УДК 547.854

СИНТЕЗ, СТРОЕНИЕ И АНТИБАКТЕРИАЛЬНАЯ АКТИВНОСТЬ АЛКИЛ-7-АРИЛ-6-АРОИЛ-4,7-ДИГИДРОТЕТРАЗОЛО[1,5-*a*]ПИРИМИДИН-5-КАРБОКСИЛАТОВ

© 2020 г. В. Л. Гейн^{*a*}, Т. М. Замараева^{*a*}, А. А. Бобылева^{*a*}, М. В. Дмитриев^{*b*}

^аПермская государственная фармацевтическая академия, ул. Полевая 2, Пермь, 614990 Россия ^b Пермский государственный национальный исследовательский университет, Пермь, 614990 Россия *e-mail: geinvl48@mail.ru

> Поступило в Редакцию 18 июня 2020 г. После доработки 18 июня 2020 г. Принято к печати 29 июня 2020 г.

Трехкомпонентной реакцией алкиловых эфиров ароилпировиноградных кислот со смесью ароматического альдегида и моногидрата 5-аминотетразола синтезированы новые алкил-7-арил-6-ароил-4,7-дигидротетразоло[1,5-*a*]пиримидин-5-карбоксилаты. Изучена антибактериальная активность полученных соединений.

Ключевые слова: производные тетразоло[1,5-*а*]пиримидина, алкиловые эфиры ароилпировиноградных кислот, антибактериальная активность

DOI: 10.31857/S0044460X20110062

В медицинской практике широко применяются тетразолсодержащие β-лактамные антибиотики ряда цефалоспорина, такие как цефобид, цефметазол, цефоперазон, цефазолин, ингибирующие биосинтез клеточной стенки бактерий. Соединения, содержащие пиримидиновый цикл, используются как противопротозойные средства (хлоридин, пириметамин) и антибактериальные препараты (триметоприм), механизм действия которых связан с угнетением дигидрофолатредуктазы в процессе синтеза тетрагидрофолиевой кислоты (предшественника пуринов и пиримидинов) [1-4]. С этой точки зрения целесообразен поиск новых веществ с антибактериальной активностью среди конденсированных гетероциклических систем, содержащих тетразольный цикл, аннелированный с пиримидиновым кольцом.

С целью получения новых производных тетразолопиримидина, установления их пространственного строения и изучения их антибактериальной активности нами по известной методике [5–8] было осуществлено взаимодействие алкиловых эфиров ароилпировиноградных кислот со смесью ароматического альдегида и моногидрата 5-аминотетразола и получены ранее неописанные алкил-7-арил-6-ароил-4,7-дигидротетразоло[1,5-*a*]-пиримидин-5-карбоксилаты **1–20** (схема 1). Реакцию проводили при выдерживании эквимолярной смеси соответствующего алкилпирувата, замещенного бензальдегида и моногидрата 5-аминотетразола при 120–150°С. Выход целевых соединений **1–20** составил 59–94%.

Соединения 1–20 представляют собой бесцветные кристаллические вещества, легко растворимые в ДМФА, ДМСО, при нагревании – в уксусной кислоте, этиловом спирте, диоксане, нерастворимые в воде. Строение полученных соединений доказано с помощью методов ИК и ЯМР спетроскопии, а также данными рентгеноструктурного анализа на примере метил-6-(4-метоксибензоил)-7-(2-фторфенил)-4,7-дигидротетразоло[1,5-*a*]пиримидин-5-карбоксилата **6**.

В ИК спектрах соединений **1–20** наблюдаются полосы, обусловленные валентными колебаниями кетонной (1630–1670 см⁻¹) и сложноэфирной (1720–1760 см⁻¹) групп, а также связи N–H (3100–

 $R^{1} = 4-MeOC_{6}H_{4} (1-6), 4-EtOC_{6}H_{4} (7-13), 4-HOC_{6}H_{4} (14, 15), 4-ClC_{6}H_{4} (16-20); R^{2} = Me (1-18), Et (19-20); R^{3} = 3-MeO (1), 4-MeO (2), 2-MeO (3, 14, 16), 3-OH (4), 4-Cl (5, 15), 2-F (6), 3-MeO-4-HO (7), 2,4-(MeO)_{2} (8, 19), 2-Cl (9), 4-NO_{2} (10), 3-NO_{2} (11), 4-OH (12), 4-F (13), 3,4-(MeO)_{2} (17), 2,5-(MeO)_{2} (18), 4-Me (20).$

3300 см⁻¹). В спектрах ЯМР ¹Н алкил-7-арил-6-ароил-4,7-дигидротетразоло[1,5-*а*]пиримидин-5-карбоксилатов, кроме сигналов ароматических протонов и связанных с ними групп, наблюдаются сигналы протонов CH₃OCO (3.18–3.35 м. д., **1–18**), <u>CH₃CH₂O (0.90–0.93 м. д.), CH₃<u>CH_AH_BO (3.73– 3.78 м. д.) и CH₃CH_A<u>H</u>_BO (3.84–3.86 м. д., **19–20**), H⁷ (6.33–7.12 м. д.) и H⁴ (10.95–11.50 м. д.).</u></u>

В масс-спектре соединения **3** присутствует пик молекулярного иона с m/z 421 $[M]^+$, а также пики фрагментных ионов с m/z 362 $[M - \text{COOCH}_3]^+$, 314 $[M - \text{CH}_3\text{OC}_6\text{H}_4]^+$, 135 $[\text{CH}_3\text{OC}_6\text{H}_4\text{CO}]^+$. В масс-спектрах соединений **5** и **6** регистрируются пики молекулярных ионов с m/z 425 $[M]^+$ и m/z 409

Общий вид молекулы соединения **6** в кристалле в представлении тепловыми эллипсоидами 50%-ной вероятности.

 $[M]^+$ соответственно, что подтверждает предполагаемую структуру.

Для установления пространственной структуры соединений 1–20 в кристаллическом состоянии медленной кристаллизацией из этанола были получены монокристаллы соединения 6, пригодные для проведения рентгеноструктурного анализа. Полученные результаты РСА находятся в полном согласии с предложенной структурой соединения 6 (см. рисунок).

Соединение 6 кристаллизуется в центросимметричной пространственной группе Р-1 триклинной сингонии в виде сольвата с этанолом. Ввиду сложности локализации разупорядоченных молекул растворителя при уточнении структуры использована процедура SQUEEZE в программе PLATON [9]. Элементарная ячейка содержит три кристаллографически независимых молекулы соединения 6 с близкой геометрией, на рисунке изображена одна из них. Одна из трех независимых молекул представлена в виде двух ротамеров: атом фтора разупорядочен по двум позициям с заселенностью минорной компоненты 0.164(4), для которой о-фторфенильный заместитель оказывается развернут на 180°. Тетразольные циклы плоские, пиримидиновые в незначительной степени отклоняются от плоской конформации в сторону конформации искаженная ванна. В кристалле молекулы связаны в димерные ассоциаты за счет внутримолекулярных водородных связей N-H…N.

Антибактериальную активность полученных соединений 1–20 определяли по отношению к типовым штаммам *Staphylococcus aureus* АТСС 6538-Р и *Escherichia coli* АТСС 25922. Согласно

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 90 № 11 2020

Антибактериальная активность соединений 1–20

Coordination	Минимальная подавляющая концентрация, мкг/мл	
Соединение	Staphylococcus aureus ATCC 6538-P	Escherichia coli ATCC 25922
1	1000	1000
2	1000	1000
3	1000	1000
4	250	250
5	500	500
6	500	500
7	500	500
8	500	500
9	1000	1000
10	500	500
11	1000	1000
12	1000	1000
13	1000	1000
14	500	500
15	500	500
16	1000	1000
17	1000	1000
18	1000	1000
19	1000	1000
20	1000	1000
Диоксидин [14]	62.5–1000	3.9-62.5
Циоксидин ^а (1% раствор)	62.5	31.2

^а Данные МПК диоксидина (1%-ный раствор) получены экспериментально.

полученным данным, наиболее выраженную противомикробную активность к указанным штаммам проявило соединение 4 (МПК 250 мкг/мл, см. таблицу). Активность остальных полученных алкил-7-арил-6-ароил-4,7-дигидротетразоло[1,5-*a*]пиримидин-5-карбоксилатов оказалась достаточно низкой (МПК 500–5000 мкг/мл).

Таким образом, получен ряд новых алкил-7арил-6-ароил-4,7-дигидротетразоло[1,5-а]пиримидин-5-карбоксилатов, среди которых обнаружено соединение, обладающее выраженной противомикробной активностью.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры соединений записаны на спектрометре Specord M-80 в таблетках КВг. Спектры ЯМР ¹Н зарегистрированы на спектрометре Bruker 500 (500.13 МГц) в ДМСО- d_6 , внутренний стандарт – ТМС. Масс-спектры получены на приборе Ультра-ВЭЖХ-МС (колонка Waters Acquity UPLC BEN C18 1.7 мкм, подвижная фаза – ацетонитрил– вода, скорость потока – 0.6 мл/мин, детектор ESI MS Xevo TQD). Элементный анализ проведен на

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 90 № 11 2020

приборе PerkinElmer 2400 и элементном анализаторе Euro EA 3028-НТ. Температуры плавления определены на приборе BUCHI M-565.

Для рентгеноструктурного анализа использован бесцветный кристалл соединения 6 размером 0.55×0.10×0.06 мм. Кристалл триклинный, пространственная группа P-1, a = 12.3418(18), b = 14.1020(18), c = 19.9910(17) Å, $\alpha = 106.280(9)$, $\beta =$ 99.004(10), $\gamma = 106.999(12)^\circ$, V = 3084.3(7) Å³, Z =6. Набор экспериментальных отражений получен на дифрактометре Xcalibur Ruby с CCD-детектором по стандартной методике (МоКα-излучение, 295(2) К, ω-сканирование, шаг сканирования 1°) [10]. Поглощение учтено эмпирически с использованием алгоритма SCALE3 ABSPACK [10]. Всего измерено 30427 отражений, из них независимых 14441, 8219 отражений с *I* > 2*σ*(*I*). Структура определена прямым методом по программе SHELXS-97 [11] и уточнена полноматричным МНК по F^2 в анизотропном приближении для всех неводородных атомов с использованием программ SHELXL [12] и OLEX2 [13]. Атомы водорода групп NH локализованы из разностных синтезов электронной

плотности и уточнены независимо в изотропном приближении, остальные включены в уточнение в модели *наездника* в изотропном приближении с зависимыми тепловыми параметрами. Окончательные параметры уточнения: $R_1 = 0.0596$, $wR_2 =$ 0.1415 [для отражений с $I > 2\sigma(I)$], R_1 0.1102, wR_2 0.1719 (для всех отражений), S 0.996. Результаты РСА зарегистрированы в Кембриджском центре кристаллографических данных (ССDС 1504859) и могут быть запрошены по адресу www.ccdc.cam. ac.uk/data_request/cif.

Метил-6-(4-метоксибензоил)-7-(3-метоксифенил)-4,7-дигидротетразоло[1,5-а]пиримидин-5-карбоксилат (1). Смесь 0.01 моль метил-4-(4-метоксифенил)-2,4-диоксобутаноата, 0.01 моль 3-метоксибензальдегида и 0.01 моль 5-аминотетразола моногидрата выдерживали при 120-150°С до прекращения газовыделения и затвердения реакционной смеси. После охлаждения остаток обрабатывали этанолом, отфильтровывали и перекристаллизовывали из уксусной кислоты. Выход 3.53 г (84%), т. пл. 190-192°С (AcOH). ИК спектр, v, см⁻¹: 1644 (СО), 1744 (СН₃ОСО), 3150 (NH). Спектр ЯМР ¹Н, б, м. д.: 3.31 с (3H, CH₃OCO), 3.62 с и 3.76 с (6H, <u>CH₃OC₆H₄CO, <u>CH₃OC₆H₄</u>), 7.12</u> с (1H, C⁷H), 7.56 м (8H, CH₃O<u>C₆H</u>₄CO, CH₃O<u>C₆H</u>₄), 11.20 уш. с (1H, NH). Найдено, %: С 59.64, 60.15; Н 4.45, 4.54; N 16.42, 16.93. С₂₁Н₁₉N₅O₅. Вычислено, %: C 59.85; H 4.54; N 16.62.

Соединения 2-20 получали аналогично.

Метил-6-(4-метоксибензоил)-7-(4-метоксифенил)-4,7-дигидротетразоло[1,5-*а*]пиримидин-5-карбоксилат (2). Выход 3.83 г (91%), т. пл. 163–165°С (АсОН). ИК спектр, v, см⁻¹: 1632 (СО), 1756 (СН₃ОСО), 3100 (NH). Спектр ЯМР ¹Н, δ, м. д.: 3.32 с (3H, СН₃ОСО), 3.64 с и 3.76 с (6H, <u>СН₃ОС₆H₄CO, <u>СН₃ОС₆H₄</u>), 6.71 с (1H, С⁷H), 7.53 м (8H, СН₃О<u>С₆H₄CO, СН₃ОС₆H₄), 11.20 уш. с (1H, NH). Найдено, %: С 59.58, 60.09; Н 4.44, 4.66; N 16.45, 16.91. С₂₁H₁₉N₅O₅. Вычислено, %: С 59.85; H 4.54; N 16.62.</u></u>

Метил-6-(4-метоксибензоил)-7-(2-метоксифенил)-4,7-дигидротетразоло[1,5-а]пиримидин-5-карбоксилат (3). Выход 3.92 г (93%), т. пл. 215–217°С (АсОН). ИК спектр, v, см⁻¹: 1660 (СО), 1749 (СН₃ОСО), 3180 (NH). Спектр ЯМР ¹Н, δ, м. д.: 3.18 с (3H, СН₃ОСО), 3.60 с и 3.74 с (6H, <u>СН₃</u>ОС₆H₄CO, <u>СН₃</u>ОС₆H₄), 6.68 с (1H, C⁷H), 7.15 м (8H, CH₃O<u>C₆H</u>₄CO, CH₃O<u>C₆H</u>₄), 11.04 уш. с (1H, NH). Найдено, %: С 59.63, 60.13; Н 4.42, 4.62; N 16.31, 16.90. С₂₁H₁₉N₅O₅. Вычислено, %: С 59.85; H 4.54; N 16.62.

Метил-7-(3-гидроксифенил)-6-(4-метоксибензоил)-4,7-дигидротетразоло[1,5-а]пиримидин-5-карбоксилат (4). Выход 3.83 г (94%), т. пл. 189–191°С (АсОН). ИК спектр, v, см⁻¹: 1648 (СО), 1752 (СН₃ОСО), 3150 (NH), 3470 (ОН). Спектр ЯМР ¹H, δ , м. д.: 3.30 с (3H, CH₃OCO), 3.75 с (3H, <u>CH₃OC₆H₄CO)</u>, 6.33 с (1H, C⁷H), 6.79 м (8H, CH₃OC₆<u>H</u>₄CO, HO<u>C₆H₄</u>), 9.34 с (1H, OH), 11.04 уш. с (1H, NH). Найдено, %: С 58.78, 59.19; H 4.12, 4.31; N 16.99, 17.45. С₂₀H₁₇N₅O₅. Вычислено, %: С 58.97; H 4.21; N 17.19.

Метил-6-(4-метоксибензоил)-7-(4-хлорфенил)-4,7-дигидротетразоло[1,5-а]пиримидин-5-карбоксилат (5). Выход 3.45 г (81%), т. пл. 186–188°С (АсОН). ИК спектр, v, см⁻¹: 1650 (СО), 1750 (СН₃ОСО), 3158 (NH). Спектр ЯМР ¹Н, δ, м. д.: 3.32 с (3H, СН₃ОСО), 3.76 с (3H, <u>СН₃ОС₆Н₄СО), 6.74 с (1H, С⁷Н), 7.26 м (8H, СН₃О<u>С₆Н₄</u>СО, СІС₆Н₄), 11.30 уш. с (1H, NH). Найдено, %: С 56.14, 56.66; H 3.70, 3.91; N 16.18, 16.74. С₂₀Н₁₆СІN₅О₄. Вычислено, %: С 56.41; H 3.79; N 16.45.</u>

Метил-6-(4-метоксибензоил)-7-(2-фторфенил)-4,7-дигидротетразоло[1,5-а]пиримидин-5-карбоксилат (6). Выход 3.60 (88%), т. пл. 171–173°С (АсОН). ИК спектр, v, см⁻¹: 1652 (СО), 1748 (СН₃ОСО), 3160 (NH). Спектр ЯМР ¹Н, δ, м. д.: 3.32 с (3H, СН₃ОСО), 3.76 с (3H, <u>СН</u>₃ОС₆Н₄СО), 6.82 с (1H, С⁷Н), 7.18 м (8H, СН₃О<u>С</u>₆<u>Н</u>₄СО, FC₆H₄), 11.32 уш. с (1H, NH). Найдено, %: С 58.42, 58.92; Н 3.84, 4.03; N 16.87, 17.40. С₂₀Н₁₆FN₅О₄. Вычислено, %: С 58.68; Н 3.94; N 17.11.

Метил-7-(4-гидрокси-3-метоксифенил)-6-(4-этоксибензоил)-4,7-дигидротетразоло-[1,5-*а*]пиримидин-5-карбоксилат (7). Выход 3.38 г (75%), т. пл. 200–202°С (АсОН). ИК спектр, v, см⁻¹: 1648 (СО), 1752 (СН₃ОСО), 3180 (NH), 3450 (ОН). Спектр ЯМР ¹Н, δ , м. д.: 1.35 т (3H, <u>СН₃СН₂O, *J* = 6.5 Гц), 3.30 с (3H, CH₃OCO), 3.56 с [3H, (<u>CH₃O</u>)HOC₆H₃], 4.05 к (2H, CH₃<u>CH₂O</u>, *J* = 6.5 Гц), 6.57 с (1H, C⁷H), 6.86 м[7H, C₂H₅OC<u>6</u><u>H</u>₄CO, (CH₃O)HOC<u>6</u>H₃], 9.03 с (1H, OH), 11.13 уш. с (1H,</u> NH). Найдено, %: С 58.29, 58.67; Н 4.60, 4.77; N 15.30, 15.69. С₂₂H₂₁N₅O₆. Вычислено, %: С 58.53; H 4.69; N 15.51.

Метил-6-(4-этоксибензоил)-7-(2,4-диметоксифенил)-4,7-дигидротетразоло[1,5-*а*]пиримидин-5-карбоксилат (8). Выход 2.93 г (63%), т. пл. 200–202°С (АсОН). ИК спектр, v, см⁻¹: 1670 (СО), 1745 (СН₃ОСО), 3180 (NH). Спектр ЯМР ¹Н, δ , м. д.: 1.29 т (3H, <u>СН</u>₃СН₂О, J = 6.5 Гц), 3.28 с (3H, СН₃ОСО), 3.59 с и 3.63 с [6H, (<u>СН</u>₃О)₂С₆Н₃], 4.04 к (2H, СН₃<u>СН</u>₂О, J = 6.5 Гц), 6.36 с (1H, C⁷H), 6.73 м [7H, C₂H₅O<u>C₆H</u>₄CO, (CH₃O)₂<u>C₆H</u>₃], 10.95 уш. с (1H, NH). Найдено, %: С 59.23, 59.54; Н 4.88, 5.09; N 14.84, 15.32. С₂₃Н₂₃N₅O₆. Вычислено, %: С 59.35; Н 4.98; N 15.05.

Метил-7-(2-хлорфенил)-6-(4-этоксибензоил)-4,7-дигидротетразоло[1,5-*а*]пиримидин-5-карбоксилат (9). Выход 2.72 г (62%), т. пл. 203–205°С (АсОН). ИК спектр, v, см⁻¹: 1650 (СО), 1740 (СН₃ОСО), 3200 (NH). Спектр ЯМР ¹Н, δ, м. д.: 1.30 т (3H, <u>СН</u>₃СН₂О, J = 6.5 Гц), 3.32 с (3H, СН₃ОСО), 4.06 к (2H, СН₃<u>СН</u>₂О, J = 6.5 Гц), 6.88 с (1H, С⁷H), 7.25 м (8H, C₂H₅O<u>C₆H</u>₄CO, ClC₆H₄), 11.50 уш. с (1H, NH). Найдено, %: С 57.17, 57.48; Н 4.02, 4.21; N 15.73, 16.09. С₂₁H₁₈ClN₅O₄. Вычислено, %: С 57.34; Н 4.12; N 15.92.

Метил-7-(4-нитрофенил)-6-(4-этоксибензоил)-4,7-дигидротетразоло[1,5-*a*]пиримидин-5-карбоксилат (10). Выход 2.75 г (61%), т. пл. 154–156°С (АсОН). ИК спектр, v, см⁻¹: 1660 (СО), 1745 (СН₃ОСО), 3180 (NH). Спектр ЯМР ¹H, δ , м. д.: 1.30 т (3H, <u>СН</u>₃СН₂О, J = 6.7 Гц), 3.32 с (3H, СН₃ОСО), 4.06 к (2H, СН₃<u>СН</u>₂О, J = 6.7 Гц), 6.87 с (1H, С⁷H), 7.58 м (8H, C₂H₅O<u>C₆H</u>₄CO, O₂NC₆H₄), 11.50 уш. с (1H, NH). Найдено, %: С 55.81, 56.29; H 3.95, 4.14; N 18.42, 18.95. C₂₁H₁₈N₆O₆. Вычислено, %: С 56.00; H 4.03; N 18.66.

Метил-7-(3-нитрофенил)-6-(4-этоксибензоил)-4,7-дигидротетразоло[1,5-*а*]пиримидин-5-карбоксилат (11). Выход 3.02 г (67%), т. пл. 206–208°С (АсОН). ИК спектр, v, см⁻¹: 1650 (СО), 1750 (СН₃ОСО), 3180 (NH). Спектр ЯМР ¹Н, δ , м. д.: 1.30 т (3H, <u>СН</u>₃СН₂О, J = 6.5 Гц), 3.32 с (3H, СН₃ОСО), 4.05 к (2H, СН₃<u>СН</u>₂О, J = 6.5 Гц), 6.85 с (1H, С⁷H), 7.53 м (8H, С₂H₅O<u>С₆H</u>₄CO, O₂NC₆H₄), 11.40 уш. с (1H, NH). Найдено, %: С 55.77, 56.21; H 3.94, 4.12; N 18.38, 18.91. С₂₁Н₁₈N₆O₆. Вычислено, %: С 56.00; H 4.03; N 18.66.

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 90 № 11 2020

Метил-7-(4-гидроксифенил)-6-(4-этоксибензоил)-4,7-дигидротетразоло[1,5-*а*]пиримидин-5-карбоксилат (12). Выход 2.48 г (59%), т. пл. 208–210°С (АсОН). ИК спектр, v, см⁻¹: 1655 (СО), 1735 (СН₃ОСО), 3240 (NH), 3480 (ОН). Спектр ЯМР ¹H, δ , м. д.: 1.36 т (3H, <u>СН</u>₃СН₂О, *J* = 6.7 Гц), 3.31 с (3H, СН₃ОСО), 4.05 к (2H, CH₃<u>CH</u>₂O, *J* = 6.7 Гц), 6.61 с (1H, С⁷H), 6.87 м (8H, C₂H₅OC<u>6</u><u>H</u>₄CO, HO<u>C</u>₆<u>H</u>₄), 9.31 с (1H, OH), 11.15 уш. с (1H, NH). Найдено, %: С 59.55, 60.03; H 4.48, 4.64; N 16.38, 16.89. C₂₁H₁₉N₅O₅. Вычислено, %: С 59.85; H 4.54; N 16.62.

Метил-7-(4-фторфенил)-6-(4-этоксибензоил)-4,7-дигидротетразоло[1,5-*а*]пиримидин-5-карбоксилат (13). Выход 2.79 г (66%), т. пл. 200–202°С (АсОН). ИК спектр, v, см⁻¹: 1630 (СО), 1745 (СН₃ОСО), 3180 (NH). Спектр ЯМР ¹Н, δ , м. д.: 1.31 т (3H, <u>СН</u>₃СН₂О, J = 6.5 Гц), 3.33 с (3H, СН₃ОСО), 4.06 к (2H, СН₃<u>СН</u>₂О, J = 6.5 Гц), 6.79 с (1H, C⁷H), 7.25 м (8H, C₂H₅O<u>C₆H</u>₄CO, FC₆H₄), 11.40 уш. с (1H, NH). Найдено, %: С 59.36, 59.86; Н 4.21, 4.39; N 16.28, 16.83. С₂₁Н₁₈FN₅O₄. Вычислено, %: С 59.57; Н 4.29; N 16.54.

Метил-6-(4-гидроксибензоил)-7-(2-метоксифенил)-4,7-дигидротетразоло[1,5-*а*]пиримидин-5-карбоксилат (14). Выход 2.56 г (63%), т. пл. 228–230°С (АсОН). ИК спектр, v, см⁻¹: 1650 (СО), 1730 (СН₃ОСО), 3280 (NH), 3460 (ОН). Спектр ЯМР ¹H, δ , м. д.: 3.31 с (3H, СН₃ОСО), 3.56 с (3H, <u>СН₃ОС₆H₄)</u>, 6.69 с (1H, C⁷H), 7.52 м (8H, HO<u>C₆H₄</u>CO, CH₃O<u>C₆H₄</u>), 9.34 с (1H, OH), 11.30 уш. с (1H, NH). Найдено, %: С 58.70, 59.25; H 4.13, 4.32; N 16.89, 17.48. С₂₀H₁₇N₅O₅. Вычислено, %: С 58.97; H 4.21; N 17.19.

Метил-6-(4-гидроксибензоил)-7-(4-хлорфенил)-4,7-дигидротетразоло[1,5-*а***]пиримидин-5-карбоксилат (15). Выход 2.68 г (65%), т. пл. 229–231°С (АсОН). ИК спектр, v, см⁻¹: 1640 (СО), 1720 (СН₃ОСО), 3180 (NH), 3440 (ОН). Спектр ЯМР ¹Н, δ, м. д.: 3.32 с (3H, СН₃ОСО), 6.77 с (1H, С⁷Н), 7.42 м (8H, НО<u>С6</u><u>Н</u>₄СО, СІС₆Н₄), 8.94 с (1H, ОН), 11.20 уш. с (1H, NH). Найдено, %: С 55.26, 55.62; Н 3.36, 3.52; N 16.75, 17.28. С₁₉Н₁₄СІN₅О₄. Вычислено, %: С 55.42; Н 3.43; N 17.01.**

Метил-7-(2-метоксифенил)-6-(4-хлорбензоил)-4,7-дигидротетразоло[1,5-*а***]пиримидин-5-карбоксилат (16). Выход 4.04 г (92%), т. пл. 220–222°С (АсОН). ИК спектр, v, см⁻¹: 1670 (СО),** 1750 (СН₃ОСО), 3180 (NH). Спектр ЯМР ¹Н, δ, м. д.: 3.33 с (3H, СН₃ОСО), 3.64 с (3H, <u>СН</u>₃ОС₆Н₄), 6.72 с (1H, С⁷Н), 7.44 м (8H, ArH), 11.32 (с, 1H, NH). Найдено, %: С 56.11, 56.56; Н 3.71, 3.89; N 16.24, 16.70. С₂₀Н₁₆СІN₅О₄. Вычислено, %: С 56.41; Н 3.79; N 16.45.

Метил-7-(3,4-диметоксифенил)-6-(4-хлорбензоил)-4,7-дигидротетразоло[1,5-*а***]пиримидин-5-карбоксилат (17). Выход 3.14 г (69%). т. пл. 195–197°С (АсОН). ИК спектр, v, см⁻¹: 1650 (СО), 1745 (СН₃ОСО), 3300 (NH). Спектр ЯМР ¹Н, δ, м. д.: 3.35 с (3H, СН₃ОСО), 3.60 с и 3.63с [6H, (<u>СН₃О)₂С₆H₃], 6.75 с (1H, С⁷Н), 7.43 м (7H, ArH), 11.30 с (1H, NH). С₂₁Н₁₈СlN₅O₅. Найдено, %: С 56.15, 56.36; Н 4.20, 4.37; N 14.78, 15.01. Вычислено, %: С 55.33; Н 3.98; N 15.36.**</u>

Метил-7-(2,5-диметоксифенил)-6-(4-хлорбензоил)-4,7-дигидротетразоло[1,5-*а***]пиримидин-5-карбоксилат (18). Выход 3.41 г (75%), т. пл. 234–236°С (АсОН). ИК спектр, v, см⁻¹: 1648 (СО), 1746 (СН₃ОСО), 3150 (NH). Спектр ЯМР ¹Н, δ, м. д.: 3.31 с (3H, СН₃ОСО), 3.65 с и 3.68 с [6H, (<u>СН₃О)₂С₆Н₃], 6.81 с (1H, С⁷Н), 7.50 м (7H, Ar H), 11.39 с (1H, NH). С₂₁Н₁₈СІN₅О₅. Найдено, %: С 56.13, 56.39; Н 4.22, 4.39; N 14.74, 15.03. Вычислено, %: С 55.33; Н 3.98; N 15.36.**</u>

Этил-7-(2,4-диметоксифенил)-6-(4-хлорбензоил)-4,7-дигидротетразоло[1,5-*а*]пиримидин-5-карбоксилат (19). Выход 3.24 г (69%), т. пл. 209–211°С (АсОН). ИК спектр, v, см⁻¹: 1656 (СО), 1740 (С₂H₅OCO), 3120 (NH). Спектр ЯМР ¹H, δ, м. д.: 0.90 м (3H, OCH₂<u>CH₃</u>), 3.58 с и 3.64 с [6H, (<u>CH₃O)₂C₆H₃], 3.78 м (1H, CH₃<u>CH_AH_BO</u>, J =6.5 Гц), 3.86 м (1H, CH₃CH_A<u>H_BO</u>, J = 6.5 Гц), 6.76 с (1H, C⁷H), 7.45 м [7H, (CH₃O)₂<u>C₆H₃</u>, ClC₆H₄CO], 11.10 с (1H, NH). Найдено, %: С 56.01, 56.61; H 4.20, 4.36; N 14.72, 15.04. C₂₂H₂₀ClN₅O₅. Вычислено, %: С 56.24; H 4.29; N 14.90.</u>

Этил-7-(4-метилфенил)-6-(4-хлорбензоил)-4,7-дигидротетразоло[1,5-*а*]пиримидин-5-карбоксилат (20). Выход 3.05 г (72%), т. пл. 235–237°С (АсОН). ИК спектр, v, см⁻¹: 1656 (СО), 1740 (С₂H₅OCO), 3120 (NH). Спектр ЯМР ¹Н, δ, м. д.: 0.93 м (3H, OCH₂<u>CH</u>₃), 2.16 с (3H, <u>CH</u>₃C₆H₄), 3.73 м (1H, CH₃<u>CH</u>_AH_BO, J = 6.5 Гц), 3.84 м (1H, CH₃CH_A<u>H</u>_BO, J = 6.5 Гц), 6.72 с (1H, C⁷H), 7.42 м (8H, CH₃<u>C</u>₆<u>H</u>₄, ClC₆H₄CO), 11.26 с (1H, NH). Найдено, %: С 59.25, 59.65; H 4.20, 4.39; N 16.23, 16.79. С₂₁Н₁₈ClN₅O₃. Вычислено, %: С 59.51; Н 4.28; N 16.52.

Антибактериальную активность полученных соединений 1–20 определяли пробирочным методом двукратных серийных разведений в жидкой питательной среде [15] по отношению к типовым штаммам *Staphylococcus aureus* ATCC 6538-P, *Escherichia coli* ATCC 25922.

Исследуемое соединение массой 0.05 г растворяли в 5 мл диметилсульфоксида, получая основной раствор вещества в концентрации 104 мкг/мл. Данный раствор служил основой для рабочего раствора, имеющего концентрацию 2×10³ мкг/мл, который последовательно разводили двукратно в жидкой питательной среде в ряду из 10 пробирок. Концентрация исследуемых соединений в первой пробирке ряда разведений в питательной среде составляла 1000.0 мкг/мл. Для определения антибактериальной активности использовали бульон Хоттингера (Государственный научный центр прикладной микробиологии и биотехнологии, Оболенск), типовые суточные культуры, выращенные на питательном агаре (ГРМ-агар, Государственный научный центр прикладной микробиологии и биотехнологии, Оболенск). Концентрация микробных клеток в опыте составляла 2.5×10⁵ КОЕ/мл. В качестве положительного контроля использовали питательную среду с внесенной исследуемой культурой. В качестве отрицательного контроля использовали интактную питательную среду. Посевы инкубировали в термостате при температуре 37±2°С. Оценку роста бактерий проводили визуально через 20-24 ч инкубирования. В качестве значения МПК (минимальной подавляющей концентрации) принимали концентрацию соединения в последней прозрачной пробирке серии разведения. Антибактериальный эффект соединений сравнивали с действием диоксидина (1%-ный раствор, ОАО «Новосибхимфарм»).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

1. *Машковский М.Д.* // Лекарственные средства. М.: Новая волна. Издатель Умеренков, 2010. С. 785, 780, 788.

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 90 № 11 2020

- 2. Фармакология / Под ред. Р.Н. Аляутдина. М.: ГЭО-ТАР-Медиа, 2016. 1104 с.
- Фармакология / Под ред. Д.А. Харкевича. М.: ГЭО-ТАР-Медиа, 2017. 760 с.
- Клиническая фармакология / Под ред. В.Г. Кукеса, Д.А. Сычева. М.: ГЭОТАР-Медиа, 2017. 1024 с.
- Гейн В.Л., Гейн Л.Ф., Цыплякова Е.П., Розова Е.А. // ЖОрХ. 2003. Т. 39. Вып. 5. С. 797; Gein V.L., Gein L.F., *Tsyplyakova E.P., Rozova E.A.* // Russ. Org. Chem. 2003. Vol. 39. N 5. P. 753. doi 10.1023/A:1026002522354
- Гейн В.Л., Гейн Л.Ф., Цыплякова Е.П., Панова О.С. // ЖОрХ. 2007. Т. 43. Вып. 9. С. 1386; Gein V.L., Gein L.F., Tsyplyakova E.P., Panova O.S. // Russ. Org. Chem. 2007. Vol. 43. N 9. P. 1382. doi 10.1134/ S1070428007090205
- Гейн В.Л., Мишунин В.В., Цыплякова Е.П., Вахрин М.И., Слепухин П.А. // ЖОрХ. 2011. Т. 47. Вып. 7. С. 1060; Gein V.L., Mishunin V.V., Tsyplyakova E.P., Vakhrin M.I., Slepukhin P.A. // Russ. J. Org. Chem. 2011. Vol. 47. N 7. P. 1077. doi 10.1134/S1070428011070189
- Гейн В.Л., Замараева Т.М., Панова О.С., Белоногова В.Д. // ЖОХ. 2015. Т. 85. Вып. 10. С. 1667; Gein V.L., Zamaraeva Т.М., Panova O.S., Belonogova V.D. //

Russ. J. Gen. Chem. 2015. Vol. 85. N 10. P. 2299. doi 10.1134/S107036321510014X

- Spek A.L. // J. Appl. Cryst. 2003. Vol. 36. P. 7. doi 10.1107/S0021889802022112
- CrysAlisPro, Agilent Technologies, Version 1.171.37.33 (release 27-03-2014 CrysAlis171 .NET).
- Sheldrick G.M. // Acta Crystallogr. (A). 2008. Vol. 64.
 P. 112. doi 10.1107/S0108767307043930
- Sheldrick G.M. // Acta Crystallogr. (C). 2015. Vol. 71.
 P. 3. doi 10.1107/S205322961402421
- Dolomanov O.V., Bourhis L.J., Gildea R.J., Howard J.A.K., Puschmann H. // J. Appl. Cryst. 2009. Vol. 42. P. 339. doi 10.1107/S0021889808042726
- 14. *Падейская Е.Н.* // Инфекции и антимикробная терапия. 2001. Т. 3. № 5.
- 15. Руководство по проведению доклинических исследований лекарственных средств / Под ред. А.Н. Миронова, Н.Д. Бунятян, А.Н. Васильева, О.Л. Верстаковой, М.В. Журавлевой, В.К. Лепахина, Н.В. Коробова, В.А. Меркулова, С.Н. Орехова, И.В. Сакаевой, Д.Б. Утешева, А.Н. Яворского. М.: Гриф и К. 2012, Ч. 1. 944 с.

Synthesis, Structure and Antibacterial Activity of Alkyl 6-Aroyl-7-aryl-4,7-dihydrotetrazolo[1,5-*a*]pyrimidine-6-carboxylates

V. L. Gein^{*a*},*, T. M. Zamaraeva^{*a*}, A. A. Bobyleva^{*a*}, and M. V. Dmitriev^{*b*}

^a Perm Pharmaceutical Academy, Perm, 614990 Russia ^b Perm State National Research University, Perm, 614990 Russia *e-mail: geinvl48@mail.ru

Received June 18, 2020; revised June 18, 2020; accepted June 29, 2020

A series of new alkyl 6-aroyl-7-aryl-4,7-dihydrotetrazolo[1,5-*a*]pyrimidine-5-carboxylates was obtained through the three-component reaction of alkyl esters aroylpyruvic acids with a mixture of aromatic aldehyde and 5-aminotetrazole. All the synthesized compounds were tested for antibacterial activity.

Keywords: dihydrotetrazolo[1,5-a]pyrimidine derivatives, aroylpyruvic acids alkyl esters, antibacterial activity