УДК 541.572.128

РЕАКЦИЯ МЕТАЛЛООБМЕНА 5,10,15,20-ТЕТРА-(4-ХЛОРФЕНИЛ)ПОРФИРИНАТА Cd(II) С ХЛОРИДАМИ МЕДИ И ЦИНКА В ДМСО

© 2020 г. С. В. Звездина*, Н. В. Чижова, Н. Ж. Мамардашвили

Институт химии растворов имени Г. А. Крестова Российской академии наук, ул. Академическая 1, Иваново, 153040 Россия *e-mail: svvr@isc-ras.ru

> Поступило в Редакцию 2 июля 2020 г. После доработки 2 июля 2020 г. Принято к печати 19 июля 2020 г.

Спектрофотометрическим методом изучена реакция металлообмена 5,10,15,20-тетра-(4-хлорфенил)порфирината Cd(II) с CuCl₂ и ZnCl₂ в ДМСО. Определены кинетические параметры металлообмена. Предложен возможный механизм реакции. С использованием комплексообразования 5,10,15,20-тетра-(4-хлорфенил)порфирина с ацетатами цинка(II) и меди(II) и металлообмена его кадмиевого комплекса с ZnCl₂ и CuCl₂ в ДМФА синтезированы 5,10,15,20-тетра-(4-хлорфенил)порфиринат Zn(II) и 5,10,15,20-тетра-(4-хлорфенил)порфиринат Cu(II). Полученные соединения идентифицированы методами электронной абсорбционной, ЯМР ¹Н спектроскопии и масс-спектрометрии.

Ключевые слова: 5,10,15,20-тетра-(4-хлорфенил)порфиринаты Cd(II), Zn(II), Cu(II), комплексообразование, реакция металлообмена, спектральные характеристики

DOI: 10.31857/S0044460X2011013X

Реакция металлообмена относится к числу сложных ассоциативно-диссоциативных химических реакций обмена ионами металлов или лигандов, протекающей по уравнению (1).

 $MP + M'X_n(Solv)_{m-n} \rightarrow M'P + MX_n(Solv)_{m-n}.$ (1)

Здесь МРи М'Р–металлопорфирины, М' X_n (Solv)_{*m*–*n*} и М X_n (Solv)_{*m*–*n*} – сольватокомплексы металлов.

Впервые реакции металлообмена были проведены исследовательской группой Линстеда [1]. Широкое применение металлообмена одних металлов на другие в составе порфиринов описано в монографии [2]. Важное условие протекания металлообмена – наличие значительных эффективных отрицательных зарядов на координирующих атомах азота в комплексе (δ^-) и положительных зарядов (δ^+) – на атоме уходящего иона металла. Они могут появляться вследствие внеплоскостных колебаний иона металла в комплексе, которым благоприятствует нарушение плоской структуры лиганда и понижение его ароматичности. Возможные механизмы двойного металлообмена у металлопорфиринов в органических растворителях обсуждались в работах [3–5]. Природа растворителя определяет прочность сольвата соли, реакции металлообмена порфиринатов кадмия в ДМФА проходят быстрее, чем в ДМСО [6, 7]. По мере увеличения сольватирующей способности растворителя, как правило, возрастает и прочность сольватной оболочки соли, препятствуя металлообмену.

С целью выявления закономерностей протекания реакции металлообмена нами проведено исследование переметаллирования 5,10,15,20-тетра-(4-хлорфенил)порфирината Cd(II) [CdP(PhCl)₄] с CuCl₂ и ZnCl₂ в ДМСО (схема 1).

5,10,15,20-Тетра-(4-хлорфенил)порфиринат Cd(II) получен при нагревании до температуры кипения диметилформамидного раствора 5,10,15,20-тетра-(4-хлорфенил)порфирина с ацетатом кадмия(II) (мольное соотношение 1:10). В ЭСП CdP(PhCl)₄ в ДМФА присутствуют полосы

M = Zn(II), Cu(II).

с максимумами 417, 439, 577 и 622 нм. В спектре ЯМР ¹Н CdP(PhCl)₄ в C₆D₆ зафиксированы сигнал протонов пиррольных колец при 8.90 м. д., а также сигналы *орто-* и *мета-*протонов фенильных групп при 7.96 и 7.46 м. д. соответственно. В масс-спектре лабильного порфирината кадмия наряду с пиком m/z 862.1, соответствующим молекулярному иону CdP(PhCl)₄, присутствует пик порфирина m/z 753.3.

Кадмий-порфирины – преимущественно ионные, кинетически неустойчивые комплексы [8], и реакции переметаллирования с солями Zn^{2+} , Co^{2+} , Ni²⁺, Cu²⁺ протекают с образованием более прочных соединений [9]. Изменения ЭСП в ходе реакции металлообмена CdP(PhCl)₄ с ZnCl₂ в ДМСО представлены на рисунке, полученные экспериментальные данные приведены в табл. 1, 2.

Нами установлено, что порядок реакции по соли для металлообмена CdP(PhCl)₄ с CuCl₂ и ZnCl₂ в ДМСО, определенный как тангенс угла наклона прямолинейной зависимости $lgk_{3\phi} = f(lgc_{CuCl_2})$ и $lgk_{3\phi} = f(lgc_{ZnCl_2})$, равен единице. Скорость металлообмена CdP(PhCl)₄ с CuCl₂ и ZnCl₂ в ДМСО описывается уравнением первого порядка (2) по кадмиевому комплексу, о чем свидетельствует прямолинейная зависимость $lg[c_{CdP(PhCl)_4}^o/c_{CdP(PhCl)_4}]$ от времени протекания реакции т.

$$-dc_{\rm CdP(PhCl)_4}/d\tau = k_{\rm v}[\rm CdP(PhCl)_4][\rm MCl_2].$$
(2)

Сведения о возможном механизме стехиометрической реакции металлообмена в макроцикли-

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 90 № 11 2020

ческих и порфириновых комплексах представлены в работах [2, 9], предполагается существование двух механизмов обмена – ассоциативного и диссоциативного.

По-видимому, реакция металлообмена $CdP(PhCl)_4$ с $ZnCl_2$ и $CuCl_2$ в ДМСО протекает по бимолекулярному ассоциативному механизму [3, 10, 11]. На первой бимолекулярной стадии (3) образуется промежуточный биядерный комплекс (интермедиат). Он может образоваться сразу же после сливания растворов и тогда легко определяется спектрально, либо эта стадия заторможена. На второй медленной мономолекулярной стадии (4) происходит диссоциация интермедиата с образованием конечных продуктов обмена.

Изменение ЭСП в ходе металлообмена CdP(PhCl)₄ с ZnCl₂ в ДМСО, $c_{CdP(PhCl)_4} = 2.0 \times 10^{-5}$ моль/л, $c_{ZnCl_2} = 2.0 \times 10^{-3}$ моль/л в начальный момент времени (*1*) и через 80 мин (*2*) при 328 К.

ЗВЕЗДИНА и др.

$\frac{1}{2}$ $\frac{1}$							
$c_{\rm CuCl_2} \times 10^3$, моль/л	Т, К	$k_{3\phi} \times 10^2$, c ⁻¹	k_v , л/(моль-с)	E_{a} , кДж/моль	ΔS^{\neq} , Дж/(моль·К)		
2.00	303	3.20±0.01	16.0	65±9	-87±36		
	298	2.50±0.01	12.5				
	293	1.50 ± 0.01	7.5				
	288	0.85 ± 0.01	4.3				
1.73	303	3.15±0.01	18.2	72±6	-35 ± 20		
	298	2.21±0.01	12.8				
	293	1.40 ± 0.01	8.1				
	288	0.71 ± 0.01	4.1				
1.33	303	2.97±0.01	22.3	73±8	-50 ± 29		
	298	1.67 ± 0.01	12.6				
	293	1.08 ± 0.01	8.1				
	288	0.65 ± 0.01	4.9				
1.07	303	2.29±0.01	21.4	74±5	-50 ± 28		
	298	1.51 ± 0.01	14.1				
	293	$0.89{\pm}0.01$	8.3				
	288	$0.50{\pm}0.01$	4.6				

Таблица 1. Скорости обмена Cd^{2+} на Cu^{2+} в комплексе $CdP(PhCl)_4$ в ДМСО ($c_{CdP(PhCl)_4} = 2.0 \times 10^{-5}$ моль/л)

Таблица 2. Скорости обмена Cd^{2+} на Zn^{2+} в комплексе $CdP(PhCl)_4$ в ДМСО ($c_{CdP(PhCl)_4} = 2.0 \times 10^{-5}$ моль/л)

-					
$c_{\text{ZnCl}_2} \times 10^3$, моль/л	Т, К	$k_{30} \times 10^4$, c ⁻¹	<i>k</i> _v , л/(моль·с)	$E_{\rm a}$, кДж/моль	∆S [≠] , Дж/(моль∙К)
2.00	328	9.87±0.01	0.49	14±5	-266 ± 20
	318	8.22±0.01	0.41		
	298	5.88±0.01	0.29		
1.73	328	8.96±0.01	0.52	15±5	-266 ± 20
	318	7.5±0.01	0.43		
	298	5.23±0.01	0.30		
1.33	328	7.01±0.01	0.530.45	14±6	-271±19
	318	5.96±0.01			
	298	4.21±0.01	0.32		
1.07	328	5.91±0.01	0.55	16±7	-266±21
	318	4.95±0.01	0.46		
	298	3.21±0.01	0.30		

$$(Solv)_mMP + M'X_2(Solv)_{n-2}$$

$$\leftrightarrow (\operatorname{Solv})_m \operatorname{MPM'X}_2(\operatorname{Solv})_{n-4} + 2 \operatorname{Solv}, \quad (3)$$

$$(\operatorname{Solv})_m \operatorname{MP} \cdot \operatorname{M'X}_2(\operatorname{Solv})_{n-4}$$

$$\Rightarrow [(\operatorname{Solv})_m \operatorname{M} \cdots \operatorname{P} \cdots \operatorname{M'X}_2(\operatorname{Solv})_{n-4}]^{\neq}$$

$$\to \operatorname{MX}_2(\operatorname{Solv})_m + \operatorname{M'P}(\operatorname{Solv})_{n-4}. \quad (4)$$

Стадия (4) наблюдается в ЭСП по изменению интенсивности полос поглощения (см. рисунок). В среде сильно координирующего ДМСО интермедиат не фиксируется спектрально.

В ходе проведения эксперимента установлено влияние природы сольвата соли на скорость металлообмена. Сравнение эффективных констант скоростей металлообмена CdP(PhCl)₄ с ZnCl₂ и CuCl₂ в ДМСО показывает, что металлообмен с CuCl₂ протекает в 43 раза быстрее, чем с ZnCl₂. Скорость металлообмена в большей степени определяется стабильностью самого комплекса, подвергающегося обмену, чем координирующей способностью лиганда. Это, а также бо́льшая реакционная способность комплексов в реакции металлообмена по сравнению с реакционной способностью порфиринов в реакции комплексообразования указывает на ассоциативный путь протекания металлообмена в кадмиевых комплексах порфиринов.

Сравнение эффективных констант скорости металлообмена окта(4-бромфенил)порфирината Cd(II) (CdP(PhBr)₈) с CuCl₂ и ZnCl₂ [7] и металлообмена CdP(PhCl)₄ с этими же солями в ДМСО показывает, что металлообмен CuCl₂ с CdP(PhCl)₄ в ДМСО протекает в ~130 раз быстрее, чем с

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 90 № 11 2020

M = Zn(II), Cu(II).

 $CdP(PhBr)_8$, а металлообмен $ZnCl_2$ с $CdP(PhCl)_4$ протекает в ДМСО в ~300 раз быстрее, чем с $CdP(PhBr)_8$. Это связано с тем, что ионы Cl^- обладают бо́льшими электроноакцепторными свойствами, чем Br⁻.

Комплексы Zn(II) и Cu(II) с тетра-(4-хлорфенил)порфирином синтезированы в среде диметилформамида с использованием реакций комплексообразования и металлообмена (схема 2).

Металлообмен CdP(PhCl)₄ с хлоридом меди (мольное соотношение 1:10) в ДМФА протекает практически мгновенно при комнатной температуре. При растворении CdP(PhCl)₄ и хлорида меди(II)

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 90 № 11 2020

в ДМФА цвет раствора изменяется от изумрудно-зеленого до красно-бурого. В ЭСП пробы, растворенной в ДМФА, присутствуют полосы с $\lambda_{max} =$ 415, 539, 579 нм, а полосы исходного комплекса при $\lambda_{max} = 439$, 577, 622 нм исчезают. В аналогичных условиях металлообмен CdP(PhCl)₄ с хлоридом цинка(II) протекает в течение 10 мин. Цвет диметилформамидного раствора реакционной смеси становится фиолетовым. В ЭСП комплекса цинка в ДМФА присутствуют полосы с $\lambda_{max} =$ 405, 426, 559, 598 нм. Комплексообразование H₂P(PhCl)₄ с ацетатами цинка и меди (мольное соотношение 1:10) в кипящем ДМФА проходит за 60 и 20 с соответственно. Существенное уменьшение температуры металлообмена лабильного порфирината кадмия по сравнению с температурой комплексообразования можно объяснить отсутствием необходимости разрыва связей N–H макроцикла.

При переходе от комплекса кадмия к комплексам цинка и меди в ЭСП наблюдается гипсохромное смещение полос в соответствии со спектральным критерием прочности [12], характеризующимся усилением 6-связи М \leftarrow N (для всех комплексов), а также обратной π -связи М \rightarrow N (для комплекса меди). В масс-спектрах порфиринатов цинка и меди зафиксированы пики m/z 815.5 и 813.3, соответствующие молекулярным ионам синтезированных соединений. В спектре ЯМР ¹Н хлорзамещенного комплекса цинка в CDCl₃ сигналы пиррольных колец проявляются при 8.95 м. д, сигналы фенильных протонов H^o и H^w – при 8.01 и 7.85 м. д. соответственно.

Таким образом, спектрофотометрическим методом изучена реакция металлообмена 5,10,15,20– тетра-(4–хлорфенил)порфирината Cd(II) с CuCl₂ и ZnCl₂ в ДМСО и получены 5,10,15,20-тетра-(4– хлорфенил)порфиринаты Zn(II) и Cu(II). Показано, что реакция металлообмена протекает в более мягких условиях по сравнению с комплексообразованием.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Электронные спектры поглощения записывали на спектрофотометре Cary-100 (Varian). Спектры ЯМР ¹Н (500 МГц, CDCl₃) получали на приборе Bruker AV III-500 (внутренний стандарт – TMC). Macc-спектры записывали на масс-спектрометре Maldi Tof Shimadzu Biotech Axima Confidence (матрица – дигидроксибензойная кислота).

Вработе использовали 5,10,15,20-тетра-(4-хлорфенил)порфирин фирмы «Рогрhychem», диметилформамид, хлороформ, дихлорметан, ацетат кадмия марки XЧ, оксид алюминия, ДМСО фирмы «Merck». CuCl₂ и ZnCl₂ прокаливали 4 ч при 200°С. 5,10,15,20-Тетра-(4-хлорфенил)порфиринат Cd(II) синтезировали по методу Адлера [13].

5,10,15,20-Тетра-(4-хлорфенил)порфиринат Cd(II). Смесь 0.03 г (0.0399 ммоль) тетра-(4-хлорфенил)порфирина и 0.092 г (0.399 ммоль) Cd(OAc)₂ в 20 мл ДМФА нагревали до температуры кипения. Реакционную смесь охлаждали и выливали в воду. Осадок отфильтровывали, промывали водой, сушили и переосаждали из гексана. Выход 0.031 г (0.0355 ммоль, 94%). ЭСП (ДМФА), λ , нм (lgɛ): 417 (4.62), 439 (5.47), 577 (4.12), 622 (4.06). Спектр ЯМР ¹H (C₆D₆), δ , м. д.: 8.90 с (8H, пиррол), 7.96 д (8H°, J = 7.7 Гц), 7.46 д (8H^м, J = 7.6 Гц). Массспектр, m/z ($I_{0TH,}$ %): 862.1. (22) [M]⁺ (вычислено для C₄₄H₂₄CdCl₄N₄: 862.9).

5,10,15,20-Тетра-(4-хлорфенил)порфиринат Zn(II). *а*. Смесь 0.02 г (0.0266 ммоль) тетра-(4-хлорфенил)порфирина и 0.049 г (0.266 ммоль) Zn(OAc)₂ в 15 мл ДМФА кипятили 1 мин, затем охлаждали, прибавляли воду и высаливали. Осадок отфильтровывали, промывали водой, сушили и хроматографировали на оксиде алюминия, элюент – хлороформ. Выход 0.018 г (0.0221 ммоль, 83%). ЭСП (ДМФА), λ , нм (lgɛ): 405 (4.75), 426 (5.64), 559 (4.42), 598 (4.09). Спектр ЯМР ¹Н (CDCl₃), δ , м. д.: 8.95 с (8Н, пиррол), 8.01 д (8Н°, J = 7.7 Гц), 7.85 д (8Н^м, J = 7.6 Гц). Масс-спектр, m/z ($I_{отн}$, %): 815.5 (97) [M]⁺ (вычислено для $C_{44}H_{24}Cl_4N_4Zn: 815.9).$

б. Смесь 0.02 г (0.0232 ммоль) CdP(PhCl)₄ и 0.032 г (0.232ммоль) ZnCl₂ в 12 мл ДМФА выдерживали 20 мин при комнатной температуре. Обрабатывали, как в методике *а*. Выход 0.017 г (0.0208 ммоль, 88%).

5,10,15,20-Тетра-(4-хлорфенил)порфиринат Сu(II). *а*. Смесь 0.02 г (0.0266 ммоль) тетра-(4-хлорфенил)порфирина и 0.048 г (0.266 ммоль) Cu(OAc)₂ в 15 мл ДМФА кипятили 20 с, затем охлаждали, прибавляли воду и высаливали. Осадок отфильтровывали, промывали водой, сушили и хроматографировали на оксиде алюминия, элюент – хлороформ. Выход 0.018 г (0.0221 ммоль, 85%). ЭСП (ДМФА), λ , нм (lgɛ): 395 (4.58), 415 (5.54), 539 (4.33), 579 (3.72). Масс-спектр, *m/z* ($I_{\text{отн}}$, %): 813.3 (98) [*M*]⁺ (вычислено для C₄₄H₂₄Cl₄CuN₄: 814.1).

б. Смесь 0.02 г (0.0232 ммоль) CdP(PhCl)₄ и 0.031 г (0.232ммоль) CuCl₂ в 12 мл ДМФА выдерживали 5 мин при комнатной температуре. Обрабатывали, как в методике *а*. Выход 0.017 г (0.0209 ммоль, 90%).

Изучение реакций металлообмена комплексов тетрапиррольных соединений с солями *d*-металлов проводили методами химической кинетики и спектроскопии. Методика эксперимента и обработка экспериментальных данных представлены в работе [14].

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 90 № 11 2020

ФОНДОВАЯ ПОДДЕРЖКА

Работа выполнена при финансовой поддержке Росийского фонда фундаментальных исследований (проект № 19-03-00078 А, исследование реакции комплексообразования порфирина-лиганда с катионами цинка и меди; проект № 1843370001 р-а, исследование реакции металлообмена порфирината кадмия с катионами меди и цинка) с использованием оборудования Верхневолжского регионального центра физико-химических исследований.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Barrett P.A., Frye D.A., Linstead R.P.// J. Chem. Soc. 1938. P. 1157. doi 10.1039/JR9380001157
- Hambright P. In: Porphyrin handbook / Eds K. Smith, K. Kadish, R. Guillard. New York: Academic Press, 2000. Vol. 3.
- Березин Б.Д., Звездина С.В., Березин М.Б. // ЖОХ. 2013. Т. 83. Вып. 7. С. 1160; BerezinB.D., ZvezdinaS.V., BerezinM.B. // Russ. J. Gen. Chem. 2013. Vol. 83. N 7. P. 1410. doi 10.1134/S1070363213070189
- Березин М.Б., Звездина С.В., Березин Б.Д. // Коорд. хим. 2007. Т. 33. № 7. С. 499; Berezin M.B., Zvezdina S.V., Berezin B.D. // Russ. J. Coord. Chem. 2007. Vol. 33. N 7. P. 488. doi 10.1134/S1070328407070032
- Звездина С.В., Березин М.Б., Березин Б.Д. // Коорд. хим. 2010. Т. 36. № 12. С. 925; Zvezdina S.V., Berezin M.B., Berezin B.D. // Russ. J. Coord. Chem. 2010. Vol. 36. N 12. P. 913. doi 10.1134/S1070328410120080

- Звездина С.В., Чижова Н.В., Мамардашвили Н.Ж. // ЖОХ. 2014. Т. 84. Вып. 10. С. 1712; Zvezdina S.V., Chizhova N.V., Mamardashvili N.Zh. // Russ. J. Gen. Chem. 2014. Vol. 84. N 10. P. 1989. doi: 10.1134/ S1070363214100211
- Звездина С.В., Чижова Н.В., Мамардашвили Н.Ж. // ЖФХ. 2017. Т. 91. № 3. С. 417; Zvezdina S.V., Chizhova N.V., Mamardashvili N.Z. // Russ. J. Phys. Chem. (A). 2017. Vol. 91. N 3. P. 437. doi 10.1134/ S0036024417030335
- 8. *Березин Б.Д.* Координационные соединения порфиринов и фталоцианина. М.: Наука, 1978. 280 с.
- Яцимирский К.Б., Лампека Я.Д. Физикохимия комплексов металлов с макроциклическими лигандами. Киев: Наукова думка, 1985. 217 с.
- Березин Б.Д., Шухто О.В., Березин Д.Б. // ЖНХ. 2002. Т. 47. № 8. С. 1305; Berezin B.D., Shukhto O.V., Berezin D.B. // Russ. J. Inorg. Chem. 2002. Vol. 47. N 8. P. 1187.
- Березин Б.Д., Румянцева С.В., Березин М.Б. // Коорд. хим. 2004. Т. 30. № 4. С. 312; Berezin B.D., Rumyantseva S.V., Berezin M.B. // Russ. J. Coord. Chem. 2004. Vol. 30. N 4. Р. 291. doi 10.1023/B:RU-CO.0000022806.85114.93
- Березин Б.Д., Ениколопян Н.С. Металлопорфирины. М.: Наука, 1988. 160 с.
- AdlerA.D., Longo F.R., Kampas F., Kim J. // J. Inorg. Nucl. Chem. 1970. Vol. 32. N 7. P. 2443. doi 10.1016/0022-1902(70)805 35-8
- Звездина С.В., Козгова Е.В., Березин М.Б., Березин Б.Д. // ЖНХ. 2007. Т. 52. № 9. С. 1527; Zvezdina S.V., Kozgova E.V., Berezin M.B., Berezin B.D. // Russ. J. Inorg. Chem. 2007. Vol. 52. N 9. С. 1430. doi 10.1134/S0036023607090197

Metal Exchange Reaction of Cd(II) 5,10,15,20-Tetra-(4-chlorophenyl)porphyrinate with Copper and Zinc Chlorides in DMSO

S. V. Zvezdina*, N. V. Chizhova, and N. Zh. Mamardashvili

G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Ivanovo, 153045 Russia *e-mail: svvr@isc-ras.ru

Received July 2, 2020; revised July 2, 2020; accepted July 19, 2020

The metal exchange reaction of Cd (II) 5,10,15,20-tetra-(4-chlorophenyl)porphyrinate with CuCl₂ and ZnCl₂ in DMSO was studied by spectrophotometric method. The kinetic parameters of the metal exchange reaction are determined. A possible reaction mechanism is proposed. Using the complexation reactions of 5,10,15,20-tetra-(4-chlorophenyl)porphyrin with zinc(II) and copper(II) acetates and metal exchange of its cadmium complex with ZnCl₂ and CuCl₂ in dimethylformamide, Zn(II) and Cu(II) 5,10,15,20-tetra-(4-chlorophenyl)porphyrinates were synthesized. The resulting compounds were identified by electronic absorption, ¹H NMR spectroscopy and mass spectrometry methods.

Keywords: Cd(II), Zn(II), Cu(II) 5,10,15,20-tetra-(4-chlorophenyl)porphyrinates, complexation, metal exchange reaction, spectral characteristics

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 90 № 11 2020