УДК 546.185;547.551.2;547.53.024;548.312.3

СИНТЕЗ И СТРОЕНИЕ ГЕКСАХЛОРОПЛАТИНАТНЫХ КОМПЛЕКСОВ

© 2019 г. А. Р. Ткачёва^{а, *}, В. В. Шарутин^а, О. К. Шарутина^а, П. А. Слепухин^b

^а Национальный исследовательский Южно-Уральский государственный университет, np. Ленина 76, Челябинск, 454080 Россия *e-mail: aesya@mail.ru ^b Институт органического синтеза имени И. Я. Постовского Уральского отделения Российской академии наук, Екатеринбург, Россия

> Поступило в Редакцию 19 марта 2019 г. После доработки 19 марта 2019 г. Принято к печати 23 марта 2019 г.

Взаимодействием хлоридов тетраорганилфосфония и триметиламмония с гидратом гексахлороплатиноводородной кислоты в растворе ацетонитрил–диэтилсульфоксид синтезированы комплексы [Ph₃PCH=CHCH₃]₂[PtCl₆], [Ph₃PCH₂OCH₃]₂[PtCl₆] и [Me₃NH]₂[PtCl₆]. Строение полученных комплексов платины изучено методом рентгеноструктурного анализа.

Ключевые слова: хлорид (пропенил)трифенилфосфония, хлорид (метоксиметил)трифенилфосфония, хлорид триметиламмония гексахлороплатиноводородная кислота, ацетонитрил

DOI: 10.1134/S0044460X19090142

Разработка противоопухолевых и цитотоксических препаратов платины является одной из главных задач в области исследований лекарственных веществ на основе металлорганических соединений уже в течение нескольких десятилетий [1–3]. Платиновые комплексы проявляют каталитические свойства. Так, в их присутствии происходит гидросилилирование стирола и его производных разнообразными гидросиланами [4, 5] и окисление алкинов кислородом воздуха по тройной связи до дикарбонильных соединений [6, 7].

Известно, что платина имеет малое сродство к кислородным лигандам и легко связывается с аминами, сульфидами и фосфинами [8–10]. Исследование устойчивых комплексов платиновых металлов с органическими лигандами является важным как с точки зрения фундаментальной науки, так и в связи с их практической ценностью [11]. Так вариация и количество лигандов, координированных к атому платины, позволяют моделировать и повышать противоопухолевую активность [12, 13]. Также комплексы платины с органическими лигандами являются удобными объектами для изучения реакций лигандного обмена [14–18]. Например, в растворах тетрахлоро- и гексахлороплатинатов тетраорганилфосфония в диметилсульфоксиде происходит замещение одного из атомов хлора на молекулу S-координированного ДМСО [19, 20].

В настоящей работе изучена возможность обмена лигандов в гексахлороплатинатном анионе. Нами установлено, что взаимодействие хлоридов (пропенил)трифенилфосфония, (метоксиметил)трифенилфосфония и триметиламмония с гексахлороплатиноводородной кислотой в ацетонитриле с добавлением диэтилсульфоксида (deso) (мольное соотношение реагентов 1:1:2) сопровождается образованием комплексов **1–3** (схема 1).

Следуетотметить, чтореакции комплексообразования, проводимые в присутствии диалкилсульфоксида, часто сопровождаются лигандным обменом с вхождением в координационную сферу катиона платины молекулы диалкилсульфоксида. Ранее мы синтезировали и структурно идентифицировали диэтилсульфоксидопентахлороплатинаты тетраорганилСхема 1.

$$[Ph_{3}PR]Cl + H_{2}[PtCl_{6}] \xrightarrow{deso} [Ph_{3}PR]_{2}[PtCl_{6}] + 2HCl,$$

$$\mathbf{1, 2}$$

$$R = CH = CHCH_{3} (\mathbf{1}), CH_{2}OCH_{3} (\mathbf{2}).$$

$$[Me_{3}NH]Cl + H_{2}[PtCl_{6}] \xrightarrow{deso} [Me_{3}NH][PtCl_{6}] + 2HCl$$

$$\mathbf{3}$$

аммония и -фосфония путем замещения одного из атомов хлора на молекулу S-координированного диэтилсульфоксида [21].

Комплексы 1-3 представляют собой оранжевые кристаллы, выход которых составил 83, 78 и 76% соответственно. Методом рентгеноструктурного анализа (РСА) установлено строение комплексов 1-3. Кристаллографические данные и основные параметры уточнения для соединений 1-3 приведены в табл. 1. По данным РСА, атомы фосфора и азота в катионах имеют мало искаженное тетраэдрическое окружение (рис. 1). Значения валентных углов СРС и СNС в 1-3 приближаются к идеальному тетраэдрическому [107.34(11)-113.71(12)° (1), 107.2(4)-112.3(3)° (2), 109.0(16)-115(3)° (3)] (табл. 2). Расстояния Р-С [1.787(2)-1.816(3) Å (1), 1.791(7)-1.842(8) Å (2)]близки к сумме ковалентных радиусов атомов фосфора и углерода (1.88 Å [22]), расстояния N–C 1.44(3)-1.49(2) Å в молекуле комплекса 3 близки между собой. В октаэдрических анионах транс-

Рис. 1. Общий вид молекулы (пропенил)трифенилфосфонийгексахлороплатината 1 в кристалле (атомы показаны в виде термальных эллипсоидов для вероятности 50%).

углы ClPtCl в комплексах **1–3** практически равны теоретическому значению [179.999(2)–180.0° (1), 180.0° (**2**), 179.2(1)–179.7(2)° (**3**)], *цис*-углы составляют 88.29(7)–91.07(7)° (**1**), 89.37(10)–90.63(10)° (**2**), 88.82(17)–91.09(12)° (**3**). Расстояния Pt–Cl варьируются в пределах 2.324(2)–2.3497(16) Å (**1**), 2.332(3)–2.343(3) Å (**2**), 2.317(5)–2.334(3) Å (**3**) и близки к суммам ковалентных радиусов указанных атомов (2.35 Å [22]).

Анионы и катионы в комплексах 1–3 образуют цепочки, ориентированные вдоль кристаллографической оси *с*, связанные между собой водородными связями (рис. 2). В кристаллах комплексов 1, 2 цепочки из анионов не связаны друг с другом и чередуются с катионами [расстояния C⁵–H···Cl² 2.74 Å, C⁶–H···Cl⁶ 2.81 Å (1), C⁵–H···Cl³ 2.81 Å, C⁶–H···Cl¹ 2.93 Å (2)] (рис. 3). В кристалле комплекса 1 каждый катион имеет короткие контакты с тремя анионами, в молекуле комплекса 2 - c четырьмя анионами. В кристалле комплекса 3 каждый анион связан с двумя катионами водородными

Рис. 2. Водородные связи типа Cl…H–C в кристалле комплекса **1**.

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 89 № 9 2019

Параметр	1	2	3
M	1014.47	1022.45	528.03
Сингония	Триклинная	Триклинная	Ромбическая
Пространственная группа	ΡĪ	ΡĪ	Pnma
<i>a</i> , Å	10.350(8)	10.272(12)	19.243(11)
<i>b</i> , Å	10.658(9)	10.422(15)	9.857(5)
<i>c,</i> Å	10.761(11)	10.800(13)	10.065(5)
α, град	68.01(4)	79.51(5)	90.00
β, град	81.95(5)	69.40(5)	90.00
ү, град	74.89(4)	74.22(7)	90.00
<i>V</i> , Å ³	1061.5(16)	1037(2)	1909(18)
Ζ	1	1	8
$d_{\rm bbiy}, {\rm f/cm^3}$	1.587	1.638	3.674
μ, мм ⁻¹	3.787	3.882	16.339
<i>F</i> (000)	502.0	506.0	2000.0
Размер кристалла, мм	$0.32\times0.38\times0.64$	$0.42\times0.32\times0.2$	$0.43 \times 0.39 \times 0.08$
Область сбора данных по θ, град	5.44-111.1	6.02-69.14	5.78-82.5
Интервалы индексов отражений	$-22 \le h \le 22,$	$-16 \le h \le 16,$	$-35 \le h \le 31,$
	$-22 \le k \le 22,$	$-16 \le k \le 16,$	$-18 \le k \le 18,$
	$-22 \leq l \leq 22$	$-16 \le l \le 16$	$-17 \le l \le 18$
Измерено отражений	182104	55535	63676
R _{int}	0.0804	0.0580	0.0930
Независимых отражений	22084	8426	6590
Переменных уточнения	233	246	83
GOOF	0.983	1.065	1.105
<i>R</i> -Факторы по	$R_1 = 0.0428,$	$R_1 = 0.0635,$	$R_1 = 0.0999,$
$F^2 > 2\sigma(F^2)$	$wR_2 = 0.0799$	$wR_2 = 0.1604$	$wR_2 = 0.3098$
<i>R</i> -Факторы по всем отражениям	$R_1 = 0.1312,$	$R_1 = 0.0813,$	$R_1 = 0.1334,$
	$wR_2 = 0.1028$	$wR_2 = 0.1765$	$wR_2 = 0.33042$
Остаточная электронная плотность (min/max), <i>e</i> /A ³	0.62/-2.33	5.87/-4.29	9.70/-6.28

Таблица 1. Кристаллографические данные, параметры эксперимента и уточнения структуры комплексов 1–3

связями [расстояние N¹–H···Cl(2) 2.59 Å, N¹–H···Cl⁶ 2.59 Å, N²–H···Cl⁴ 2.66 Å, N²–H···Cl² 2.73 Å, N²–H···Cl⁵ 2.73 Å]. В катионе комплекса **3** одна метильная группа разупорядочена по двум позициям.

Таким образом, взаимодействие хлоридов тетраорганилфосфония, триметиламмония с гексахлороплатиноводородной кислотой в растворе ацетонитрила с добавлением диэтилсульфоксида

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 89 № 9 2019

Cbd5r	d Å	Vroj	() FD31
Связь	и, л	9101	ш, трад
Ptl-Cll	2 3352(15)	C12Pt1C15	180.0
Pt^1-Cl^4	2.5552(15) 2.3351(15)	$C^{11}Pt^1C^{14}$	179 999(2)
Pt^1-Cl^2	2.5551(15)	$C^{13}Pt^{1}C^{16}$	180.0
Pt = C1	2.3490(17) 2.324(2)	CliPtiCl2	90.94(6)
$Pt^1 - C16$	2.324(2)		90.94(0) 80.06(6)
$P_{1-C_{1}}$	2.524(2) 1.816(1)	$C_{14}^{14} C_{13}^{14}$	01 07(7)
P_{-C_1}	1.010(1)	Cl3Pt1Cl1	91.07(7) 88.03(7)
$\mathbf{P}^{1}-\mathbf{C}^{2}^{1}$	1.798(2)	$C^{13}P^{+1}C^{12}$	88.33(7)
P_{-C}^{1-C7}	1.798(2)	$C^{2} \mathbf{p} C^{7}$	90.71(7)
$C^{7}-C^{8}$	1.787(2) 1.221(2)		107.10(12) 110.52(11)
$C^{8}-C^{9}$	1.321(3) 1.406(2)		110.32(11) 100.16(10)
0-0-	1.490(3)		109.10(10) 108.08(11)
			108.98(11) 107.24(11)
			10/.34(11)
			113.71(12)
D t1 C11	2 2 4 2 (2)		00.62(10)
$Pt^{1} - Ct^{2}$	2.343(3)		90.03(10)
$Pt^1 - Ct^2$	2.334(3)		90.17(12)
$Pt^{1}-Ct^{3}$	2.332(3)		89.37(10)
	2.343(3)		180.0
	2.334(3)		89.83(12)
$Pl^{1} = Cl^{3}$	2.332(3)	CI6Pt1CI2	89.43(10)
$P^1 = C^{21}$	1.809(6)		180.0
$P^1 = C^7$	1./91(/)	Cl ² Pt ¹ Cl ³	180.0
$P^{1} = C^{1}$	1.842(8)		110.5(4)
$P^{1} = C^{1}$	1.798(7)		110.0(3)
$C^{\prime} - O^{1}$	1.355(15)		107.2(4)
$C^{o} = O^{1}$	1.355(18)	Clipic2	112.3(3)
			108.7(3)
		C ⁷ O1C ⁸	108.2(4)
			119.4(15)
	2 219(2)		01.00(12)
$Pt^{1} - Ct^{2}$	2.318(3)		91.09(12)
$Pt^1 - Ct^2$	2.334(3)		89.80(13)
$Pt^1 - CI^3$	2.31/(5)		88.82(17)
	2.318(3)		1/9.7(2)
$Pt^1 - Ct^3$	2.334(3)		90.83(14)
$Pt^1 - Cl^0$	2.368(5)	CIPPt ¹ Cl ²	90.00(14)
$N^{1}-C^{2}$	1.44(3)	Cl ^o Pt ¹ Cl ¹	179.16(12)
$N^{1}-C^{1}$	1.486(19)	$Cl^2Pt^1Cl^3$	1/9.1/(12)
$N^{1}-C^{3}$	1.486(19)	$\begin{bmatrix} C^2 N^1 C^3 \\ C^2 N^1 C^1 \end{bmatrix}$	109.8(12)
$N^2 - C^4$	1.48(2)	$\begin{bmatrix} C^2 N^1 C^1 \\ C^1 N^1 C^2 \end{bmatrix}$	109.8(12)
N2-C3	1.48(2)	$\begin{bmatrix} C^1 N^1 C^3 \\ C^4 N^1 C^5 \end{bmatrix}$	112(2)
$N^2 - C^{o}$	1.51(3)	$C^4N^1C^5$	115(3)
		$C^6N^1C^5$	109.0(16)
		$C^6N^1C^4$	109.0(16)

Таблица 2. Основные длины связей и валентные углы в молекулах комплексов 1–3

Рис. 3. Упаковка катионов и анионов в кристалле комплекса 1.

не сопровождается лигандным обменом в анионе, продуктами реакций являются гексахлороплатинаты тетраорганилфосфония, триметиламмония. Геометрические параметры координационных узлов атомов платины в анионах [PtCl₆]^{2–} имеют близкие значения.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры записывали на ИК спектрометре Shimadzu IRAffinity-1S в таблетках KBr в области 4000-400 см-1. Рентгеноструктурный анализ проводили на дифрактометре Bruker D8 QUEST (Мо K_{a} -излучение, $\lambda = 0.71073$ Å, графитовый монохроматор) при 296(2) К. Структуры расшифрованы прямым методом. Позиции и температурные параметры неводородных атомов уточнены в изотропном, а затем в анизотропном приближении полноматричным МНК. Атомы водорода помещены в геометрически рассчитанные положения и включены в уточнение по модели наездника. Сбор, редактирование данных и уточнение параметров элементарной ячейки, а также учет поглощения проведены по программам SMART и SAINT-Plus [23]. Все расчеты по определению и уточнению структур выполнены по программам SHELXL/PC [24] и OLEX2 [25]. Полные таблицы координат атомов, длин связей и валентных углов депонированы в Кембриджском банке структурных данных [CCDC 1877554 (1), 1880723 (2), 1880846 (3)].

Синтез [Ph₃PCH=CHCH₃]₂[PtCl₆] (1). Раствор 68 мг (0.1 ммоль) хлорида аллилтрифенилфосфония в 4 мл ацетонитрила приливали к раствору 50 мг (0.1 ммоль) гексагидрата гексахлороплатиноводородной кислоты в 4 мл ацетонитрила. К полученной смеси добавляли 0.2 мл диэтилсульфоксида. Раствор концентрировали до объема 0.5 мл, образовавшиеся кристаллы фильтровали и сушили. Выход 84 мг (83%), оранжевые кристаллы, т. пл. 211°С. ИК спектр, v, см⁻¹: 3056, 2998, 2979, 2360, 1635, 1610, 1484, 1435, 1371, 1314, 1260, 1189, 1171, 1114, 998, 966, 816, 749, 720, 690, 540, 506. Найдено, %: С 49.61; Н 3.99. С₄₂H₄₀P₂Cl₆Pt. Вычислено, %: С 49.70; Н 3.94. С₄₂H₄₀P₂Cl₆Pt.

Комплексы 2 и 3 получали аналогично.

[**Ph₃PCH₂OCH₃]₂**[**PtCl₆]** (**2**). Выход 78%, оранжевые кристаллы, т. пл. 184°С. ИК спектр, v, см⁻¹: 3053, 2930, 1436, 1112, 758, 688, 530, 501. Найдено, %: С 46.79; Н 4.03. С₄₀Н₄₀Р₂Сl₆PtO₂. Вычислено, %: С 46.97; Н 3.91. С₄₀Н₄₀Р₂Cl₆PtO₂.

[(CH₃)₃NH]₂[PtCl₆] (3). Выход 76%, оранжевые кристаллы, т. пл. 208°С. ИК спектр, *v*, см⁻¹: 2987, 2940, 2908, 1717, 1654, 1557, 1455, 1406, 1374, 1309, 1280, 1183, 1144, 1068, 1003, 966, 783, 765, 700, 485. Найдено, %: С 13.55; Н 3.84. С₆H₂₀N₂Cl₆Pt. Вычислено, %: С 13.63; Н 3.79. С₆H₂₀N₂Cl₆Pt.

ФОНДОВАЯ ПОДДЕРЖКА

Работа выполнена при финансовой поддержке Министерства образования и науки РФ (грант № 4.6151.2017/8.9).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Cubo L., Quiroga A.G., Zhang J. // J. Chem. Soc. Dalton Trans. 2009. P. 3457. doi 10.1039/b819301k
- Johnstone T.C., Suntharalingam K., Lippard S.J. // Chem. Rev. 2016. Vol. 116. P. 3436. doi 10.1021/acs. chemrev.5b00597.
- Крылова Л.Ф., Матвеева Л.М. // ЖСХ. 2005. Т. 46. № 1. С. 77; Krylov L.F., Matveeva L.M. // J. Struct. Chem. 2005. Vol. 45. N 1. P. 75. doi 10.1007/s10947-006-0011-7
- Елисеева А.А., Спевак В.Н., Калинин А.В., Скворцов Н.К. // Изв. СПбГТИ(ТУ). 2014. Т. 52. № 26. С. 48.

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 89 № 9 2019

- Ura Y., Gao G., Bao F., Ogasawara M., Takahashi T. // Organometallics. 2004. Vol. 23. N. 21. P. 4804. doi 10.1021/om0493311
- 6. Шарутин В.В., Шарутина О.К., Сенчурин В.С. // Бутлеровск. сообщ. 2013. Т. 36. № 11. С. 98.
- Kukushkin V.Yu., Belsky V.K., Konovalov V.E., Aleksandrova E.A., Pankova E.Yu., Moiseev A.I. // Phosphorus, Sulfur, Silicon, Relat. Elem. 1992. Vol. 69. P. 103. doi 10.1080/10426509208036859
- Cotton F.A., Francis R. // J. Am. Chem. Soc. 1960.
 Vol. 82. P. 2986. doi 10.1021/ja01497a003.9
- Meek D.W., Straub D.K., Drago R.S. // J. Am. Chem. Soc. 1960. Vol. 82. P. 6013. doi 10.1021/ja01508a012
- Кукушкин Ю.Н., Хроменкова З.А., Эсаулова В.А. // ЖОХ. 1993. Т. 63. Вып. 10. С. 2386.
- Шарутин В.В., Шарутина О.К., Сенчурин В.С // ЖОХ 2016. Т. 86. Вып. 9. С. 1536; Sharutin V.V., Sharutina O.K., Senchurin V.S. // Russ. J. Gen. Chem. 2016. Vol. 86. N 9. P. 2100. doi 10.1134/ S1070363216090206
- Quiroga A.G., Perez J.M., Alonso C. // J. Med. Chem. 2006. Vol. 49. N 1. P. 224. doi 10.1021/jm050804v
- Ramos-Lima F.J., Quiroga A.G., Garcia-Serrelde B. // J. Med. Chem. 2007. Vol. 50. N 9. P. 2194. doi 10.1021/ jm061219c
- 14. *Кукушкин Ю.Н.* // Коорд. хим. 1998. Т. 24. № 3. С. 185.
- 15. *Кукушкин Ю.Н., Пахомова Т.Б.* // ЖНХ. 1997. Т. 42. № 1. С. 76.

- 16. Кукушкин Ю.Н., Хроменкова З.А. // ЖОХ. 1997. Т. 67. Вып. 7. С. 1206.
- 17. *Кукушкин Ю.Н., Пахомова Т.Б. //* ЖОХ. 1995. Т. 65. Вып. 3. С. 514.
- Rochon F.D., Bensimon C., Tessier C. // Inorg. Chim. Acta. 2008. Vol. 361. N 1. P. 16. doi 10.1016/j. ica.2007.06.004
- Шарутин В.В., Шарутина О.К., Сенчурин В.С., Ткачёва А.Р. // ЖОХ. 2018. Т. 88. Вып. 7. С. 1165; Sharutin V.V.,Sharutina O.K., Senchurin V.S., Tkacheva A.R. // Russ. J.Gen. Chem. 2018. Vol. 88. N 7. P. 1456. doi 10.1134/S1070363218070174.
- Шарутин В.В., Сенчурин В.С., Мосунова Т.В. // Вестн. ЮУрГУ. 2017. Т. 9. Вып. 4. С. 61. doi 10.14529/chem170410
- Ткачёва А.Р., Шарутин В.В., Шарутина О.К. // ЖОХ.
 2019. Т. 89. Вып. 2. С. 283; Tkacheva A.R., Sharutin V.V., Sharutina O.K. // Russ. J. Gen. Chem. 2019.
 Vol. 89. N 2. P. 277. doi 10.1134/S107036321902018X
- 22. Бацанов С.С. // ЖНХ. 1991. Т. 36. № 12. С. 3015.
- SMART and SAINT-Plus. Versions 5.0. Data Collection and Processing Software for the SMART System. Bruker AXS Inc. 1998. Madison, Wisconsin, USA.
- 24. SHELXTL/PC. Versions 5.10. An Integrated System for Solving, Refining and Displaying Crystal Structures From Diffraction Data. Bruker AXS Inc. 1998. Madison, Wisconsin, USA.
- Dolomanov O.V., Bourhis L.J., Gildea R.J., Howard J.A.K., Puschmann H. // J. Appl. Cryst. 2009. Vol. 42. P. 339. doi 10.1107/S0021889808042726

Synthesis and Structure of Hexachloroplatinate Complexes

A. R. Tkacheva^a, *, V. V. Sharutin^a, O. K. Sharutina^a, and P. A. Slepukhin^b

^a National Research South Ural State University, pr. Lenina 76, Chelyabinsk, 454080 Russia *e-mail: aesya@mail.ru

^b I. Ya. Postovskii Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia

Received March 19, 2019; revised March 19, 2019; accepted March 23, 2019

Reaction of tetraorganylphosphonium and trimethylammonium chlorides with hexachloroplatinic acid hydrate in a solution of acetonitrile–diethyl sulfoxide afforded $[Ph_3PCH=CHCH_3]_2[PtCl_6]$, $[Ph_3PCH_2OCH_3]_2[PtCl_6]$ and $[Me_3NH]_2[PtCl_6]$ complexes. Structure of the obtained platinum complexes was studied by X-ray diffraction analysis.

Keywords: (propenyl)triphenylphosphonium chloride, (methoxymethyl)triphenylphosphonium chloride, trimethylammonium chloride, hexachloroplatinic acid, acetonitrile