УДК 547.621

ТЕРМОДИНАМИЧЕСКОЕ МОДЕЛИРОВАНИЕ СТАДИИ ПРЕДПОДГОТОВКИ ПОЛИХЛОРБИФЕНИЛОВ К ТЕРМОДЕСТРУКЦИИ

© 2019 г. А. В. Майорова $^{a, b, *}$, Т. В. Куликова $^{a, b}$, К. Ю. Шуняев $^{a, b}$, Т. И. Горбунова c , М. Г. Первова c

^а Институт металлургии Уральского отделения Российской академии наук, ул. Амундсена 101, Екатеринбург, 620016 Россия

*e-mail: imeturoran@mail.ru

^b Уральский федеральный университет имени первого Президента России

Б. Н. Ельцина, Екатеринбург, Россия

^c Институт органического синтеза имени И. Я. Постовского Уральского отделения Российской академии наук, Екатеринбург, Россия

Поступило в Редакцию 7 марта 2019 г. После доработки 7 марта 2019 г. Принято к печати 14 марта 2019 г.

Методом термодинамического моделирования исследовано взаимодействие технической смеси полихлорбифенилов Совол с метоксидом натрия в среде диметилсульфоксида и метанола. Определены оптимальные условия процесса: 1 атм, 115°С, 0.25 моль диметилсульфоксида, 0.085 моль метанола, мольное соотношение полихлорбифенилы:метоксид натрия = 1:4. Экспериментальные данные, полученные с использованием теоретически подобранных условий взаимодействия полихлорбифенилов с метоксидом натрия, показывают спектр положительных эффектов: экономия реагентов, исчерпывающая конверсия, образование потенциально менее токсичных веществ. Изученное взаимодействие может служить стадией предподготовки токсичных полихлорбифенилов для пиролитического метода уничтожения.

Ключевые слова: полихлорбифенилы, химическая предподготовка, термодинамическое моделирование, пиролитический метод

DOI: 10.1134/S0044460X1909018X

При разработке любого метода утилизации или уничтожения отходов необходимы такие технологии, в результате которых образование дополнительных невостребованных продуктов будет минимизировано, а конверсия исходных материалов будет исчерпывающей. Для опасных отходов, подлежащих только уничтожению, технологические требования являются еще более жесткими: полное отсутствие побочных продуктов и исчерпывающая конверсия уничтожаемых материалов. К классу опасных отходов относятся полихлорбифенилы (полихлорбифенилов), уничтожение которых запланировано до 2028 г. согласно Стокгольмской конвенции (2001 г.). Сегодня на территории России, ратифицировавшей конвенцию в 2011 г.,

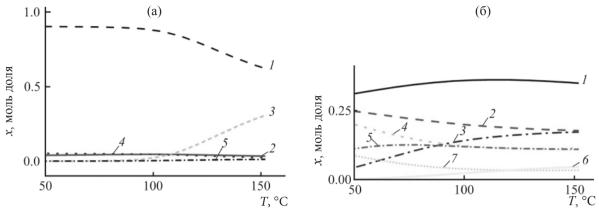
находится 35 тыс. т этих техногенных отходов в виде смесей полихлорбифенилов марок Совол, Совтол-10 (суммарно 21 тыс. т) и Трихлорбифенил (14 тыс. т) [1]. Смесь полихлорбифенилов марки Совол является самой масштабной из всех произведенных видов опасных отходов среди технических полихлорбифенилов. Согласно ГСО № 7821-2000, разработанному на основе смеси Совол (ОСТ 6-01-24-75), продукт состоит из 35 конгенеров: три- (2.1%), тетра- (19.1%), пента- (51.5%), гекса- (17.9%) и гептахлорбифенилов (1.9%) [2].

Сегодня единственным технологически развитым и эффективным способом уничтожения полихлорбифенилов считается пиролитический метод [3]. Однако в процессе сжигания этих хло-

Схема 1.

x = 3-7 (1); y = 2, 3; a = 1-3 (2); y = 3-5; b = 1, 2 (3); y = 2-4; a = 1, 2; b = 1, 2 (4).

рароматических соединений в присутствии воздуха образуются такие высокотоксичные соединения как хлор, оксиды азота, фосген, полихлордибензофураны и полихлордибензодиоксины [4]. Логично предположить, что перед сжиганием смесей полихлорбифенилов необходимо предварительно частично или полностью удалить атомы хлора из структуры конгенеров для минимизации образования токсичных соединений в процессе деструкции. Этого можно добиться с помощью химического метода - гидродехлорирования [5]. Но реализация реакций гидродехлорирования осуществляется в растворах с применением дорогостоящих катализаторов (обычно палладиевых), требующих очистки и регенерации, и поэтому с помощью восстановительного дехлорирования осуществить предподготовку больших объемов смесей полихлорбифенилов к сжиганию слишком затратно. Другой вариант удаления атомов хлора из конгенеров полихлорбифенилов – это использование реакций нуклеофильного замещения на другие функциональные группы, введение которых в бифенильную структуру потенциально приводит к снижению токсичности исходных материалов и не способствует образованию высокотоксичных продуктов при сжигании новых производных.


Наиболее простыми методиками нуклеофильного замещения (S_N) атомов хлора в конгенерах полихлорбифенилов являются их взаимодействия с алкоксидами щелочных металлов [6]. Здесь особую трудность представляет сложный состав смесей полихлорбифенилов, так как реакционная способность индивидуальных конгенеров является различной и зависит от количества и расположения атомов хлора в структуре, что было доказано квантово-химическими расчетами на примере реакций нуклеофильного замещения [7, 8]. Этим можно объяснить отсутствие исчерпывающей кон-

версии во взаимодействиях смеси полихлорбифенилов Совол с алкоксидами щелочных металлов: МеО⁻ [9], EtO⁻, PrO⁻, *i*-PrO⁻, *n*-BuO⁻, *sec*-BuO⁻ и *tert*-BuO⁻ [10]. Впоследствии с помощью метода термодинамического моделирования [11] удалось подобрать такие реакционные условия, которые способствовали исчерпывающей конверсии смеси полихлорбифенилов Совол с МеО⁻ [12]. Это взаимодействие осуществлено при мольном соотношении смесь Совол:МеОNа, равном 1:5, температуре 170°С и давлении 1 атм в среде ДМСО.

Кроме того, дальнейшее совершенствование экспериментальных подходов позволило осуществить полное превращение смеси Совол 1 под действием MeO⁻ (мольное соотношение 1:MeONa = 1:5) при гораздо более низкой температуре в 114–115°С благодаря введению в реакционную массу абсолютного метанола для увеличения растворимости хлораренов в среде растворителей (ДМСО и МеОН) [13, 14]. При этом через 8 ч наблюдалось образование метокси- (2, 21.5%), гидрокси- (3, 51.0%) и метоксигидроксипроизводных (4, 27.5%) полихлорбифенилов (схема 1).

Метод термодинамического моделирования для данного вида взаимодействия не использовался, хотя, как показано ранее в работах [15, 16], указанный теоретический подход в исследованиях помогает подобрать условия эксперимента, позволяющие увеличить степень превращения исходных конгенеров смеси полихлорбифенилов, минимизировать образование токсичных веществ, значительно снизить затраты на расходные материалы, трудозатраты и электроэнергию.

Настоящая работы направлена на исследование взаимодействия смеси полихлорбифенилов Совол с MeONa в среде ДМСО и MeOH методом термодинамического моделирования и верификация

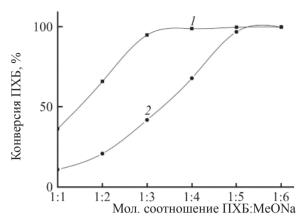
Рис. 1. Зависимость равновесного состава конгенеров и производных полихлорбифенилов от температуры. Исходный состав: (а) 0.025 моль смеси полихлорбифенилов Совол 1, 0.025 моль МеONa, 0.25 моль ДМСО; (б) 0.025 моль смеси полихлорбифенилов Совол 1, 0.025 моль МеONa, 0.25 моль ДМСО, 0.085 моль МеOH (50–150°C, 1 атм). Сумма мольных долей всех конгенеров и производных полихлорбифенилов равна 1. (а), $I-C_{12}H_7Cl_3$, $2-C_{12}H_6Cl_4$, $3-C_{12}H_3Cl_5(OCH_3)_2$, $4-C_{12}H_5Cl_5$, $5-C_{12}H_3Cl_6(OCH_3)$. (б), $I-C_{12}H_7(OCH_3)_3$, $2-C_{12}H_7Cl(OCH_3)_2$, $3-C_{12}H_7Cl_2(OCH_3)$, $4-C_{12}H_7Cl(OCH_3)_3$, $5-C_{12}H_7Cl_3$, $6-C_{12}H_7Cl_2(OCH_3)_3$, $1-C_{12}H_7Cl_3$, $1-C_{12}H_$

полученных расчетных данных с экспериментом с целью разработки метода химической предподготовки токсичных полихлорбифенилов к сжиганию.

Термодинамическое моделирование процесса химического взаимодействия смеси конгенеров полихлорбифенилов Совол 1 с MeONa в среде ДМСО и МеОН. Необходимым условием для проведения метода термодинамического моделирования является наличие базы данных по термохимическим свойствам исследуемых соединений. Для выполнения метода термодинамического моделирования необходимо знать следующие термохимические свойства метокси- (2), гидрокси- (3) и метоксигидроксипроизводных (4) полихлорбифенилов: стандартную энтальпию образования (ΔH_{298}°), приращение энтальпии от 0 до 298 К $(H_{298}^{\circ} - H_{0}^{\circ})$, стандартную теплоемкость $(C_{\rm p}^{\circ}_{298})$ и ее зависимость от температуры $[C_{\rm p}(T)]$, энтропию (S_{298}°). Отметим, что термохимические свойства для метокси- (2) и гидроксипроизводных (3) полихлорбифенилов рассчитаны нами ранее и представлены в работах [18, 19]. Данные по метоксигидроксипроизводным 4 полихлорбифенилов в литературе отсутствуют.

Расчет термохимических свойств метоксигидроксипроизводных 4 полихлорбифенилов осуществлен с помощью разработанного ранее алгоритма, основанного на анализе структур молекул [20]. Для расчетов используется программный комплекс HSC 8.2.0, содержащий модуль Benson Estimation. Рассчитанные термохимические параметры для производных полихлорбифенилов 4 введены в базу данных HSC 8.2.0 и применены при моделировании взаимодействия конгенеров полихлорбифенилов смеси Совол 1 с MeONa в среде ДМСО и MeOH. Они представлены в табл. 1.

С использованием метода термодинамического моделирования (модуль Equilibrium Composition) и программного комплекса HSC проведено моделирование взаимодействия смеси полихлорбифенилов Совол 1 (0.025 моль) с MeONa (0.025-0.15 моль) в среде ДМСО (0.25 моль) в отсутствие и в присутствии сорастворителя МеОН (0.085 моль). Экспериментально установлено, что температура кипения смеси растворителей ДМСО и МеОН, взятых в указанном мольном соотношении, составляетпримерно 114-115°C[13,14]. Термодинамическое моделирование проводили в диапазоне температур от 50 до 150°C. При создании файла для моделирования в состав продуктов разложения включали хлорид натрия, моно- и диоксид углерода, воду и хлороводород. Термохимические свойства данных веществ были взяты из базы данных HSC. Моделирование выполнено при атмосферном давлении. Алгоритм расчета равновесного состава с помощью программного комплекса HSC подробно описан в работе [17].


Таблица 1. Рассчитанные термохимические свойства производных полихлорбифенилов 4

	ΔH°_{298} ,	<i>S</i> °, Дж∕	$\Delta G^{\circ}_{298},$ кДж /моль	$H_{298}^{\circ} - H_{0}^{\circ}$ кДж/моль	$C_{\rm p} = a + b \times 10^{-3} T + c \times 10^{5} T^{-2} + d \times 10^{-6} T^{2}$			
Соединение	Дж /моль				Дж/(моль·К) [17]			
		(моль·К)	, ,		а	b	С	d
$C_{12}H_6Cl_2(OCH_3)OH$	-214.01	530.27	-28.97	37.19	71.672	702.524	-8.778	-279.123
$C_{12}H_5Cl_3(OCH_3)OH$	-241.22	557.41	-50.53	39.46	90.750	679.174	-6.722	-269.650
$C_{12}H_5Cl_2(OCH_3)_2OH$	-378.34	573.81	-135.18	43.13	75.971	799.516	-0.013	-313.966
$C_{12}H_4Cl_4(OCH_3)OH$	-268.43	584.55	-72.09	41.73	109.828	655.813	-4.667	-260.176
$C_{12}H_4Cl_3(OCH_3)_2OH$	-405.55	600.95	-156.74	45.41	111.171	717.944	-2.043	-230.627
$C_{12}H_4Cl_3(OCH_3)(OH)_2$	-418.53	583.77	-205.15	42.14	102.636	681.342	-4.770	-268.246
$C_{12}H_3Cl_4(OCH_3)(OH)_2$	-445.74	610.91	-226.71	44.41	121.714	657.882	-2.715	-258.832
$C_{12}H_5Cl_2(OCH_3)(OH)_2$	-391.32	556.63	-183.59	39.87	83.558	704.803	-6.826	-277.780
$C_{12}H_6Cl(OCH_3)(OH)_2$	-364.11	529.49	-162.03	37.58	64.480	728.263	-8.881	-287.253
$C_{12}H_6(OCH_3)(OH)_3$	-514.21	528.71	-295.09	38.00	57.288	753.992	-8.985	-295.383
$C_{12}H_6(OCH_3)_2(OH)_2$	-501.23	545.89	-246.68	41.25	59.446	813.581	-4.641	-286.924
$C_{12}H_6(OCH_3)_3(OH)$	-488.25	563.06	-198.27	44.53	78.746	811.481	-4.645	-199.924
$C_{12}H_5Cl(OCH_3)(OH)_3$	-541.42	555.85	-316.65	40.27	76.366	730.531	-6.929	-285.910
$C_{12}H_5(OCH_3)(OH)_4$	-691.52	555.07	-449.71	40.68	69.174	756.260	-7.033	-294.040
$C_{12}H_5(OCH_3)_2(OH)_3$	-678.54	572.24	-401.30	43.94	69.393	822.838	-2.198	-294.462
$C_{12}H_5(OCH_3)_3(OH)_2$	-665.56	589.42	-352.89	47.21	106.040	758.213	-6.593	-127.987
$C_{12}H_5(OCH_3)_4(OH)$	-652.58	606.60	-304.48	50.48	92.483	874.442	1.732	-191.523
$C_{12}H_4Cl_2(OCH_3)(OH)_3$	-568.63	582.99	-338.21	42.54	95.444	707.071	-4.874	-276.436
$C_{12}H_4Cl(OCH_3)(OH)_4$	-718.73	582.21	-471.27	42.95	88.252	732.800	-4.977	-284.566
$C_{12}H_4(OCH_3)(OH)_5$	-868.63	582.10	-604.33	43.35	81.060	758.529	-5.081	-292.696
$C_{12}H_4(OCH_3)_2(OH)_4$	-855.85	598.60	-555.92	46.62	73.473	853.242	1.733	-328.883
$C_{12}H_4(OCH_3)_3(OH)_3$	-842.87	615.85	-507.53	49.88	65.888	948.056	8.545	-365.069
$C_{12}H_4(OCH_3)_4(OH)_2$	-829.89	632.96	-459.10	53.15	58.300	1042.769	15.358	-401.256
$C_{12}H_4(OCH_3)_5(OH)$	-816.91	650.14	-410.69	56.42	50.713	1137.483	22.171	-766.482
$C_{12}H_4Cl_2(OCH_3)_2(OH)_2$	-555.65	600.50	-289.90	45.81	87.857	801.785	1.939	-312.623
$C_{12}H_4Cl_2(OCH_3)_3(OH)$	-542.67	532.74	-241.39	49.08	80.270	896.598	8.752	-348.809
$C_{12}H_4Cl(OCH_3)_2(OH)_3$	-705.75	599.38	-422.86	46.21	80.665	827.513	1.836	-320.753
$C_{12}H_4Cl(OCH_3)_3(OH)_2$	-692.77	616.56	-374.45	49.48	91.037	857.595	4.098	-274.659
$C_{12}H_4Cl(OCH_3)_4(OH)$	-679.79	633.74	-326.04	52.75	65.492	1017.041	15.462	-393.126
$C_{12}H_5Cl(OCH_3)_2(OH)_2$	-528.44	573.03	-268.24	43.54	68.779	825.245	-0.116	-322.096
$C_{12}H_5Cl(OCH_3)_3(OH)$	-515.46	590.20	-219.83	46.81	61.192	920.059	6.697	-358.283
$C_{12}H_3Cl_4(OCH_3)_2(OH)$	-419.78	509.19	-129.89	50.94	114.127	752.595	4.098	-295.019
$C_{12}H_3C_{13}(OCH_3)_3(OH)$	-569.88	644.48	-262.95	51.35	99.348	873.138	10.808	-339.336
$C_{12}H_3Cl_3(OCH_3)_2(OH)_2$	-582.86	627.31	-311.36	48.08	106.935	778.324	3.995	-303.149
$C_{12}H_3Cl_3(OCH_3)(OH)_3$	-595.84	610.13	-359.77	44.81	92.278	763.789	2.818	-368.878
$C_{12}H_3Cl_2(OCH_3)_2(OH)_3$	-732.96	625.95	-444.25	48.48	99.743	804.053	3.891	-311.279
$C_{12}H_3Cl_2(OCH_3)_3(OH)_2$	-719.98	643.70	-396.01	51.75	92.156	898.867	10.704	-347.466
$C_{12}H_3Cl_2(OCH_3)_4(OH)$	-707.00	660.88	-347.6	55.02	84.978	992.109	17.414	-381.782
$C_{12}^{12}H_3Cl_2(OCH_3)(OH)_4$	-745.94	609.35	-492.83	45.22	107.330	709.339	-2.922	-275.092
$C_{12}^{12}H_3Cl(OCH_3)(OH)_5$	-896.04	608.57	-625.89	45.62	100.138	735.068	-3.025	-283.222
$C_{12}^{12}H_3Cl(OCH_3)_5(OH)_1$	-844.12	677.28	-432.25	58.69	69.995	1113.287	24.175	-447.194
$C_{12}^{12}H_3Cl(OCH_3)_4(OH)_2$	-857.1	660.10	-480.66	56.46	77.378	1019.309	17.414	-391.782
$C_{12}H_3Cl(OCH_3)_3(OH)_3$	-870.07	642.95	-529.07	52.04	84.965	924.595	10.601	-355.596
$C_{12}H_3Cl(OCH_3)_2(OH)_4$	-883.06	625.74	-577.48	48.75	92.551	829.782	3.788	-319.409
$C_{12}H_3(OCH_3)_2(OH)_5$	-1033.16	624.96	-710.54	49.29	85.360	855.511	3.684	-327.539
$C_{12}H_3(OCH_3)_2(OH)_5$ $C_{12}H_3(OCH_3)(OH)_6$	-1046.14	607.79	-758.95	46.03	68.253	849.803	3.129	-404.488
$C_{12}H_3(OCH_3)(OH)_6$ $C_{12}H_3(OCH_3)_6(OH)$	-981.24	693.67	-516.9	62.36	55.012	1234.465	30.936	-472.285
$C_{12}H_3(OCH_3)_6(OH)_2$	-994.22	676.49	-565.31	59.09	62.905	1138.648	24.046	-434.696
$C_{12}H_3(OCH_3)_4(OH)_3$	-1007.2	659.32	-613.72	55.83	70.186	1045.038	17.310	-399.912
$C_{12}H_3(OCH_3)_4(OH)_4$ $C_{12}H_3(OCH_3)_3(OH)_4$	-1007.2 -1020.18	642.14	-662.13	52.56	77.773	950.324	10.497	-363.726
12113(00113/3(011)4	1020.10	0.2.1	002.13	22.30	,,.,,	750.521	10.17	303.720

На рис. 1 показан равновесный состав системы, полученный при моделировании взаимодействия полихлорбифенилов Совол 1 с МеОNа в мольном соотношении 1:1 в среде ДМСО в отсутствие и в присутствии сорастворителя МеОН. При взаимодействии смеси полихлорбифенилов Совол 1 с MeONa в отсутствие сорастворителя MeOH в составе продуктов реакции наибольшую концентрацию имеют непрореагировавшие трихлорбифенилы (до 0.9 мол. долей), а также тетра- и пентахлорбифенилы (рис. 1а). Только с увеличением температуры процесса концентрация в продуктах реакции исходных полихлорбифенилов 1 снижается, а метоксипроизводных полихлорбифенилов 2 увеличивается. Введение к ДМСО сорастворителя МеОН (рис. 1б) приводит к резкому снижению концентрации исходных конгенеров полихлорбифенилов смеси Совол 1 уже при 50°C, а в продуктах реакции в значительных концентрациях присутствуют как метокси- (2), так и гидроксипроизводные (3). Концентрация метоксигидроксипроизводных полихлорбифенилов 4 в продуктах реакции незначительна и составляет менее 10-7 мол. долей. Полученные данные показывают, что метоксигидроксипроизводные полихлорбифенилов 4 являются термодинамически нестабильными (промежуточными) продуктами. В реакциях нуклеофильного замещения в равновесных условиях продуктами являются преимущественно метокси-(2) и гидроксипроизводные (3).

Отметим, что МеОН является протонным растворителем и его использование в избытке может препятствовать процессу замещения. Ранее экспериментально установлено, что оптимальное массовое соотношение ДМСО–МеОН, при котором не зарегистрировано ингибирование реакции замещения конгенеров смеси полихлорбифенилов Совол 1 с MeONa, составляет 1:7 (соответствует мольному 1:3) [13]. Это соотношение использовалось в дальнейших исследованиях.

На рис. 2 представлены результаты термодинамического моделирования по оптимизации мольного соотношения MeONa—смесь 1, необходимого для полного замещения атомов хлора в структуре конгенеров полихлорбифенилов на метокси- и гидроксигруппы. Установлено, что замещение атомов хлора в структуре конгенеров полихлорби-

Рис. 2. Конверсия конгенеров полихлорбифенилов смеси Совол 1 в расчете на мольное соотношение смесь полихлорбифенилов 1:MeONa: I - 0.085 моль MeOH, 2 - без MeOH. Условия: 115°C , 1 атм.

фенилов Совол 1 на метокси- и гидроксигруппы в присутствии и в отсутствие сорастворителя МеОН протекает полностью при мольных соотношениях смесь полихлорбифенилов 1-МеОNа, равных 1:4 и 1:6 соответственно (рис. 2). Из вышесказанного можно сделать вывод, что добавление к ДМСО сорастворителя МеОН приводит к резкому снижению концентрации исходных конгенеров полихлорбифенилов смеси Совол 1, а в продуктах реакции присутствуют как метокси- 2, так и гидроксипроизводные 3. При этом снижается количество МеОNа, необходимого для полной конверсии смеси Совол 1.

Полученные результаты термодинамического моделирования следует рассматривать как максимально возможные значения конверсии, при которых не учитываются каталитические и кинетические эффекты. Реальный процесс, протекающий за определенный промежуток времени, даже будучи разрешенным термодинамически, может быть кинетически подавлен из-за ничтожно малой скорости протекания. По результатам метода термодинамического моделирования выявлены оптимальные условия взаимодействия, приводящие к максимальной конверсии смеси Совол 1 в реакции с MeONa в среде MeOH и ДМСО при мольном соотношении растворителей 1:3 соответственно, температуре 115°C (максимально возможная из-за кипения смеси растворителей), мольном соотношении смесь полихлорбифенилов 1:MeONa = 1:4

Таблица 2. Данные о продуктах взаимодействия смеси полихлорбифенилов Совол 1 с MeONa в среде ДМСО в присутствии MeOH при 115° C, время реакции -10° ч

$N_{\overline{0}}$	Количество заместителей	Молекулярный ион, m/z	Число изомеров	Относительное содержание, %
2	y = 2, a = 1	252	2	1.5
2	y = 2, a = 2	282	11	12.0
2	y = 3, a = 1	286	7	5.8
3	y = 3, b = 1	272	4	4.9
2	y = 2, a = 3	312	5	1.7
2	y = 3, a = 2	316	2	0.5
3	y = 3, b = 2	288	5	0.9
3	y = 4, b = 1	306	15	31.1
4	y = 2, a = 2, b = 1	298	6	2.6
4	y = 3, a = 1, b = 1	302	17	19.9
3	y = 4, b = 2	322	11	11.2
3	y = 5, b = 1	340	3	0.7
4	y = 3, a = 1, b = 2	318	1	0.1
4	y = 3, a = 2, b = 1	332	5	1.5
4	y = 4, a = 1, b = 1	336	10	3.4
4	y = 4, a = 1, b = 2	352	1	2.1
3	y = 5, b = 2	356	1	0.1
	•		Итого:	100

и давлении в 1 атм. Время проведения реакции может быть подобрано только экспериментально.

Экспериментальные исследования процесса химического взаимодействия смеси конгенеров полихлорбифенилов Совол 1 с MeONa в среде ДМСО и МеОН. Используемые условия реакции соответствовали оптимальным данным, полученным из результатов термодинамического моделирования. Время химического взаимодействия смеси Совол 1 с МеОНа в среде ДМСО и МеОН составляло 10 ч и выбрано с целью сравнения результатов эксперимента с данными, полученными при взаимодействии с MeONa без использования МеОН в работе [12]. За отсчет времени реакции принимали достижение температуры глицериновой бани в 114-115°C после смешения всех реагентов. Через каждые 2 ч из реакционной массы отбирали пробы, обрабатывали по методике, изложенной в экспериментальной части и проводили анализ в условиях ГХ-ПИД и ГХ-МС. По результатам анализа установлено образование более ста новых производных. Их относительное содержание представлено в табл. 2.

Полученные данные показывают, что в ходе взаимодействия смеси полихлорбифенилов 1 с МеОNа в среде ДМСО и МеОН происходит серия реакций, протекающих с разными скоростями и различными наборами конечных продуктов в зависимости от структуры исходного конгенера полихлорбифенилов. При этом одновременно или последовательно может протекать образование метокси- (2), гидрокси- (3) и метоксигидроксипроизводных (4) полихлорбифенилов, что совпадает с результатами, полученными ранее [12, 13]. Расхождение результатов метода термодинамического моделирования и эксперимента по концен-

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 89 № 9 2019

трации образующихся метоксигидроксипроизводных полихлорбифенилов 4 связано с невозможностью учета при моделировании кинетических факторов протекания реакции. При проведении реакции в условиях, полученных с помощью термодинамического моделирования, в течение 10 ч достигается полная конверсия исходной смеси полихлорбифенилов 1, но необходимое для этого количество MeONa снижено в сравнении с работой [12], что, безусловно, является положительным результатом. Кроме того, согласно элементному анализу, смесь полихлорбифенилов Совол 1 содержит следующие количественные вклады химических элементов, %: С 44.28, Н 1.65, СІ 54.07. Смесь продуктов 2-4, выделенная после взаимодействия смеси полихлорбифенилов 1 с MeONa в указанных условиях, характеризуется следующими показателями элементного анализа, %: С 53.73, H 4.60; Cl 27.26, т. е. фактически проведение данного химического процесса позволило примерно в 2 раза снизить содержание хлора как элемента в конечных продуктах. Следовательно, при попытке сжигания смеси продуктов 2-4, потенциально будет снижено образование опасных хлорсодержащих веществ [4].

Таким образом, в результате метода термодинамического моделирования подобраны оптимальные экспериментальные условия взаимодействия смеси полихлорбифенилов Совол 1 с MeONа в среде ДМСО и MeOH, реализация которых приводит к исчерпывающей конверсии исходных веществ, к экономии реагентов, к потенциальному снижению токсичности полученных продуктов 2—4 по сравнению со смесью Совол 1 и к уменьшению выбросов токсичных хлорсодержащих веществ при сжигании синтезированных производных полихлорбифенилов. Полученные результаты имеют важное значение при разработке комплексного подхода уничтожения полихлорбифенилов посредством двух стадий: химической и пиролитической.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В качестве исходных объектов в настоящей работе использована техническая смесь полихлорбифенилов Совол (ОСТ 6-01-24-75), металлический натрий, свежевысушенный и перегнанный МеОН ($d_A^{20} = 0.7917 \text{ г/мл}$), ДМСО ($d_A^{20} = 1.10 \text{ г/мл}$). Все

реагенты имеют квалификацию ХЧ и произведены в России.

Методика взаимодействия смеси полихлорбифенилов Совол 1 с MeONа в среде ДМСО и МеOH. Смесь 2.3 г (0.1 моль) металлического натрия и 30.0 мл (V_0) абсолютного MeOH перемешивали до окончания образования MeONa (0.1 моль). Отгонкой удаляли избыток MeOH до тех пор, пока реакционная масса не начинает пениться. Измеряли объем отогнанного MeOH (V_1) и рассчитывали необходимое количество ДМСО. По уравнению (1) рассчитывали необходимое для образования MeONa *in situ* количество MeOH (объем V_2).

$$2\text{Na} + 2\text{MeOH} \rightarrow 2\text{MeONa} + \text{H}_2\uparrow.$$
 (1)

Затем определяли количество свободного МеОН, оставшегося в реакционной колбе (V_3) по формуле (2).

$$V_3 = V_0 - (V_1 + V_2). (2)$$

Исходя из V_3 , рассчитывали количество ДМСО так, чтобы мольное соотношение MeOH–ДМСО соответствовало 1:3.

В указанных здесь условиях $V_1 = 22.5$ мл (m = 17.78 г), $V_2 = 4$ мл (m = 3.20 г), $V_3 = 3.5$ мл (m = 2.77 г, 0.085 моль). Далее, исходя из показателя V_3 , вносили 19.25 г (0.25 моль, 17.5 мл) ДМСО, реакционную массу перемешивали при 115° С в течение 0.1 ч, затем вносили 8.2 г (0.025 моль) технической смеси Совол 1 (соотношение 1:MeONa = 1:4). Далее при интенсивном перемешивании и при указанной температуре бани проводили процесс в течение 10 ч. По окончании смесь охлаждали, вносили 50 мл разбавленной соляной кислоты до рН < 7 и экстрагировали смесь толуолом (4×20 мл). Экстракт анализировали методом ГХ-МС.

Качественная и количественная оценка продуктов взаимодействия. Для для идентификации и количественной оценки продуктов реакций использовали газовый хромато-масс-спектрометр Agilent GC 7890A MSD 5975C inert XL EI/CI с кварцевой капиллярной колонкой HP-5MS (длина 25 м, внутренний диаметр 0.25 мм, толщина пленки неподвижной фазы 0.25 мкм, полидиметилсилоксан, 5% привитых фенильных групп) и квадрупольным масс-спектрометрическим детектором (ГХ-МС). Газ-носитель — гелий, деление потока — 1:50, температура колонки — начальная 40°С (изотерма 3 мин), программи-

рование со скоростью 10 град/мин до 280° С (изотерма 50 мин), температура испарителя — 250° С, детектора — 300° С.

Относительную количественную оценку продуктов реакции проводили по методу внутренней нормализации, рассчитывая вклады отдельных соединений в суммарную площадь пиков, и по полученным расчетным площадям пиков оценивали содержание продуктов. При обработке хроматограмм, зарегистрированных в условиях ГХ-МС, производилась реконструкция по селективным ионам, отвечающим определенным типам производных, что позволяло идентифицировать индивидуальные соединения при совместном элюировании. Анализируя продукты в режиме сканирования по селективным ионам конгенеров полихлорбифенилов, подтверждали данные о непрореагировавших конгенерах.

ФОНДОВАЯ ПОДДЕРЖКА

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант № 18-29-24126) с использованием оборудования Центра коллективного пользования «Спектроскопия и анализ органических соединений».

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Трегер Ю.А. // Хим. ж. 2013. №1. С. 30.
- Кириченко В.Е., Первова М.Г., Промышленникова Е.П., Пашкевич К.И. // Аналитика и контроль. 2000. Т. 4. № 1. С. 41.
- 3. Занавескин Л.Н., Аверьянов В.А. // Усп. хим. 1998. T. 67. № 8. C. 788; Zanaveskin L.N., Averyanov V.A. // Russ. Chem. Rev. 1998. Vol. 67. N 8. P. 713. doi 10.1070/RC1998v067n08ABEH000412
- Занавескин Л.Н., Аверьянов В.А., Трегер Ю.А. // Усп. хим. 1996. Т. 65. № 7. С. 667; Zanaveskin L.N., Averyanov V.A., Treger Yu.A. // Russ. Chem. Rev. 1996. Vol. 65. N 7. P. 617. doi 10.1070/RC1996v065n07ABEH000271
- Wu B.-Z., Chen H.-Y., Wang S.-J., Wai C.-M., Liao W., Chiu K.-H. // Chemosphere. 2012. Vol. 88. N 7. P. 757. doi 10.1016/j.chemosphere.2012.03.056

- 6. Горбунова Т.И., Первова М.Г., Салоутин В.И., Чупахин О.Н. Химическая функционализация полихлорированных бифенилов: новые достижения. Екатеринбург: Уральский университет, 2018. 728 с.
- Gorbunova T.I., Subbotina J.O., Saloutin V.I., Chupakhin O.N. // J. Hazard. Mater. 2014. Vol. 278. P. 491. doi 10.1016/j.jhazmat.2014.06.035
- 8. Горбунова Т.И., Субботина Ю.О., Салоутин В.И., Чупахин О.Н. // ЖОХ. 2014. Т. 84. № 3. С. 428; Gorbunova T.I., Saloutin V.I., Chupakhin O.N., Subbotina Yu.O.// Russ. J. Gen. Chem. 2014. Vol. 84. № 3. P. 486. doi 10.1134/S107036321403013X
- 9. Забелина О.Н., Горбунова Т.И., Первова М.Г., Кириченко В.Е., Запевалов А.Я., Салоутин В.И. // ЖПХ. 2004. Т. 77. № 9. С. 1533; Zabelina O.N., Gorbunova T.I., Pervova M.G., Kirichenko V.E., Zapevalov A. Ya., Saloutin V.I., Chupakhin O.N. // Russ. J. Appl. Chem. 2004. Vol. 77. N 9. P. 1523. doi 10.1007/s11167-005-0064-y
- 10. Забелина О.Н., Ятлук Ю.Г., Кириченко В.Е., Первова М.Г., Назаров А.С., Салоутин В.И. // Масс-спектрометрия. 2005. Т. 2. № 2. С. 139.
- 11. Метод, универсальный алгоритм и программа термодинамического расчета многокомпонентных гетерогенных систем / Под ред. Г.Б. Синярева. М.: МВТУ, 1978. 56 с.
- 12. Kulikova T.V., Maiorova A.V., Bykov V.A., Shunyaev K.Y., Gorbunova T.I., Pervova M.G., Plotnikova K.A. // Intern. J. Environ. Sci. Technol. 2018. P. 1. doi 10.1007/s13762-018-2022-2
- 13. Плотникова К.А., Первова М.Г., Горбунова Т.И., Хайбулова Т.Ш., Боярский В.П., Салоутин В.И., Чупахин О.Н. // Докл. АН. 2017. Т. 476. № 1. С. 45; Plotnikova K.A., Pervova M.G., Gorbunova T.I., Saloutin V.I., Chupakhin O.N., Khaibulova T.S., Boyarskii V.P. // Doklady Chem. 2017. Vol. 476. № 1. Р. 206. doi 10.1134/S0012500817090038.
- 14. Боярский В.П., Хайбулова Т.Ш., Горбунова Т.И., Первова М.Г., Плотникова К.А., Салоутин В.И., Чупахин О.Н. Патент 2623216 (2016) // 2017. № 18.
- 15. Плотникова К.А., Горбунова Т.И., Первова М.Г., Куликова Т.В., Майорова А.В., Салоутин В.И., Чупахин О.Н. // ЖОХ. 2017. Т. 87. № 5. С. 742; Plotnikova К.А., Gorbunova Т.І., Pervova М.G., Saloutin V.I., Chupakhin O.N., Kulikova T.V., Maiorova A.V. // Russ. J. Gen. Chem. 2017. Vol. 87. N 5. P. 934. doi 10.1134/ S1070363217050073
- 16. *Куликова Т.В., Майорова А.В., Быков В.А., Шуняев К.Ю., Леонтьев Л.И.* // Хим. технол. 2011. Т. 12. № 1. С. 20.

- 17. HSC Chemistry. Outotec Technologies. http://www.outotec.com/products/digital-solutions/hsc-chemistry/hsc-gem---equilibrium-compositions-module/ (дата обращения: 10.02.2019).
- 18. Куликова Т.В., Майорова А.В., Шуняев К.Ю., Горбунова Т.И., Салоутин В.И., Чупахин О.Н. // Экология и промышленность России. 2013. № 11. С. 23.
- 19. Куликова Т.В., Майорова А.В., Шуняев К.Ю., Горбунова Т.И., Салоутин В.И., Чупахин О.Н. // ЖОХ.
- 2013. T. 83. № 5. C. 754; *Kulikova T.V., Mairova A.V., Shunyaev K.Yu., GorbunovaT.I., Saloutin V.I., Chupakhin O.N.* // Russ. J. Gen. Chem. 2013. Vol. 83. N 5. P. 893. doi 10.1134/S1070363213050034
- Kulikova T.V., Mayorova A.V., Bykov V.A., Shunyaev K.Y., Il'inykh N.I. // Struct. Chem. 2013. Vol. 24. N 1. P. 285. doi 10.1007/s11224-012-0076-1

Thermodynamic Modeling of The Pretreatment Stage of Polychlorobiphenyls to Thermodestruction

A. V. Mayorova^{a, b, *}, T. V. Kulikova^{a, b}, K. Yu. Shunyaev^{a, b}, T. I. Gorbunova^c, and M. G. Pervova^c

^a Institute of Metallurgy of the Ural Branch of the Russian Academy of Sciences,
ul. Amundsena 101, Yekaterinburg, 620016 Russia
*e-mail: imeturoran@mail.ru

^b Ural Federal University, Yekaterinburg, Russia
^c I.Ya. Postovskii Institute of Organic Synthesis of the Ural Branch of the Russian Academy of Sciences,
Yekaterinburg, Russia

Received March 7, 2019; revised March 7, 2019; accepted March 14, 2019

The reaction of a technical mixture of polychlorobiphenyls Sovol with sodium methoxide in dimethyl sulfoxide and methanol was studied using the thermodynamic modeling method. The optimal process conditions were determined: 1 atm, 115°C, 0.25 mol of dimethyl sulfoxide, 0.085 mol of methanol, the molar ratio of polychlorobiphenyls:sodium methoxide = 1:4. Experimental data obtained using theoretically selected conditions for the interaction of polychlorobiphenyls with sodium methoxide show a spectrum of positive effects: savings of reagents, exhaustive conversion, and the formation of potentially less toxic substances. The studied interaction can serve as a stage for the pretreatment of toxic polychlorinated biphenyls for the pyrolytic method of destruction.

Keywords: polychlorobiphenyls, thermodynamic modeling, pyrolytic method