УДК [547.496.3:547.281.1:547.466]:66.095.253.095.832

АМИНОМЕТИЛИРОВАНИЕ СИММЕТРИЧНЫХ ДИАЛКИЛТИОМОЧЕВИН ФОРМАЛЬДЕГИДОМ И АМИНОКИСЛОТАМИ

© 2020 г. У. А. Маммери^{*a*}, Ф. Хамуд^{*a*}, А. А. Собина^{*a*}, С. М. Рамш^{*a*,*}, В. С. Фундаменский^{*a*}, В. В. Гуржий^{*b*}, Е. С. Храброва^{*a*}

^а Санкт-Петербургский государственный технологический институт (технический университет), Московский пр. 26, Санкт-Петербург, 190013 Россия ^b Санкт-Петербургский государственный университет, Санкт-Петербург, 199034 Россия *e-mail: sramsh@technolog.edu.ru

> Поступило в Редакцию 16 июля 2020 г. После доработки 16 июля 2020 г. Принято к печати 29 июля 2020 г.

При конденсации 1,3-диалкилтиомочевины, формальдегида и терминальной аминокислоты C₂, C₃ или C₄, взятых в мольном соотношении 1:2:1, образуются терминально замещенные (3,5-диалкил-4-тиок-со-1,3,5-триазинан-1-ил)карбоновые кислоты.

Ключевые слова: аминометилирование, 1,3-диалкилтиомочевины, формальдегид, ω-аминокислоты, терминально замещенные (3,5-диалкил-4-тиоксо-1,3,5-триазинан-1-ил)карбоновые кислоты

DOI: 10.31857/S0044460X20110049

Аминометилирование незамещенной тиомочевины формальдегидом и терминальными аминокислотами С₂-С₄ хорошо изучено, в результате этой реакции получаются циклические тиомочевины – терминально замещенные (4-тиоксо-1,3,5-триазинан-1-ил)карбоновые кислоты [1, 2]. Из незамещенной мочевины и тех же аминометилирующих агентов подобные соединения не образуются, возможно, из-за более быстрой поликонденсации мочевины с формальдегидом, катализируемой аминокислотами, в то время как симметричные диалкилмочевины легко вступают в указанную реакцию аминометилирования с образованием соответствующих терминально замещенных (3,5-диалкил-4-оксо-1,3,5-триазинан-1-ил)карбоновых кислот [3].

Цель данной работы – получение тио-аналогов этих соединений, а именно (3,5-диалкил-4-тиоксо-1,3,5-триазинан-1-ил)карбоновых кислот, путем конденсации симметричных диалкилтиомочевин с формальдегидом и терминальными аминокислотами C₂–C₄. Эта реакция представляет практический интерес в плане получения пролекарственных форм [4] активных фармацевтических ингредиентов с тиоуреидным фрагментом –HNC(=S)NH–.

Оказалось, что, как и в случае незамещенной тиомочевины, 1,3-диметилтиомочевина 1 и 1,3-диэтилтиомочевина 2 в водном формальдегиде легко вступают в реакцию с простейшими аминокислотами – глицином, β -аланином и γ -аминомасляной кислотой, образуя хорошо кристаллизующиеся терминально замещенные (3,5-диалкил-4-тиоксо-1,3,5-триазинан-1-ил)карбоновые кислоты **За**–в и **4а**–в с выходом 76–93% (схема 1).

Структура полученных соединений подтверждена методами ИК и ЯМР спектроскопии и масс-спектрометрии. В спектрах ЯМР ¹Н соединений **3** и **4** присутствует синглет циклических СН₂-протонов в области 4.24–4.31 м. д., и сигналы протонов аминокислотных фрагментов и N-алкильных групп соответствующей интенсивности (табл. 1). Сигналы карбоксильных протонов не проявляются, вероятно, из-за быстрого обмена с протонами остаточной воды растворителя. В спектрах ЯМР ¹³С присутствуют сигналы

 $R = CH_3 (1, 3), C_2H_5 (2, 4); n = 1 (3a, 4a), 2 (36, 46), 3 (3B, 4B).$

всех углеродных атомов: циклических при 66.2– 68.8 м. д., карбоксильных при 171.5–174.8 м. д., а также аминокислотных фрагментов и N-алкильных групп (табл. 1). В ИК спектрах присутствуют характерные сигналы тиоуреидного фрагмента в диапазоне 1512–1530 см⁻¹ и карбоксильной группы в диапазоне 1691–1738 см⁻¹. Определенные масс-спектрометрическим методом молекулярные массы соединений **3** и **4** соответствуют вычисленным значениям.

Строение соединений **3a** и **4a**–в подтверждено методом рентгеноструктурного анализа (табл. 2). В триазинановом цикле соединений **3a**, **4a**–в, как и в случае их оксо-аналогов [1], пять из шести атомов цикла лежат в одной плоскости, и лишь атом азота аминокислотного фрагмента выходит из этой плоскости. У всех этильных производных **4a**–в этильные фрагменты и аминокислотная ветвь обращены в одну сторону относительно триазинанового цикла. В отличие от этого, у оксо-аналога соединения **4a** этильные ветви и аминокислотная ветвь отклоняются в разные стороны [1].

В независимой части ячейки соединения **4a** находятся две не связанные элементами симметрии молекулы. Молекулы каждого типа связаны в бесконечные цепи за счет межмолекулярных водородных связей карбоксильной группы и серы

тиокарбамидного фрагмента O^{13A}–H^{13A}...S^{1A} и O¹³–H¹³...S¹ (рис. 1). Каждая из цепей уложена в спиральную колонку. Таким образом, кристаллическая структура состоит из двух типов спиральных колонок. Обе спирали закручены в одну сторону, причем их оси направлены вдоль оси *b*. Между спиральными колонками реализуются ван-дер-ваальсовы контакты S^{1A}...H^{5A}, S^{1A}...H^{11A} и S¹...H^{3A}, S¹...H^{5B}.

В аналогичные бесконечные цепи связаны и молекулы оксо-аналога этого соединения, а также оксо-аналога метильного производного **За** за счет межмолекулярных водородных связей карбоксильной группы и кислорода карбамидного фрагмента [1].

В молекулах соединений **46** и **48** карбоксильный водород разупорядочен 50:50 между двумя карбоксильными кислородами (рис. 2). Другой особенностью строения соединений **46** и **48** является образование в кристалле димеров за счет межмолекулярных водородных связей (рис. 2, табл. 3). Димерные структуры реализуются и в кристалле соединения **3а**. Стоит также отметить, что в структуре соединения **3а** плоскости карбоксильных групп в димерах ориентированы параллельно друг другу и примерно параллельно плоскости (131), тогда как в структуре оединения **48** плоскости имеют две системы ориентироваки,

Таблица 1. Химические сдвиги (м. д.) сигналов аминокислотного фрагмента и алкильных групп в спектрах ЯМР ¹Н и ¹³С соединений **3а–в** и **4а–в** в ДМСО-*d*₆

	Аминокислотный фрагмент						N-Алкильные группы			
Соединение	α-CH ₂		β-CH ₂		γ-CH ₂		CH ₂		CH ₃	
	¹ H	¹³ C	¹ H	¹³ C	¹ H	¹³ C	¹ H	¹³ C	$^{1}\mathrm{H}$	¹³ C
3a	3.44	52.31	_	_	_	_	_	_	3.14	39.66
36	2.47	33.53	2.84	47.19	_	-	_	_	3.15	39.64
3в	2.26	31.70	1.70	23.25	2.60	50.38	_	_	3.14	39.66
4a	3.35	51.71	_	_	_	-	3.68	45.55	1.05	12.54
4б	2.47	33.49	2.75	46.82	_	-	3.70	45.62	1.07	12.71
4в	2.27	31.69	1.71	23.21	2.53	49.98	3.68	45.59	1.06	12.70

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 90 № 11 2020

· · · ·						
Параметр	3a	4a	4б	4в		
CCDC	1992488	1966734	1966741	1966744		
Брутто-формула	$C_7H_{13}N_3O_2S$	$C_9H_{17}N_3O_2S$	$C_{10}H_{19}N_3O_2S$	$C_{11}H_{21}N_3O_2S$		
Сингония	Триклинная	Моноклинная	Моноклинная	Моноклинная		
Пространственная группа	<i>P</i> -1	$P2_1/n$	$P2_1/c$	$P2_1/c$		
Температура, К	100	130	130	130		
<i>a</i> , Å	7.14196(11)	16.65752(16)	12.8937(3)	11.55799(17)		
b, Å	8.36169(14)	8.38419(8)	8.29026(17)	8.40325(12)		
<i>c</i> , Å	8.41726(14)	17.30894 (16)	11.7536 (2)	14.1073 (2)		
α, град	96.0650(14)					
β, град	105.2343(14)	107.6224(11)	104.077(2)	91.9265(13)		
ү, град	104.1754 (14)					
<i>V</i> , Å ³	462.41(1)	2303.92(4)	1218.63(4)	1369.39(3)		
Ζ	2	8	4	4		
Излучение	CuK_{a}					
μ, мм ⁻¹	2.91	2.40	2.30	2.07		
Размер кристалла, мм	$0.24 \times 0.18 \times 0.14$	$0.22\times0.18\times0.13$	$0.25 \times 0.17 \times 0.02$	$0.17 \times 0.12 \times 0.09$		
T_{\min}, T_{\max}	0.825, 1.000	0.823, 1.000	0.497, 1.000	0.956, 1.000		
Измеренные, независимые и	6194, 1708, 1696	11431, 4292, 3874	5374, 2236, 1985	6329, 2548, 2286		
наблюдаемые [$I > 2\sigma(I)$] рефлексы						
R _{int}	0.018	0.029	0.030	0.025		
θ _{min} , θ _{max} , град)	5.5, 70.0	3.2, 70.0	6.4, 70.0	3.8, 69.9		
Количество рефлексов	1708	4292	2236	2548		
Уточняемые параметры	122	277	155	164		
$\Delta \rho_{\rm max} / \Delta \rho_{\rm min}$, $e / {\rm \AA}^3$	0.30/-0.24	0.53/-0.32	0.26/-0.23	0.19/-0.22		

Таблица 2. Основные кристаллографические параметры соединений За, 4а-в

приблизительно параллельно плоскостям (212) и (2-12), расположенные под углом ~51.8(1)° друг к другу, что, вероятно, может быть связано с большей длиной аминокислотной ветви.

Таким образом, симметричные диалкилтиомочевины, подобно их оксо-аналогам и самой тиомочевине, легко вступают в реакцию аминометилирования формальдегидом и терминальными аминокислотами C_{2-4} с образованием терминальнозамещенных (3,5-диалкил-4-тиоксо-1,3,5-триазинан-1-ил)карбоновых кислот. Изученная реакция может рассматриваться в качестве модельной при разработке пролекарственных форм лекарственных молекул с тиоуреидным фрагментом –HNC(=S)NH–.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры зарегистрированы на спектрометре Shimadzu FTIR-8400S в таблетках КВг. Спектры ЯМР ¹Н и ¹³С зарегистрированы на спектрометре Bruker Avance III-400 (400 и 100 МГц) в ДМСО- d_6 , в качестве внутреннего стандарта ис-

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 90 № 11 2020

пользованы сигналы остаточных протонов и ядер 13 С ДМСО- d_6 . Масс-спектры получены в Ресурсном центре Санкт-Петербургского государственного университета «Методы анализа состава вещества» на хромато-масс-спектрометре MaXis 62 (Bruker Daltonik GmbH), оснащенном источником электроспрей-ионизации (4.5 эВ) и квадруполь-времяпролетным масс-анализатором (ESI-

Рис. 1. Межмолекулярные водородные связи в бесконечных цепях структуры **4**а.

Рис. 2. Межмолекулярные водородные связи в димерной структуре 4в.

QTOF) в режиме детектирования положительных ионов, растворитель – метанол.

Основные кристаллографические параметры структур **3a**, **4a**–**b**, а также условия съемки приведены в табл. 2. Структуры решены прямым методом и уточнены в анизотропном приближении для неводородных атомов полноматричным методом наименьших квадратов с помощью программного комплекса SHELXL 2018 [5]. Рентгеноструктурные исследования выполнены в Ресурсном центре Санкт-Петербургского государственного университета «Рентгенодифракционные методы исследования».

2-(3,5-Диметил-4-тиоксо-1,3,5-триазинан-1-ил)уксусная кислота (За). К раствору 2.08 г (0.02 моль) диметилтиомочевины (1) в 3.36 г (0.04 моль) 36%-ного формалина одномоментно добавляли 1.50 г (0.02 моль) глицина и перемешивали до его полного растворения. Реакционную смесь оставляли на ночь, затем отфильтровывали и сушили образовавшиеся прозрачные ромбические кристаллы. Выход 3.27 г (80.5 %), т. пл. 170°С (C_2H_5OH). ИК спектр, v, см⁻¹: 1525 с (C=S + C–N), 1711 с (C=O), 2880, 2932 сл (CH₂), 2400-3200 ш (OH). Спектр ЯМР ¹H, δ, м. д.: 3.14 с (6H, NCH₃), 3.44 (2H, NCH₂COOH), 4.31 (4H, CH_{2цикл}), 12.57 с (1H, OH). Спектр ЯМР ¹³С {¹H}, δ_C , м. д.: 39.66 (CH₃), 52.31 (NCH₂COO), 68.76 (NCH₂N), 178.85 (C=S), 171.58 (COOH). Масс-спектр, *m/z*: 204.0801 [*M* + H]⁺ (вычислено для C₇H₁₃N₃O₂S: 204.0801), 226.0624 [*M* + Na]⁺ (вычислено для C₇H₁₃N₃NaO₂S: 226.0621).

3-(3,5-Диметил-4-тиоксо-1,3,5-триазинан-1-ил)пропановая кислота (36). К раствору 2.08 г (0.02 моль) диметилтиомочевины (1) в 3.36 г (0.04 моль) 36%-ного формалина одномоментно добавляли 1.78 г (0.02 моль) β-аланина и перемешивали до его полного растворения. Через

Соединение	D–H···A	$d(\mathbf{D}\cdots\mathbf{A}), \mathbf{A}$	<i>d</i> (D–H), Å	<i>d</i> (H···A), Å	D—Н…А, град
3 a	O ¹⁰ O ^{11 (i)}	2.651	0.82	1.83	178
4a	$O^{13} \cdots S^{1 \ (ii)}$	3.137	0.82	2.33	171
	$O^{13A} \cdots S^{1A(iii)}$	3.168	0.82	2.35	173
46	$O^{15} \cdots O^{14(iv)}$	2.633	0.91	1.74	164
	$O^{14} \cdots O^{15(iv)}$	2.633	0.75	1.89	172
4 _B	$O^{15} \cdots O^{16(v)}$	2.648	0.91	1.74	176
	$O^{16}O^{15}(v)$	2.648	0.74	1.91	173

Таблица 3. Параметры водородных связей в кристаллической ячейке соединений 3a, 4а-ва

а Операторы симметрии: (i) -*x*+2, -*y*, -*z*+1; (ii) -*x*+3/2, *y*+1/2, -*z*+3/2; (iii) -*x*+3/2, *y*-1/2, -*z*+1/2; (iv) -*x*+1, -*y*, -*z*+2; (v) -*x*+1, -*y*+1, -*z*-1.

20 мин наблюдалось образование белого кристаллического осадка. Смесь оставляли на 2 сут, осадок отфильтровывали, промывали этанолом и сушили в вакуум-эксикаторе. Выход 3.78 г (87.1%), т. пл. 169°С (С₂Н₅ОН). ИК спектр, v. см⁻¹: 1519 с (C=S + C-N), 1711 с (C=O), 2868, 2932 сл (CH₂), 2560–3360 ш (ОН). Спектр ЯМР ¹Н, б, м. д.: 2.47 т (2H, NCH₂CH₂COOH, J = 7.0 Гц), 2.84 т (2H, NCH₂CH₂COOH, $J = 7.0 \ \Gamma \mu$), 3.15 c (6H, NCH₃), 4.27 с (4H, CH_{2цикл}). Спектр ЯМР $^{13}C{^{1}H}$, δ_{C} , м. д.: 39.64 (CH₃), 33.53 (NCH₂CH₂COOH), 47.19 (NCH₂CH₂COOH), 68.49 (NCH₂N), 178.68 (C=S), 173.73 (СООН). Масс-спектр, *m/z*: 218.0956 $[M + H]^+$ (вычислено для C₈H₁₅N₃O₂S: 218.0957), $240.0773 [M + Na]^+$ (вычислено для C₈H₁₅N₃NaO₂S: 240.0777).

4-(3,5-Диметил-4-тиоксо-1,3,5-триазинан-1-ил)бутановая кислота (Зв). К раствору 3.43 г (0.033 моль) диметилтиомочевины 1 в 5.55 г (0.066 моль) 36%-ного формалина одномоментно добавляли 3.40 г (0.033 моль) у-аминомасляной кислоты и перемешивали до ее полного растворения. Реакционную смесь оставляли на ночь, затем переносили в чашку Петри и упаривали под током теплого воздуха. Через 2 ч наблюдалось образование кристаллического осадка, который оставляли на ночь. Прозрачные ромбические кристаллы отфильтровывали и сушили в вакууме. Выход 5.82 г (76.2%), т. пл. 137-139°С (С2H5OH). ИК спектр, v. cm⁻¹: 1530 c (C=S + C–N), 1705 c (C=O), 2904, 2935 сл (СН₂), 2500-3280 ш (ОН). Спектр ЯМР ¹Н, б, м. д.: 1.70 м (2Н, CH₂CH₂), 2.26 т (2Н, CH_2 СООН, $J = 7.2 \Gamma$ ц), 2.60 т (2H, NC $H_2 J = 7.2 \Gamma$ ц), 3.14 с (6H, CH₃), 4.26 с (4H, C<u>H_{2пикп}</u>). Спектр ЯМР ¹³С{¹H}, ₆, м. д.: 23.25 (NCH₂<u>C</u>H₂CH₂COOH), 31.70 (NCH₂CH₂CH₂COOH), 39.66 (CH₃), 50.38 (NCH₂CH₂CH₂COOH), 68.42 (NCH₂N), 178.64 (C=S), 174.80 (СОО). Масс-спектр, m/z: 232.1114 $[M + H]^+$ (вычислено для C₉H₁₇N₃O₂S: 232.1114), 254.0934 [*M* + Na]⁺ (вычислено для C₉H₁₇N₃NaO₂S: 254.0934).

2-(3,5-Диэтил-4-тиоксо-1,3,5-триазинан-1-ил)уксусная кислота (4а) получена аналогично из 1.32 г (0.01 моль) диэтилтиомочевины **2**, 1.68 г (0.02 моль) 36%-ного формалина и 0.75 г (0.01 моль) глицина. Выход 2.15 г (93.0%), т. пл. 129– 131°С (ацетон). ИК спектр, v, см⁻¹: 1528 с (C=S + C–N), 1706, 1738 с (C=O), 2937, 2967, 2985 сл

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 90 № 11 2020

(CH₂), 2480–3360 ш (OH). Спектр ЯМР ¹H, δ , м. д.: 1.05 т (6H, NCH₂C<u>H</u>₃, *J* = 7.0 Гц), 3.35 с (2H, NC<u>H</u>₂COOH), 3.68 к (4H, NC<u>H</u>₂CH₃, *J* = 7.0 Гц), 4.30 с (4H, CH_{2цикл}). Спектр ЯМР ¹³C{¹H}, $\delta_{\rm C}$, м. д.: 171.51 (COOH), 176.44 (C=S), 66.45 (NCH₂N), 51.71 (N<u>C</u>H₂COOH), 45.55 (N<u>C</u>H₂CH₃), 12.54 (NCH₂<u>C</u>H₃). Масс-спектр, *m/z*: 232.1102 [*M* + H]⁺ (вычислено для C₉H₁₇N₃O₂S: 232.1114), 254.0922 [*M* + Na]⁺ (вычислено для C₉H₁₇N₃NaO₂S: 254.0934).

3-(3,5-Диэтил-4-тиоксо-1,3,5-триазинан-1-ил)пропановая кислота (46) получена аналогично из 1.32 г (0.01 моль) диэтилтиомочевины 2, 1.68 г (0.02 моль) 36%-ного формалина и 0.89 г (0.01 моль) β-аланина. Выход 2.23 г (90.9%), т. пл. 117-119°С (ацетона). ИК спектр, v, см⁻¹: 1512 c (C=S + C-N), 1691, 1714 c (C=O), 2929, 2958, 2985 сл (СН₂), 2480-3360 ш (ОН). Спектр ЯМР ¹Н, δ, м. д.: 1.07 т (6Н, NCH₂C<u>H₃</u>, *J* = 7.0 Гц), 2.47 т (2H, NCH₂C<u>H</u>₂COOH, J = 7.1 Гц), 2.75 т (2H, NC<u>H</u>₂CH₂COOH, J = 7.1 Гц), 3.70 к (4H, NCH₂CH₃, *J* = 7.0 Гц), 4.25 с (4H, CH_{2шикл}). Спектр ЯМР ¹³С{¹H}, δ_C, м. д.: 173.65 (СООН), 176.48 (C=S), 66.35 (NCH₂N), 46.82 (N<u>C</u>H₂CH₂COOH), 45.62 (NCH₂CH₃), 33.49 (NCH₂CH₂COOH), 12.71 (NCH₂<u>C</u>H₃). Масс-спектр, m/z: 246.1272 $[M + H]^+$ (вычислено для C₁₀H₁₉N₃O₂S: 246.1270), 268.1090 $[M + Na]^+$ (вычислено для $C_{10}H_{19}N_3NaO_2S$: 268.1090).

4-(3,5-Диэтил-4-тиоксо-1,3,5-триазинан-1-ил)бутановая кислота (4в) получена аналогично из 1.32 г (0.01 моль) диэтилтиомочевины 2, 1.68 г (0.02 моль) 36%-ного формалина и 1.03 г (0.01 моль) у-аминомасляной кислоты. Выход 2.22 г (85.6%), т. пл. 81-83°С. ИК спектр, v, cm^{-1} : 1517 c (C=S + C-N), 1695, 1710 c (C=O), 2895, 2920, 2980 сл (СН₂), 2590-3370 ш (ОН). Спектр ЯМР ¹Н, б, м. д.: 1.06 т (6Н, NCH₂C<u>H₃</u>, J = 7.0 Гц), 1.71 м (2H, NCH₂CH₂CH₂COOH), 2.27 т (2H, NCH₂CH₂CH₂COOH, J = 7.2 Гц), 2.53 т $(2H, NCH_2CH_2CH_2COOH, J = 7.1 Гц), 3.68 к (4H,$ NCH₂CH₃, *J* = 7.0 Гц), 4.24 с (4H, CH_{2шикл}). Спектр ЯМР ¹³С{¹H}, б_с, м. Д.: 174.77 (СООН), 176.41 (C=S), 66.21 (NCH₂N), 49.98 (N<u>C</u>H₂CH₂CH₂COOH), 45.59 (NCH₂CH₃), 23.21 (NCH₂CH₂CH₂COOH), 31.69 (NCH₂CH₂CH₂COOH), 12.70 (NCH₂CH₃). Масс-спектр, m/z: 282.1237 $[M + Na]^+$ (вычислено для C₁₁H₂₁N₃NaO₂S: 282.1247).

ФОНДОВАЯ ПОДДЕРЖКА

Работа выполнена в рамках программы Министерства науки и высшего образования РФ 785.00Х60.19.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

 Сун Миньянь, Рамш С.М., Фундаменский В.С., Соловьева С.Ю., Захаров В.И. // ЖОХ. 2012. Т. 82. Вып. 2. С. 240; Minyan S., Ramsh S.M., Fundamen*sky V.S., Solov'eva S.Yu., Zakharov V.I. //* Russ. J. Gen. Chem. 2012. Vol. 82. N 2. P. 236. doi 10.1134/ S1070363212020132

- Рамш С.М., Хамуд, Ф., Храброва Е.С. // Изв. СПбГТИ (ТУ). 2019. № 50 (76). С. 72.
- Хамуд Ф., Маммери У., Чуйко А.В., Рамш С.М., Фундаменский В.С., Гуржий В.В., Храброва Е.С. // Изв. СПбГТИ (ТУ). 2019. № 51 (77). С. 56. doi 10.36807/1998-9849-2019-51-77-56-60
- Кузнецов С.Г., Чигарева С.М., Рамш С.М. // Итоги науки и техники. Сер. Органическая химия. Т. 19. М.: ВИНИТИ, 1991. 176 с.
- Sheldrick G.M. // Acta Crystallogr. (C). 2015. Vol. 71. N 1. P. 3. doi 10.1107/S2053229614024218

Aminomethylation of Symmetric Dialkylthioureas with Formaldehyde and Amino Acids

O. A. Mammeri^{*a*}, F. Hamoud^{*a*}, A. A. Sobina^{*a*}, S. M. Ramsh^{*a*,*}, V. S. Fundamensky^{*a*}, V. V. Gurzhiy^{*b*}, and E. S. Khrabrova^{*a*}

^a St. Petersburg State Institute of Technology (Technical University), St. Petersburg, 190013 Russia ^b St. Petersburg State University, St. Petersburg, 199034 Russia *e-mail: sramsh@technolog.edu.ru

Received July 16, 2020; revised July 16, 2020; accepted July 29, 2020

Condensation of 1,3-dialkylthiourea, formaldehyde and terminal amino acids C_2 , C_3 or C_4 taken in a molar ratio of 1:2:1 gives rise to terminally substituted (3,5-dialkyl-4-thioxo-1,3,5-triazinan-1-yl)carboxylic acids.

Keywords: aminomethylation, 1,3-dialkylthioureas, formaldehyde, ω -amino acids, terminally substituted (3,5-dialkyl-4-thioxo-1,3,5-triazinan-1-yl)carboxylic acids

1666