменкова Д.В., Свинцицкая Н.И., Гарабаджиу А.В., Догадина А.В. // ЖОХ. 2016. Т. 86. Вып. 11. С. 1803; Egorova A.V., Viktorov N.B., Lyamenkova D.V., Svintsitskaya N.I., Garabadziu A.V., Dogadina A.V. // Russ. J. Gen. Chem. 2016. Vol. 86. N 11. P. 2446. doi 10.1134/ S1070428017080097
- Egorova A.V., Viktorov N.B., Starova G.L., Svintsitskaya N.I., Garabadziu A.V., Dogadina A.V. // Tetrahedron Lett. 2017. Vol. 58. N 30. P. 2997. doi 10.1016/j.tetlet.2017.06.062
- Егорова А.В., Свинцицкая Н.И., Догадина А.В. // ЖОХ. 2018. Т. 88. № 11. С. 1796. doi 10.1134/ S0044460X1809010X; Egorova A.V., Svintsitskaya N.I., Dogadina A.V. // Russ. J. Gen. Chem. 2018. Vol. 88. N 11. P. 2276. doi 10.1134/S1070363218110063
- Завьялов К.В., Новиков М.С., Хлебников А.Ф., Ростовский Н.В., Старова Г.Л. // ЖОрХ. 2017.
 Т. 53. Вып. 8. С. 1199; Zavyalov K.V., Novikov M.S., Khlebnikov A.F., Rostovskii N.V., Starova G.L. // Russ.
 J. Org. Chem. 2017. Vol. 53. N 8. P. 1214. doi 10.1134/ S1070428017080097
- Novikov M.S., Smetanin I.A., Khlebnikov A.V., Rostovskii N.V., Yufit D.S. // Tetrahedron Lett. 2012. Vol. 53. N 43. P. 5777. doi 10.1016/j.tetlet.2012.08.063
- Smetanin I.A., Novikov M.S., Rostovskii N.V., Khlebnikov A.V., Starova G.L., Yufit D.S. // Tetrahedron. 2015. Vol. 71. N 28. P. 4616. doi 10.1016/j.tet.2015.05.022
- Khlebnikov A.V., Novikov M.S., Rostovskii N.V. // Tetrahedron. 2019. Vol. 75. N 18. P. 2555. doi 10.1016/j. tet.2019.03.040

ЕГОРОВА и др.

Reactions of 2-Phosphonylethynylated 2-(Arylamino)malonates with Some Bases

A. V. Egorova^{a, b}, N. B. Viktorov^a, G. L. Starova^c, and A. V. Dogadina^{a, *}

^a St. Petersburg State Institute of Technology (Technical University), Moskovskii pr. 26, St. Petersburg, 190013 Russia *e-mail: dog_alla@mail.ru

^b Scientific Research Center for Environmental Safety of the Russian Academy of Sciences, St. Petersburg, Russia ^c St. Petersburg State University, St. Petersburg, Russia

Received May 15, 2019; revised May 15, 2019; accepted May 21, 2019

The reaction of dialkyl 2-[(dialkoxyphosphoryl)ethynyl]-2-(arylamino)malonates with bases (CH₃COOK, *t*-BuOK) can serve as a method for preparing original diphosphonylated 2,3-dihydro-1*H*-pyrroles and 4-phosphonylated 1-azabuta-1,3-dienes. A probable scheme for the formation of the obtained new compounds is proposed.

Keywords: chloroethynylphosphonates, aminomalonates, phosphonylation