УДК 546.23

# СИНТЕЗ СЕЛЕНОСОДЕРЖАЩИХ НАНОБИОКОМПОЗИТОВ НА ОСНОВЕ ГУМИНОВЫХ ВЕЩЕСТВ ИЗ БИС(2-ФЕНИЛЭТИЛ) ФОСФИНОДИСЕЛЕНОАТА НАТРИЯ

© 2020 г. М. В. Лесничая<sup>*a*,\*</sup>, Г. П. Александрова<sup>*a*</sup>, С. Ф. Малышева<sup>*a*</sup>, Н. А. Белогорлова<sup>*a*</sup>, А. Н. Сапожников<sup>*b*</sup>, Г. Долмаа<sup>*c*</sup>, Б. Г. Сухов<sup>*a*</sup>

<sup>а</sup> Иркутский институт химии имени А. Е. Фаворского Сибирского отделения Российской академии наук, ул. Фаворского 1, Иркутск, 664033 Россия

<sup>b</sup> Институт геохимии имени А. П. Виноградова Сибирского отделения Российской академии наук, Иркутск, 664033 Россия

<sup>с</sup> Институт химии и химической технологии академии наук Монголии, Улан-Батор, 210351 Монголия \*e-mail: mlesnichaya@mail.ru

> Поступило в Редакцию 11 июня 2019 г. После доработки 16 июля 2019 г. Принято к печати 20 июля 2019 г.

Новые водорастворимые селеносодержащие нанобиокомпозиты синтезированы окислением бис(2-фенилэтил)фосфинодиселеноата натрия перекисью водорода с использованием гуминовых веществ в качестве стабилизатора наночастиц селена. Посредством комплекса физико-химических методов исследования установлено, что полученные гибридные нанокомпозиты формируются в виде сферических частиц гексагонального селена размером 13–30 нм, диспергированных в матрице гуминовых веществ.

Ключевые слова: селен, нанокомпозит, гуминовые вещества, бис(2-фенилэтил)фосфинодиселеноат натрия, вторичные фосфиноселениды

DOI: 10.31857/S0044460X20010205

Повышенный интерес исследователей к селену и к его соединениям обусловлен чрезвычайно важной ролью данного биогенного элемента в поддержании, функционировании и регулировании жизнедеятельности живых организмов [1, 2]. Селен, являясь химически активным элементом, легко вступает в окислительно-восстановительные реакции, образуя множество соединений [2]. В особую группу следует выделить органические селеносодержащие биологически-активные соединения (селенопротеины, селеноцистеин, селенометионин и др.), участвующие в организме в целом каскаде биохимических реакций, сопровождающих процесс нейтрализации постоянно образующихся свободных радикалов [3].

В результате интенсивного развития прикладных аспектов нанотехнологии разработаны гибридные нанокомпозиты, представляющие собой наночастицы элементного селена (нано-Se<sup>0</sup>), поверхность которых пассивирована стабилизирующими органическими молекулами различной природы [4-6]. Селеносодержащие нанокомпозиты, объединяющие в себе свойства как нано-Se<sup>0</sup>, так и стабилизирующих их молекул, лишены таких недостатков неорганических и органических соединений селена, как высокая токсичность [7], излишняя химическая активность и нестабильность, и, согласно данным ряда работ различных исследовательских коллективов, продемонстрировали выраженную антимикробную [8], цитотоксичную [9] и антиоксидантную [10] активность. Это обусловливает перспективность дальнейшей разработки гибридных селеносодержащих нанокомпозитов с регулируемыми структурными пара-



метрами и свойствами, направленно задаваемыми условиями их синтеза.

Среди многочисленных способов синтеза нано-Se<sup>0</sup> особо следует выделить группу химических методов, в основе которых лежит восстановление селена из его неорганических прекурсоров [11, 12]. Используемые в качестве восстановителей гидразингидрат и NaBH<sub>4</sub> - высокотоксичные вещества, потенциально загрязняющие продукт реакции и окружающую среду. Предлагаемые варианты синтеза нано-Se<sup>0</sup> с использованием восстанавливающих экстрактов растений [12] и бактериальных сред [13] характеризуются низкой воспроизводимостью результатов, кроме того, значительно затрудняется стандартизация получаемых наночастиц, а также требуется их многократная и трудоемкая очистка. В последние годы особое внимание уделяется получению и исследованию солей фосфинодиселеновых кислот (фосфинодиселеноатов), что обусловлено их использованием в качестве уникальных прекурсоров полупроводниковых и магнитно-оптических наноматериалов, лигандов для дизайна металлокомплексов, потенциальных биологически активных соединений и строительных блоков для органического синтеза [14].

Водорастворимость, удобство и легкость получения, высокие выходы и стабильный воспроизводимый состав фосфинодихалькогенатов щелочных металлов делает их весьма привлекательными объектами для использования в качестве прекурсора селена. Применение природных и доступных гуминовых веществ [15] в качестве стабилизирующей матрицы для формирующихся нано-Se<sup>0</sup> позволит получать биосовместимые нанокомпозиты с практически неограниченной растворимостью в воде, длительной агрегативной устойчивостью и комплексом биологически активных свойств (антиоксидантные, ранозаживляющие, иммуностимулирующие и др. [15]), обусловленных присутствием гуминовых веществ в их составе. Ранее в наших опытах гуминовые вещества, благодаря полиароматической природе и обилию функциональных групп в их составе, применялись в качестве активных восстановителей и стабилизаторов наночастиц благородных металлов [16, 17].

Нами разработан новый эффективный и доступный метод синтеза агрегативно-устойчивых нанокомпозитов элементного селена с использованием бис(2-фенилэтил)фосфинодиселеноата натрия в качестве прекурсора селена с последующей комплексной физико-химической характеристикой их состава, структуры и наноморфологических параметров.

Нанокомпозиты, включающие селен (1.37–5.5% Se<sup>0</sup>), получены в водной среде с использованием в качестве прекурсора селена бис(2-фенилэтил)фосфинодиселеноата натрия, предварительно синтезированного с высоким выходом простым и доступным методом из элементного селена, гидроксида натрия и бис(2-фенилэтил)фосфина. При взаимодействии бис(2-фенилэтил)фосфинодиселеноата натрия с пероксидом водорода происходит его окисление до бис(2-фенилэтил)фосфината натрия, сопровождающееся выделением атомов элементного селена (схема 1).

Образовавшиеся атомы Se<sup>0</sup> коалесцируют друг с другом, проходя через множество стадий фазо-

образования [18], и в конечном итоге *in situ* формируют наночастицы Se<sup>0</sup>, дальнейший избыточный рост которых лимитируется пассивацией их энергонасыщенной поверхности присутствующими в составе реакционной среды молекулами гуминовых веществ.

Самоорганизация получаемых наноструктур с тонкой регуляцией их размерности основана на специфическом взаимодействии биополимерной матрицы гуминовых веществ с поверхностью наноразмерных частиц селена Se<sup>0</sup>. Распрямленная в водно-щелочной среде конфигурация макромолекул гуминовых веществ стерически более предпочтительна для стабилизации функциональными группами (фенольными гидроксильными, карбоксильными, карбонильными и хиноидными) фрагментов макромолекул поверхности наночастиц селена [16]. В результате формируется единая агрегативно устойчивая водорастворимая гибридная система наноядро (нано-Se<sup>0</sup>)–оболочка (макромолекулы гуминовых веществ) (рис. 1).

Количество Se<sup>0</sup> в составе нанокомпозитов варьировали изменением соотношения бис(2-фенилэтил)фосфинодиселеноата натрия-гуминовые вещества в реакционной среде. Увеличение данного соотношения приводит к получению нанокомпозитов с повышенным (до 5.5%) количеством селена, а также к формированию более крупных наночастиц Se<sup>0</sup> с широким дисперсным распределением. Вероятно, увеличение концентрации бис(2-фенилэтил)фосфинодиселеноата натрия сопровождается его быстрым окислением при действии пероксида водорода и приводит к выделению одновременно большого количества атомов селена с их последующей коалесценцией в наночастицы, а также укрупнением и агрегацией наночастиц из-за существенных различий в скоростях протекания стадий формирования и роста наночастиц и их стабилизации.

Участие функциональных групп гуминовых веществ в стабилизации получаемых нано-Se<sup>0</sup> косвенно подтверждается данными ИК спектроскопии. ИК спектры исходных гуминовых веществ представлены набором полос различной интенсивности, в частности соответствующих гидроксильным группам, участвующим в образовании водородных связей (3437 см<sup>-1</sup>), а также свободным группам ОН сорбированных молекул воды

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 90 № 1 2020



**Рис. 1.** Предполагаемая структура формирующихся нанобиокомпозитов селена в матрице гуминовых веществ.

(3772 см<sup>-1</sup>). В области 2951–2885 см<sup>-1</sup> наблюдаются малоинтенсивные полосы валентных колебаний связей С–Н в алифатических группах СН<sub>2</sub> и СН<sub>3</sub>. Слабая полоса при 1743 см<sup>-1</sup> принадлежит свободным группам СООН, присутствующим в составе гуминовых веществ. На присутствие ароматических колец в составе гуминовых веществ указывает полоса при 1643 см<sup>-1</sup>, обусловленная валентными колебаниями сопряженных двойных связей углерод-углеродных атомов. Полосы поглощения при 1261 и 1064 см<sup>-1</sup> соответствуют асимметричным и симметричным валентным колебаниям связей С–О–С.

В ИК спектрах выделенных нанокомпозитов изменяются интенсивность и положение полос по сравнению со спектром исходных гуминовых веществ. Наблюдается синий сдвиг полосы гидроксильных групп (до 3421 см<sup>-1</sup>), снижение интенсивности вплоть до полного исчезновения полосы при 1707 см<sup>-1</sup> (карбонильные группы), увеличение интенсивности и синий сдвиг (до 1616 см<sup>-1</sup>) полосы сопряженных двойных связей С=С, возрастание интенсивности полос в области 1425–1395 см<sup>-1</sup> (карбонильная группа в карбоксилат-анионе) и 1035–1041 см<sup>-1</sup> (терминальные карбонильные группы в углеводной части гуминовых веществ). Отсутствие на спектральной кривой нанокомпозита, содержащего 1.84% Se, малоин-



Рис. 2. Диаграммы размерного распределения наночастиц селена в композитах с 1.34 (a) и 5.5% Se<sup>0</sup> (б).

тенсивной полосы в области 3700-4000 см<sup>-1</sup>, вероятно, обусловлено малым количеством молекул адсорбированной воды на поверхности и объеме образца, что может быть связано с особенностями его выделения, хранения и подготовки проб, а не с какими-либо структурными отличиями от образцов с другим количеством Se и от исходных гуминовых веществ, в которых эта полоса присутствует. Обнаруженные изменения в ИК спектрах исследуемых образцов, помимо информации об участии основных функциональных групп гуминовых веществ в стабилизации поверхности наночастиц Se<sup>0</sup>, могут также указывать и на их взаимодействие с пероксидом водорода в щелочной среде, выражающееся в их окислении: образовании хиноидных групп, карбоксилат-анионов либо в феноксильных радикалов, разрушении ароматических структур со свободными фенольными группами, частичная деструкция полифенола [19].

Согласно данным рентгендифракционного анализа, все полученные нанокомпозиты, как и исходные гуминовые вещества, – аморфно-кристаллические соединения. Их дифрактограммы в интервале углов  $2\theta = 18-28^{\circ}$  представлены гало аморфной фазы гуминовых веществ, а также многочисленными рефлексами в области 19–63°, соответствующими природному алюмосиликату иллиту, составляющему основу неорганической части гуминовых веществ. Кроме того, дифрактограммы нанокомпозитов содержат рефлексы в области  $2\theta = 21.9, 29.9$  и  $40.0^{\circ}$ , соответствующие нуль-

валентному селену в его гексагональной аллотропной модификации.

Кристаллическая фаза нанокомпозитов идентифицирована путем сопоставления значений межплоскостных расстояний эталонного образца селена со значениями, полученными экспериментально. Средний размер области когерентного рассеяния нано-Se<sup>0</sup> в нанокомпозитах, по данным рентгенодифракционного анализа, составляет 17 нм.

Анализ данных просвечивающей электронной микроскопии позволил установить, что полученные нанокомпозиты Se<sup>0</sup>–гуминовые вещества формируются в виде электроноконтрастных наночастиц с формой, близкой к сферической, распределенных в матрице гуминовых веществ (рис. 2). Размер наночастиц Se<sup>0</sup> в зависимости от условий синтеза варьируется в интервале от 12 до 39 нм. Увеличение количества селена в составе нанокомпозита с 1.37 до 5.5% сопровождается уширением дисперсного распределения наночастиц и увеличением их среднего размера с 22 до 25 нм.

Более широкое дисперсное распределение нано-Se<sup>0</sup> в образце с бо́льшим количеством селена, вероятно, обусловлено различиями в условиях синтеза нанокомпозитов, в частности, повышенной концентрацией прекурсора бис(2-фенилэтил)фосфинодиселеноата натрия и продуктов его окисления в реакционной среде во время синтеза при одинаковой концентрации гуминовых веществ. Вследствие их частичной диссоциации происходит увеличение ионной силы раствора, что влечет



**Рис. 3**. (а) Спектры поглощения 0.01%-ного водного раствора исходных гуминовых веществ ( $\theta$ ) и нанокомпозитов на их основе с содержанием Se 1.37 (I), 1.84 (2), 5.5% (3). (б) Увеличенный фрагмент спектра в области 450–750 нм.

за собой снижение агрегативной устойчивости наночастиц и их дальнейший неравномерный рост.

Электронные спектры поглощения водных растворов полученных нанокомпозитов, а также исходных гуминовых веществ невыразительны и характеризуются монотонным подъемом спектральных кривых в коротковолновой области с плавным снижением в области низких энергий, а также небольшим плато в диапазоне 420-550 нм, наиболее вероятно, соответствующему поглощению поверхности наночастиц Se<sup>0</sup> [20] (рис. 3а). Измерение спектров поглощения нанокомпозитов селена относительно водного раствора гуминовых вешеств позволило зафиксировать изменение интенсивности и положения максимума обнаруженного плато в зависимости от количества селена в составе нанокомпозита (рис. 3б). В спектре образца с наименьшей долей нано-Se<sup>0</sup> наблюдался наименее интенсивный максимум поглощения в области 520 нм, тогда как увеличение количества Se<sup>0</sup> в нанокомпозите сопровождается увеличением интенсивности и сдвигом максимума поглощения в длинноволновую область, а также появлением дополнительных максимумов поглощения в области 450-500 нм.

Обнаруженные различия спектральных характеристик полученных нанокомпозитов, вероятно, обусловлены (помимо изменения доли Se<sup>0</sup>, дающего вклад в интенсивность максимумов поглощения в длинноволновой области), еще и различием в размерах наночастиц селена, увеличение которых, как известно, сопровождается красным сдвигом максимума их поглощения. Уширение дисперсного распределения нано-Se<sup>0</sup>, наблюдаемое в нанокомпозитах с долей селена 1.84 и 5.5%, вероятно, обусловливает появление обнаруженных дополнительных максимумов.

Таким образом, использование доступного бис(2-фенилэтил)фосфинодиселеноата натрия в качестве источника селена, а также природной наностабилизирующей матрицы гуминовых веществ, позволило впервые получить водорастворимые нанобиокомпозиты элементного селена. Возможность варьирования структурных и наноморфологических характеристик нанокомпозитов позволяет использовать этот метод для синтеза биосовместимых наноматериалов с комплексной биологической активностью, определяемой синергетическим сочетанием биологически-активных свойств гуминовых веществ (ростостимулирующая антиоксидантная, ранозаживляющая активности) и наночастиц элементного селена (низкая токсичность, антиоксидантные, противоопухолевые, антимикробные и др.).

## ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры снимали в КВг в диапазоне частот 4000–400 см<sup>-1</sup> на приборе Varian Resolutions Pro. Спектры ЯМР <sup>1</sup>H, <sup>13</sup>C, <sup>31</sup>P, <sup>77</sup>Se, полученные для бис(2-фенилэтил)фосфинодиселеноата натрия,

регистрировали на спектрометре Bruker DPX-400 (400.13, 101.61, 161.98, 76.31 МГц соответственно); спектральные данные подробно представлены в работе [21]. Элементный анализ выполнен на анализаторе Flash EA 1112 Series. Электронные спектры оптического поглощения водных растворов нанокомпозитов и исходных гуминовых веществ снимали на спектрофотометре PerkinElmer Lambda 35 в кварцевой кювете 1 см. Рентгенографическое исследование проводили на дифрактометре Bruker D8 ADVANCE, оснащенном зеркалом Геббеля; Си-излучение в режиме Locked Coupeed с экспозицией 1 с для фазового анализа и 3 с для расчета параметра ячейки и размера области когерентного рассеивания. Микрофотографии образцов получали на просвечивающем электронном микроскопе Leo 906 E.

Этанол, NaOH, H<sub>2</sub>O<sub>2</sub> (3%-ный водный раствор) использовали без дополнительной очистки. Бис(2фениилэтил)фосфин синтезировали по методике, представленной в работе [21].

Гуминовые вещества, выделены щелочной экстракцией из грязей монгольского озера Гурван-Нуур [16]. Найдено, %: С 45.4; О 39.6; Н 3.8; Si 6.0; Al 1.6; S 1.4; Cl 0.7; Fe 0.7; Na 0.8.

Бис(2-фенилэтил)фосфинодиселеноат натрия. К раствору бис(2-фенилэтил)фосфина (2.3 г. 9.2 ммоль) в 10 мл EtOH при комнатной температуре в атмосфере аргона добавляли раствор NaOH (0.37 г, 9.2 ммоль) в 40 мл EtOH, затем при перемешивании порциями добавляли элементный селен (1.453 г, 18.4 ммоль) до полного его растворения (5 мин). Этанол удаляли, остаток сушили в вакууме (1 мм рт. ст., 35-40°С). Выход 3.85 г (99%), белый порошок, т. пл. 183°С (Еt<sub>2</sub>О). Спектр ЯМР <sup>1</sup>Н (CDCl<sub>3</sub>), б, м. д.: 2.39–2.43 м (4H, CH<sub>2</sub>P), 3.09–3.13 м (4H, CH<sub>2</sub>Ph), 7.25–7.29 м (10H, Ph). Спектр ЯМР <sup>31</sup>Р (CDCl<sub>3</sub>), б<sub>р.</sub> м. д.: 22.86 с + д сателлит (<sup>1</sup>*J*<sub>PSe</sub> = 597.0 Гц). Найдено, %: С 45.56; Н 4.35; Р 7.43; Se 37.43. С<sub>16</sub>Н<sub>18</sub>NaPSe<sub>2</sub>. Вычислено, %: С 45.52; Н 4.30; P 7.34; Se 37.40.

Se<sup>0</sup>-Содержащие нанокомпозиты. К слабощелочному водному раствору гуминовых веществ (3.0 г в 50 мл  $H_2O$ , pH 8) при комнатной температуре и интенсивном перемешивании добавляли бис(2-фенилэтил)фосфинодиселеноат натрия (0.062–0.36 г) и выдерживали смесь до его полного растворения и гомогенизации реакционной среды. Затем реакционную смесь нагревали до 40°С и добавляли пероксид водорода (0.02–0.12 мл), раствор интенсивно перемешивали 30 мин при 40°С. Для выделения и очистки Se<sup>0</sup>-содержащих нанокомпозитов реакционную смесь осаждали в 8-кратный избыток EtOH, образовавшийся осадок отфильтровывали и сушили на воздухе. Выход 89–97% (в пересчете на гуминовые вещества и селен из его прекурсора). Полученные нанокомпозиты (Se<sup>0</sup>– гуминовые вещества) представляют собой серочерные водорастворимые порошки с содержанием селена 1.37–6.0%.

**Композит Se (1.37%)-гуминовые вещества.** Найдено, %: С 36.25; Н, 4.75; Se 1.37.

**Композит Se (1.84%)-гуминовые вещества.** Найдено, %: С 37.94; Н, 4.20; Se 1.84.

**Композит Se (5.5%)-гуминовые вещества.** Найдено, %: С 33.28; Н, 3.46; Se 5.50.

В экспериментах использовали оборудование Центра коллективного пользования Лимнологического института СО РАН и Байкальского аналитического центра коллективного пользования Иркутского института химии им. А.Е. Фаворского СО РАН.

#### ФОНДОВАЯ ПОДДЕРЖКА

Работа выполнена при частичной финансовой поддержке Российского фонда фундаментальных исследований (грант № 18-316-20017мол\_а\_вед, синтез селеносодержащих нанокомпозитов) в рамках государственного задания Иркутского института химии (проекты № АААА-А19-119022690046-4, АААА-А16-116112510011-8).

## КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

## СПИСОК ЛИТЕРАТУРЫ

- Amini S.M., Mahabadi V.P. // Nanomed. Res. J. 2018.
  Vol. 3. N 3. P. 117. doi 10.22034/nmrj.2018.03.001
- Hosnedlova B., Kepinska M., Skalickova S., Fernandez C., Ruttkay-Nedecky B., Peng Q., Baron M., Melcova M., Opatrilova R., Zidkova J., Bjorklund G., Sochor J., ЖУРНАЛ ОБШЕЙ ХИМИИ том 90 № 1 2020

*Kizek R.* // Int. J. Nanomedicine. 2018. Vol. 13. P. 2107. doi 10.2147/IJN.S157541

- Reich H.J., Hondal R.J. // ACS Chem. Biol. 2016. Vol. 11. P. 821
- Soumya M., Shrudhi D.K.S., Santhiya R., Rajeshkumar S., Venkat K.S. // Colloids and Surfaces (B). 2018. Vol. 170. P. 280. doi 10.1016/j.colsurfb.2018.06.006
- 5. Валуева С.В. // Sci. Eur. 2018. Vol. 32. N 32-1. Р. 46.
- Skalickova S., Milosavljevic V., Cihalova K., Horky P., Richtera L., Adam V. // Nutrition. 2017. Vol. 33. P. 83. doi 10.1016/j.nut.2016.05.001
- Forootanfar H., Adeli-Sardou M., Nikkhoo M., Mehrabani M., Amir-Heidari B, Shahverdi A.R., Shakibaie M. // J. Trace Elem. Med. Biol. 2013. Vol. 1. P. 1. doi 10.1016/j.jtemb.2013.07.005
- Cremonini E., Zonaro E., Donini M., Lampis S., Boaretti M., Dusi S., Melotti P., Leo P., Vallini G. // Microb. Biotechnol. 2016. Vol. 9. P. 758. doi 10.1111/1751-7915.12374
- Trang H.D.N., Bongkosh V., Lin M., Azlin M. // Food Control. 2017. Vol. 77. P. 17. doi 10.1016/j. foodcont.2017.01.018
- Khurana A., Tekula S., Saifi M.-A., Venkatesh P., Godugu C. // Biomed. Pharmacother. 2019. Vol. 111. P. 802. doi 10.1016/j.biopha.2018.12.146
- Ananth A., Keerthika V., Rajan M.R. // Curr. Sci. 2019.
  Vol. 116. N2. P. 285. doi 10.18520/cs/v116/i2/285-290
- Shoeibi S., Mozdziak P.E., Golkar-Narenji A. // Top. Curr. Chem. 2017. Vol. 375. P. 1. doi 10.1007/s41061-017-0176-x

- Khiralla G.M., El-Deeb B.A. // LWT Food Sci. Technol. 2015. Vol. 63. P. 1001. doi 10.1016/j.lwt.2015.03.086
- Artem'ev A.V., Malysheva S.F., Gusarova N.K., Trofimov B.A. // Synthesis. 2010. N 14. P. 2463. doi 10.1055/ s-0029-1218786
- Орлов Д.С. // Соросовск. образоват. ж. 1997. № 2. С. 56.
- Александрова Г.П., Лесничая М.В., Долмаа Г., Клименков И.В., Сухов Б.Г., Рэгдэл Д., Трофимов Б.А. // Изв. АН. Сер. Хим. 2017. № 1. С. 143; Aleksandrova G.P., Lesnichaya M.V., Sukhov B.G., Trofimov B.A., Dolmaa G., Regdel D., Klimenkov I.V. // Russ. Chem. Bull. 2017. Vol. 66. N 1. P. 143. doi 10.1007/s11172-017-1712-0
- Khutsishvili S.S., Lesnichaya M.V., Vakul'skaya T.I., Dolmaa G., Aleksandrova G.P., Rakevich A.L., Sukhov B.G. // Spectroscopy Lett. 2018. Vol. 51. N 4. P. 169. doi 10.1080/00387010.2018.1442356
- Thanh Nguyen T.K., Maclean N., Mahiddine S. // Chem. Rev. 2014. Vol. 114. P. 7610. doi 10.1021/cr400544s
- Fengel D., Wegener G. Wood chemistry, ultrastructure, reactions. Berlin; New York: Walter de Gruyter, 1984. P. 613.
- Singh B.A., Mishra S.K., Srivastava R.K., Gopal R. // J. Phys. Chem. (C). 2010. Vol. 114. P. 1774. doi 10.1021/jp105037w
- Artem'ev A.V., Gusarova N.K., Malysheva S.F., Ushakov I.A, Trofimov B.A. // Tetrahedron Lett. 2010. Vol. 51. N 16. P. 2141. doi 10.1016/j.tetlet.2010.02.068

# Synthesis of Selenium-Containing Nanobiocomposites Based on Humic Substances from Sodium Bis(2-phenylethyl)phosphinodiselenoate

# M. V. Lesnichaya<sup>*a*,\*</sup>, G. P. Aleksandrova<sup>*a*</sup>, S. F. Malysheva<sup>*a*</sup>, N. A. Belogorlova<sup>*a*</sup>, A. N. Sapozhnikov<sup>*b*</sup>, G. Dolmaa<sup>*c*</sup>, and B. G. Sukhov<sup>*a*</sup>

 <sup>a</sup> A.E. Favorskii Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, ul. Favorskogo 1, Irkutsk, 664033 Russia
 <sup>b</sup> A.P. Vinogradov Institute of Geochemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, 664033 Russia
 <sup>c</sup> Institute of Chemistry and Chemical Technology of the Academy of Sciences of Mongolia, Ulaanbaatar, 210351 Mongolia

\*e-mail: mlesnichaya@mail.ru

Received June 11, 2019; revised July 16, 2019; accepted for publication July 20, 2019

New water-soluble selenium-containing nanobiocomposites were synthesized by oxidation of sodium bis(2-phenylethyl)phosphinodiselenoate with hydrogen peroxide using humic substances as a stabilizer of selenium nanoparticles. The obtained hybrid nanocomposites were found to be formed spherical particles of hexagonal selenium of 13–30 nm in size dispersed in a matrix of humic substances.

**Keywords:** selenium, nanocomposite, humic substances, sodium bis(2-phenylethyl)phosphinodiselenoate, secondary phosphinoselenides