УДК 547.1 '181.54

СИНТЕЗ, МОЛЕКУЛЯРНАЯ И КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА ТРИС[2-(КАРБАМОИЛМЕТОКСИ)ФЕНИЛ]-ФОСФИНОКСИДА

© 2020 г. Т. В. Баулина^{*a*}, И. Ю. Кудрявцев^{*a*,*}, А. В. Артемьев^{*b*}, И. Ю. Багрянская^{*c*}, М. П. Пасечник^{*a*}, В. К. Брель^{*a*}

^а Институт элементоорганических соединений имени А. Н. Несмеянова Российской академии наук, ул. Вавилова 28, Москва, 119991 Россия

^b Институт неорганической химии имени А. В. Николаева Сибирского отделения Российской академии наук, Новосибирск, 630090 Россия

^с Новосибирский институт органической химии имени Н. Н. Ворожцова Сибирского отделения Российской академии наук, Новосибирск, 630090 Россия *e-mail: zaq@ineos.ac.ru

> Поступило в Редакцию 17 июня 2020 г. После доработки 17 июня 2020 г. Принято к печати 30 июня 2020 г.

Синтезирован новый триподальный лиганд – трис[2-(карбамоилметокси)фенил]фосфиноксид алкилированием трис(2-гидроксифенил)фосфиноксида хлорацетамидом. Изучено его строение методами ИК, ЯМР ¹H, ³¹P спектроскопии и рентгеноструктурного анализа.

Ключевые слова: триподальный лиганд, трис[2-(карбамоилметокси)фенил]фосфиноксид, кристаллическая структура

DOI: 10.31857/S0044460X20100054

Триподальные лиганды – перспективная группа органических комплексообразователей, гибкая структура которых позволяет создавать соединения, способные связывать субстраты различных классов. Лиганды с карбамоильными группами в боковых цепях образуют прочные комплексы с солями d- и f-элементов и могут быть использованы в качестве экстрагентов для извлечения и разделения редких и ценных металлов, а также при переработке отработанного ядерного топлива [1–5]. Триподальные лиганды с функциональными протонодонорными группами могут образовывать комплексы с анионами [6-9]. Варьирование структуры триподальных лигандов открывает возможность получения ионофоров для ион-селективных электродов и оптических сенсоров ионов металлов [10-12]. Триподальные лиганды могут связывать нейтральные органические молекулы - карбоновые кислоты [13] и углеводы [14] и выступать в качестве сенсоров, рецепторов и искусственных ферментов.

В ряду триподальных ионофоров отличаются своеобразием так называемые пропеллерные лиганды на основе органических соединений пирамидальной структуры с тремя арильными заместителями с функциональными группами в боковой цепи. К ним относятся соединения на основе триарилметанов, триариламинов, триарилфосфинов и триарилфосфиноксидов. В наиболее устойчивой конформации молекулы этих соединений имеют геометрию несимметричного пропеллера, в которой заместители в *орто*-положениях бензольных колец ориентированы в одну сторону (схема 1). Такая геометрия позволяет синтезировать ионофоры, в которых координирующие атомы функциональных групп в боковых цепях сближены в простран-

стве и способны образовывать множество связей с гостевыми ионами и молекулами без существенной перестройки конформации лиганда [15–17].

В отличие от экстрагентов для гидрометаллургии, которые должны обладать значительной липофильностью и низкой растворимостью в воде, в ряде случаев желательно, чтобы лиганды и их комплексы растворялись в воде. Такое требование предъявляется в технологических процессах, в которых вода используется как самый доступный и дешевый растворитель. Растворимость в воде – обязательное условие для лигандов и их комплексов, предназначенных для использования в физиологических жидкостях: лекарствах, средствах диагностики, контрастных реагентах и т.п. Водорастворимые лиганды и комплексы такого типа могут быть использованы для диагностики и терапии различных заболеваний. Кроме того, для биомедицинского применения желательно, чтобы лиганды и комплексы имели нейтральный характер и не влияли существенно на рН растворов.

Нами синтезирован трис[2-(карбамоилметокси)фенил]фосфиноксид (NH₂COCH₂OC₆H₄)₃PO 1 – перспективный водорастворимый триподальный лиганд для связывания катионов, анионов и органических молекул в водных растворах и биологических жидкостях, изучены его строение и свойства. Благодаря триподальной структуре с согласованной ориентацией функциональных групп, фосфиноксид 1 потенциально может образовывать комплексы как с катионами, связываясь с ними группами Р=О и С=О, так и с анионами и органическими молекулами за счет водородных связей с группами NH₂.

Соединение **1** получено из трис(2гидроксифенил)фосфиноксида **2** и 2-хлорацетамида (схема 2).

Соединение 2 легко получается при действии металлирующего агента – диизопропиламида лития (LDA) на трифенилфосфат 3 [18]. Алкилирование фосфиноксида 2 2-хлорацетамидом приводит к триподальному лиганду 1 с амидной функциональной группой в боковой цепи. В качестве промотора в реакции алкилирования использовали КВг. После обработки соединение 1 было выделено из реакционной смеси в виде кристаллогидрата с тремя молекулами воды (по данным элементного анализа). Соединение 1 заметно растворяется в воде, хорошо растворяется в полярных органических растворителях (EtOH, MeOH, ДМФА, ДМСО) и нерастворимо в неполярных растворителях (гексане, эфире, CH₂Cl₂, CHCl₃).

Состав и строение соединения 1 подтверждено данными элементного анализа, ИК, ЯМР 1 Н и $^{31}P{^{1}H}$ спектроскопии. Молекулярная структура была окончательно установлена рентгеноструктурным анализом.

Структура трис[2-(карбамоилметокси)фенил]фосфиноксида определена для тригидрата (NH₂COCH₂OC₆H₄)₃PO·3H₂O, который был получен кристаллизацией из водного раствора. Сольват кристаллизуется в пространственной группе *R*-3 с 1/3 молекулы соединения **1** в асимметрической единице. Молекулы фосфиноксида **1** имеют структуру пропеллера (торсионные углы OPCC $\tau =$ 51.90°), группы OCH₂C(O)NH₂ повернуты в сторону атомов кислорода O¹ группы P=O (рис. 1).

Рис. 1. Общий вид молекулы трис[2-(карбамоилметокси)фенил]фосфиноксида 1 в кристалле.

Три амидных водорода образуют внутримолекулярную трифуркатную (четырехцентровую) водородную связь N¹–H···O¹, в которой расстояния H···O¹ и N¹···O¹ d = 2.398 и 3.251 Å соответственно, а угол N¹–H···O¹ равен 171.54°. Торсионные углы O²–C⁷–C⁸–N¹ равны –10.768(623)°. Связь P=O (1.502 Å) длиннее, чем в аналогичных триарилфосфиноксидах без водородных связей (1.486 Å в молекуле соединения [2-Bu₂NC(O)CH₂OC₆H₄]₃PO [1]), но примерно такая же, как в фосфиноксидах, в которых группа P=O образует водородную связь {1.502 Å в соединении Ph₂P(O)CH₂CH₂CH(OH)Me [20], 1.503 [2-HO(CH₂)₂OC₆H₄]₃PO [21], 1.513 Å (HOCH₂CH₂CH₂CH₂)₃PO [22]}.

В кристалле молекулы соединения 1 ассоциированы друг с другом, а также с молекулами воды сильными межмолекулярными водородными связями N-H…O и O-H…O, так что каждая группа C(O)NH₂ образует пару межмолекулярных водородных связей N¹-H···O³ с амидной группой соседней молекулы, в 8-членном цикле с расстояниями Н····O³ и N¹····O³ 2.071 и 2.923 Å соответственно. В каждой группе NH₂ один протон образует водородную связь N¹-H···O¹(P), а другой протон – более короткую связь N¹-H···O³(C). Карбонильный кислород ассоциирован с молекулами воды сильными межмолекулярными водородными связями O¹(W)-H···O³ с расстояниями O¹(W)···O³ 2.780 Å. В результате образуется трехмерная супрамолекулярная сеть. На рис. 2 показаны межмолекулярные водородные связи между молекулами соединения 1 и Н₂О.

В ИК спектре твердого фосфиноксида 1 полоса v(PO) наблюдается при 1117 см⁻¹, т. е. волновое число колебания связи Р=О заметно ниже, чем в триарилфосфиноксидах без водородных связей (1180 см⁻¹ в спектре [2-Ви₂NC(O)CH₂OC₆H₄]₃PO [1]), но несколько выше, чем в спектре трис[2-(тетразол-5-илметокси)фенил]фосфиноксида (1098 см^{-1}) , в котором образуется бифуркатная водородная связь с двумя протонами групп NH [5]. Широкие полосы v(NH) имеют максимумы при 3343 и 3172 см⁻¹, которые можно отнести к колебаниям связей групп NH, ассоциированных с фосфорильной и карбонильной группами соответственно. Полоса v(CO) проявляется при 1685 см⁻¹. Таким образом, ИК спектр соединения согласуется с его установленной структурой.

Рис. 2. Межмолекулярные водородные связи между молекулами соединения 1 и H₂O.

При растворении в ДМСО, как правило, разрушаются межмолекулярные водородные связи и сохраняются внутримолекулярные. Однако в структуре соединения 1 разрыв межмолекулярных ассоциаций C=O…HN может повлечь за собой их участие во внутримолекулярных взаимодействиях, т. е. перестройку системы водородных связей. Сравнение ИК спектра раствора фосфиноксида 1 в ДМСО- d_6 со спектром твердого образца показало отсутствие полосы v(PO) при 1117 см⁻¹, отсутствует также поглощение в области свободной группы P=O. Нам не удалось надежно идентифицировать положение полосы v(PO), возможно, она маскируется поглощением растворителя, то есть сдвигается в более низкочастотную сторону {например, в ИК спектре (2-HOC₆H₄)₃PO v(PO) 1090 см⁻¹ [18]}. Положение полосы v(CO) практически не изменилось, так же, как и полос v(NH). Можно предположить, что в растворе имеют место конкурирующие взаимодействия между обеими протоноакцепторными группами и группами NH₂, причем возможно равновесие разных форм.

В спектре ЯМР ¹Н раствора фосфиноксида 1 в ДМСО-*d*₆ проявляется синглетный сигнал метиленовых протонов при 4.45 м. д. В области ароматических протонов наблюдается триплет дублетов при 7.12 м. д. от протона H⁴ и триплет при 7.66 м. д. протона H⁶. Сигналы протонов H³, H⁵ перекрываются и проявляются в виде сложного мультиплета при 7.16–7.29 м. д. Сигналы протонов группы NH₂ проявляются в виде двух значительно раздвинутых синглетов при 7.31 и 7.85 м. д., вероятно, вследствие затрудненного вращения группы NH₂ вокруг связи С-N [19]. Такое различие в сигналах протонов группы NH₂ может быть обусловлено образованием различных водородных связей с группами РО и СО. В спектре ЯМР ${}^{31}P{}^{1}H{}$ наблюдается синглет при 30.5 м. д., что соответствует химическому сдвигу триарилфосфиноксидов с фосфорильной группой, вовлеченной в сильные водородные связи, например, в спектре ЯМР ³¹Р{¹H} (2-НОС₆Н₄)₃РО б_Р 35.9 м. д. (ДМСО) [18].

Синтезированный нами новый триподальный лиганд – трис[2-(карбамоилметокси)фенил]фосфиноксид – может служить основой для получения разнообразных комплексных соединений с *d*- и *f*-элементами, а также с различными органическими молекулами, содержащими полярные группы. Полученные структурные данные будут полезны при моделировании молекулярного докинга соединений на этой платформе.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Органические растворители марки XЧ обезвоживали и очищали по стандартным методикам [23]. Дейтерированный растворитель ДМСО-*d*₆ (Aldrich) использовали без дополнительной очистки.

ИК спектры получали на спектрометре FTIR Tensor 37 Bruker. Спектр кристаллического образца (таблетки с KBr) регистрировали в диапазоне 4000–400 см⁻¹, спектр раствора образца в ДМ-CO- d_6 в диапазоне 4000–1090 см⁻¹. Спектры ЯМР ¹H и ³¹P{¹H} соединения 1 регистрировали на приборе Bruker AV-300, рабочие частоты – 300.13 (¹H) и 121.49 МГц (³¹P{¹H}). Внутренний эталон для спектров ЯМР ¹H – сигналы остаточных протонов дейтерированного растворителя, внешний эталон для спектров ЯМР ³¹P{¹H} – 85%-ная H₃PO₄. Элементный анализ выполнен в лаборатории микроанализа Института элементоорганических соединений РАН.

Трис(2-гидроксифенил)фосфиноксид 2 был получен по методике [18].

Трис[2-(карбамоилметокси)фенил]фосфиноксид (1). Смесь 0.98 г (0.003 моль) трис(2гидроксифенил)фосфиноксида 2, 20 мл диметилформамида и 2.50 г (0.18 моль) карбоната калия, 1.68 г (0.18 моль) амида хлоруксусной кислоты и 0.25 г (0.002 моль) КВг перемешивали 26 ч при 90°С. После удаления растворителя в вакууме к остатку добавляли 50 мл воды и 50 мл хлороформа. образовавшийся творожистый осадок отфильтровывали, промывали водой, эфиром и растирали в смеси эфира с метанолом, 20:1. Образовавшийся порошок сушили на воздухе. Выход трис[2-(карбамоилметокси)фенил]фосфиноксида в виде тригидрата 1.51 г (91.2%), т. пл. 191–193°С (метанол– эфир). ИК спектр, v, см⁻¹: 3343 с. ш (NH), 3172 с. ш (NH), 1685 с (С=О), 1117 с (Р=О). Спектр ЯМР ¹Н (ДМСО-*d*₆), б, м. д. (*J*, Гц): 4.45 с (6H, CH₂O), 7.12 т. д (3H, H⁴, ${}^{4}J_{HH} = 2.0$, ${}^{3}J_{HH} = 7.0$), 7.16–7.29 м (6H, H³, H⁵), 7.31 c (3H, NH), 7.66 T (3H, H⁶, ${}^{3}J_{HH} = {}^{3}J_{HP} =$ 7.8), 7.85 с (3H, NH). Спектр ЯМР ³¹Р{¹H} (ДМСО-*d*₆): бр 30.5 м. д. Найдено, %: С 52.16; Н 5.41; N 7.58. С₂₄H₂₄N₃O₇P·3H₂O. Вычислено, %: С 52.27; H 5.48; N 7.62.

Рентгеноструктурный анализ проводили на дифрактометре Bruker APEX-II CCD, оснащенном CCD-детектором, с использованием излучения молибденового анода ($\lambda = 0.71073$ Å) и графитового монохроматора. Поглощение учтено эмпирически по программе SADABS [24]. Структура решена с помощью программы SHELXS97 [25], все не водородные атомы локализованы в разностных синтезах электронной плотности и уточнены с помощью программы SHELXL-2014/7 [26] в анизотропном приближении. Атомы водорода в молекуле соединения **1** найдены геометрически и уточнены в модели *наездника*, атомы водорода в молекуле H₂O локализованы из разностного синтеза и уточнены изотропно с ограничением на длину связей O–H.

Кристаллы соединения **1** тригональные, $C_{24}H_{24}N_3O_7P\cdot 3H_2O$ (*M* 551.48), пространственная группа *R*-3; параметры элементарной ячейки при 296(2) К: *a* = 13.9869(17), *b* = 13.9869(17), *c* = 23.896(3) Å, *a* = 90.00, *β* = 90.00, *γ* = 120.00°, *V* = 4048.6(11) Å³, *Z* = 6, *d*_{выч.} = 1.357 г/см³, µ(MoK_a) = 0.161 мм⁻¹, измерено 21932 отражений до 20 = 50.8°, из них 1654 независимых (*R*_{int} = 0.097) и 1034 наблюдаемых; *R*₁(obs) = 0.062, *wR*₂(all) = 0.177, GOF = 1.058. Кристаллографические данные депонированы в Кембриджской базе структурных данных (ССDС 1937005).

ФОНДОВАЯ ПОДДЕРЖКА

Исследование выполнено при поддержке Российского научного фонда (проект № 20-13-00329). Спектральные исследования проведены с использованием научного оборудования Центра исследования строения молекул Института элементоорганических соединений РАН.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Matveeva A.G., Kudryavtsev I.Yu., Pasechnik M.P., Vologzhanina A.V., Baulina T.V., Vavina A.V., Sukat G.Ya, Matveev S.V., Godovikov I.A., Turanov A.N., Karandashev V.K., Brel V.K. // Polyhedron. 2018. Vol. 142. P. 71. doi 10.1016/j.poly.2017.12.025
- 2. Turanov A.N., Matveeva A.G., Kudryavtsev I.Yu., Pasechnik M.P., Matveev S.V., Godovikova M.I., Bauli-

na T.V., Karandashev V.K., Brel V.K. // Polyhedron. 2019. Vol. 161. P. 276. doi 10.1016/j.poly.2019.01.036

- Кудрявцев И.Ю., Баулина Т.В., Пасечник М.П., Айсин Р.Р., Матвеев С.В., Петровский П.В., Нифантьев Э.Е. // Изв. АН. Сер. хим. 2013. № 4. С. 1085; Kudryavtsev I.Yu., Baulina T.V., Pasechnik M.P., Matveev S.V., Petrovskii P.V., Nifant'ev E.E. // Russ. Chem. Bull. 2013. Vol. 62. N 4. P. 1086. doi 10.1007/ s11172-013-0146-6
- Kudryavtsev I.Yu., Baulina T.V., Pasechnik M.P., Matveev S.V., Matveeva A.G. // Phosphorus, Sulfur, Silicon, Relat. Elem. 2014. Vol. 189. N 7–8. P. 946. doi 10.1080/10426507.2014.904865
- Быховская О.В., Матвеева А.Г., Пасечник М.П., Вологжанина А.В., Матвеев С.В., Кудрявцев И.Ю., Баулина Т.В., Брель В.К. // ЖОХ. 2019. Т. 89. Вып. 12.
 С. 1885. doi 10.1134/S0044460X19120126; Bykhovskaya O.V., Matveeva A.G., Pasechnik M.P., Vologzhanina A.V., Matveev S.V., Kudryavtsev I.Yu., Baulina T.V., Brel V.K. // Russ. J. Gen. Chem. 2019.
 Vol. 89. N 12. P. 2400. doi 10.1134/S1070363219120120
- Singh A. S., Sun S.-S. // Chem. Commun. 2011. Vol. 47. N 3. P. 8563. doi 10.1039/c1cc12757h
- Kuswandi B., Nuriman, Verboom W., Reinhoudt D.N. // Sensors. 2006. Vol. 6. N 8. P. 978. doi 10.3390/s6080978
- Santacroce P.V., Okunola O.A., Zavalija P.Y., Davis J.T. // Chem. Commun. 2006. N 30. P. 3246. doi 10.1039/ b607221f
- Gale P.A. // Acc. Chem. Res. 2011. Vol. 44. N 3. P. 216. doi 10.1021/ar100134p
- Reinoso-García M.M., Dijkman A., Verboom W., Reinhoudt D.N., Malinowska E., Wojciechowska D., Pietrzak M., Selucky P. // Eur. J. Org. Chem. 2005. N 10. P. 2131. doi 10.1002/ejoc.200500002
- Kuswandi B., Nuriman, Dam H.H., Reinhoudt D.N., Verboom W. // Analyt. Chim. Acta. 2007. Vol. 591. N 2. P. 208. doi 10.1016/j.aca.2007.03.064
- Nuriman, Kuswandi B., Verboom W. // Analyt. Chim. Acta. 2009. Vol. 655. N 1–2. P. 75. doi 10.1016/j. aca.2009.09.045
- Le Gac S., Luhmer M., Reinaud O., Jabin I. // Tetrahedron. 2007. Vol. 63. N 44. P. 10721. doi 10.1016/j.tet.2007.06.122
- Welti R., Diederich F. // Helv. Chim. Acta. 2003. Vol. 86. N 2. P. 494. doi 10.1002/hlca.200390049

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 90 № 10 2020

- Кудрявцев И.Ю., Быховская О.В., Аладжева И.М., Баулина Т.В., Брель В.К. // ЖОХ. 2017. Т. 87. Вып. 11. С. 1922; Kudryavtsev I.Y., Bykhovskaya O.V., Aladzheva I.M., Baulina T.V., Brel V.K. // Russ. J. Gen. Chem. 2017. Vol. 87. N 11. P. 2744. doi 10.1134/ S1070363217110366
- Баулина Т.В., Кудрявцев И.Ю., Сукат Г.Я., Брель В.К. // ЖОХ. 2018. Т. 88. Вып. 9. С. 1559. doi 10.1134/S0044460X1809024X; Baulina T.V., Kudryavtsev I.Yu., Sykat G.Ya., Brel V.K. // Rus. J. Gen. Chem. 2018. Vol. 88. N 9. P. 1927. doi 10.1134/ S1070363218090281
- Baulina T.V., Kudryavtsev I.Y., Smolyakov A.F., Pasechnik M.P., Brel V.K. // Heteroatom Chem. 2018.
 P. e21454. doi 10.1002/hc.21454
- Кудрявцев И.Ю., Баулина Т.В., Хрусталев В.Н., Петровский П.В., Пасечник М.П., Нифантьев Э.Е. // Докл. АН. 2013. Vol. 448. № 6. Р. 657. doi 10.7868/ S0869565213060121; Kudryavtsev I.Yu., Baulina T.V., Khrustalev V.N., Petrovskii P.V., Pasechnik M.P., Nifant'ev E.E. // Doklady Chem. 2013. Vol. 448. N 2. P. 55. doi 10.1134/S0012500813020092

- Stewart W. E., Siddall T. H. // Chem. Rev. 1970. Vol. 70. N 5. P. 517. doi 10.1021/cr60267a001
- Pasechnik M.P., Matveeva A.G., Lyssenko K.A., Aysin R.R., Smol'yakov A.F., Zubavichusc Y.V., Godovikov I.A., Goryunov E.I. // J. Mol. Struct. 2019. Vol. 1175. P. 874. doi 10.1016/j.molstruc.2018.08.009
- Baulina T.V., Pasechnik M.P., Kudryavtsev I.Yu., Bykhovskaya O.V., Sukat G.Ya., Smol'yakov A.F., Anikina L.V., Brel V.K. // J. Mol. Struct. 2020. Vol. 1217. P. 128324. doi 10.1016/j.molstruc.2020.128324
- Durrell A.C., Gray H.B., Hazari N., Incarvito C.D., Liu J., Yan E.C.-Y. // Cryst. Growth Des. 2010. Vol. 10. N 4. P. 1482. doi 10.1021/cg1001286
- Armarego W.L.F. Purification of Laboratory Chemicals. Amsterdam: Elsevier, 2017. doi 10.1016/B978-0-12-805457-4.50008-2
- 24. SADABS program, vers. 2008/1, Bruker AXS, Madison, WI, USA, 2008.
- 25. *Sheldrick G.M.* SHELX-97. Programs for Crystal Structure Analysis (Release 97-2). University of Göttingen, Germany, 1997.
- Sheldrick G.M. // Acta Crystallogr. (C). 2015. Vol. 71. N 1. P. 3. doi 10.1107/S2053229614024218

Synthesis, Molecular, and Crystal Structure of Tris(2-carbamoylmethoxyphenyl)phosphine Oxide

T. V. Baulina^{*a*}, I. Yu. Kudryavtsev^{*a*,*}, A. V. Artem'ev^{*b*}, I. Yu. Bagryanskaya^{*c*}, M. P. Pasechnik^{*a*}, and V. K. Brel^{*a*}

^a Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, 119991 Russia ^b Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090 Russia

^c Vorozhtsov Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090 Russia *e-mail: zaq@ineos.ac.ru

Received June 17, 2020; revised June 17, 2020; accepted June 30, 2020

New tripodal ligand, tris(2-carbamoylmethoxyphenyl)phosphine oxide was synthesized by the alkylation of triphenol with chloroacetamide. The structure of the ligand has been studied by IR, NMR (¹H, ³¹P) spectroscopy and X-ray diffraction.

Keywords: tripodal ligand, tris(2-carbamoylmethoxyphenyl)phosphine oxide, crystal and molecular structure