УДК 543.645.2:543.429.2:547.548.68

## СУПРАМОЛЕКУЛЯРНЫЙ КОМПЛЕКС 3-АЦЕТАТА 20-ГИДРОКСИЭКДИЗОНА С β-ЦИКЛОДЕКСТРИНОМ И ЕГО БИОЛОГИЧЕСКАЯ АКТИВНОСТЬ

# © 2020 г. Б. И. Тулеуов<sup>*a*,\*</sup>, Б. С. Темиргазиев<sup>*a,b*</sup>, А. М. Кожанова<sup>*a*</sup>, Р. Б. Сейдахметова<sup>*a*</sup>, К. М. Турдыбеков<sup>*b*</sup>, Т. М. Сейлханов<sup>*c*</sup>, О. Т. Сейлханов<sup>*c*</sup>, П. Драшар<sup>*d*</sup>, С. М. Адекенов<sup>*a*</sup>

<sup>а</sup> Международный научно-производственый холдинг «Фитохимия», ул. М. Газалиева 4, Караганда, 100009 Казахстан <sup>b</sup> Карагандинский государственный университет имени Е. А. Букетова, Караганда, 100028 Казахстан <sup>c</sup> Кокшетауский государственный университет имени Ш. Уалиханова, Кокшетау, 020000 Казахстан <sup>d</sup> Университет химии и технологии, Прага, 16628 Чехия \*e-mail: info@phyto.kz

> Поступило в Редакцию 18 августа 2020 г. После доработки 18 августа 2020 г. Принято к печати 30 августа 2020 г.

С целью получения новых потенциально биоактивных веществ и изучения влияния объемных функциональных групп на образование супрамолекулярных комплексов, синтезирован триацетат 20-гидроксиэкдизона, исследовано его пространственное строение и методом ЯМР изучено комплексообразование с β-циклодекстрином. Исследована противовоспалительная активность полученного водорастворимого комплекса.

**Ключевые слова**: триацетат 20-гидроксиэкдизона, β-циклодекстрин, супрамолекулярный комплекс, рентгеноструктурный анализ, спектроскопия ЯМР

DOI: 10.31857/S0044460X20120070

Образование супрамолекулярных комплексов фитоэкдистероидов с циклодекстринами позволяет получать инкапсулированные лекарственные формы, способствует стабилизации действующих веществ к внешнему воздействию света, тепла, кислорода воздуха, а также увеличивает их растворимость [1–3]. В связи с этим, применение наиболее распространенных  $\alpha$ -,  $\beta$ - и  $\gamma$ -циклодекстринов для создания новых комплексов включения биологически активных соединений, фармацевтических препаратов и лекарственных средств является одним из главных направлений развития супрамолекулярной химии [4–6].

Ранее нами был синтезирован ряд новых циклодекстриновых комплексов 20-гидроксиэкдизона и других фитоэкдистероидов [7, 8], но получение супрамолекулярных водорастворимых комплексов на основе их модифицированных производных не было описано. В настоящей работе впервые проведена попытка синтеза новых супрамолекулярных комплексов на основе вицинально замещенного полиоксистероида.

Выбор триацетата 20-гидроксиэкдизона [2,3,22-ацетокси-14,20,25-гидрокси-5,9(*H*)-холест-7-ен-6-она] **1** (схема 1) в качестве синтона и субстрата супрамолекулярной самосборки с β-циклодекстрином обусловлен тем, что 20-гидроксиэкдизон и его ацильные производные обладают ранозаживляющим действием, эффективность которых значительно повышается при включении в липосомы, и плохо растворимы в воде [9].

С целью получения новых потенциально биоактивных веществ, определения влияния объемных функциональных групп на процесс образования супрамолекулярных комплексов и повышения их водорастворимости исследована тонкая структура исходного синтона. Методом рентгеноструктурного анализа был исследован триацетат 20-гидрокси-



экдизона в виде кристаллогидрата 2 ( $1.2.5 \text{ H}_2\text{O}$ ). Общий вид молекулы триацетата 20-гидроксиэкдизона 1 показан на рисунке.

Длины связей и валентные углы в кристаллогидрате 2 близки к обычным [10]. Конформация цикла  $C^{1}C^{2}C^{3}C^{4}C^{5}C^{10}$  (А) близка к идеальному *креслу* (минимальный параметр асимметрии  $\Delta C_s^3 = 0.4^\circ$ , внутрициклические торсионные углы приведены в табл. 1). Конформация цикла В, содержащего двойную связь C<sup>7</sup>=C<sup>8</sup>, отклоняется от идеального 5 $\alpha$ ,10 $\beta$ -*полукресла* в сторону 5 $\alpha$ -*софы* ( $\Delta C_{S}^{8} = 16.0^{\circ}$ и  $\Delta C_{2}^{7,8} = 9.3^{\circ}$ ) вследствие наличия двойной связи С6=О и сопряжения с двумя 6-членными карбоциклами. Вследствие сочленения с ненасыщенным циклом В значительно отклоняется от идеального *кресла* и конформация цикла C<sup>8</sup>C<sup>9</sup>C<sup>11</sup>C<sup>12</sup>C<sup>13</sup>C<sup>14</sup> (C)  $(\Delta C_{S}^{9} = 3.7^{\circ})$ . Конформация 5-членного карбоцикла D – 14 $\alpha$ ,13 $\beta$ -*полукресло* ( $\Delta C_2^{13,14} = 5.4^\circ$ ), значительное искажение которого обусловлено отталкиванием метильных групп при атомах C<sup>13</sup> и C<sup>20</sup>. Расстояние между атомами  $\hat{C}^{18}$  и  $C^{21}$  составляет 3.612 Å, тогда как ван-дер-ваальсов радиус метильной группы равен 2.0 Å [11]. В целом, искажения циклов A–D близки к наблюдаемым в кристаллических структурах 20-гидроксиэкдизона и его кристаллогидрата [12]. Параметр Флека близок к нулю [0.05(12)] [13] и на основании этого молекуле 1 приписано строение 2β,3β,22*R*-ацетокси-14α,20*R*,25-гидрокси-5β,9α(*H*)-холест-7-ен-6-она.

В кристалле молекула соединения **1** и молекулы воды связаны межмолекулярными водородными связями O<sup>7</sup>–H (x, y, z)···O<sup>5</sup> (1.5–x, 0.5+y, 1-z) [расстояния O···O 2.896(2) Å, H···O 2.19(3) Å, угол O–H···O 158(3)°], O<sup>6</sup>–H···O<sup>2w</sup> (x, y, z) [2.714(3), 1.95(3) Å, 174(3)°], O<sup>10</sup>–H···O<sup>1w</sup> (1.5–x, -0.5+y, -z) [2.737(3), 1.90(4) Å, 169(3)°], O<sup>1w</sup>–H···O<sup>6</sup> (x, y, z) [2.832(2), 1.95(6) Å, 159(4)°], O<sup>1w</sup>–H···O<sup>4</sup> (1–x, y, -z) [2.847(3), 1.94(5) Å, 176(4)°], O<sup>2w</sup>–H···O<sup>2</sup> (x, -1+y, z) [2.785(2), 1.96(3) Å, 161(3)°], O<sup>2w</sup>–H···O<sup>10</sup> (1.5–x, -0.5+y, -z) [2.737(3), 1.91(5) Å, 172(4)°], O<sup>3w</sup>–H···O<sup>2</sup> (1–x, y, -z) [расстояние O···O 2.839(3) Å], образуя трехмерные сетки.

Поскольку в супрамолекулярной химии определяющую роль играют размеры и строение взаимодействующих компонентов, для получения супрамолекулярных комплексов экдизона 1 выбран β-циклодекстрин. Комплексы получены взаимодействием эквимолекулярных количеств триацетата 20-гидроксиэкдизона 1 с циклодекстрином в водно-этанольном растворе при 50°С в течение 8 ч.

Исследование строения супрамолекулярных комплексов методом спектроскопии ЯМР основано на изменении химических сдвигов <sup>1</sup>Н субстра-



Общий вид молекулы [2,3,22-ацетокси-14,20,25-гидрокси-5,9(Н)-холест-7-ен-6-она] 1.

| Угол                    | τ, град   | Угол                       | τ, град  |  |  |
|-------------------------|-----------|----------------------------|----------|--|--|
| Цикл А                  |           | Цикл С                     |          |  |  |
| $C^{10}C^1C^2C^3$       | 56.5(2)   | $C^{14}C^8C^9C^{11}$       | -48.8(2) |  |  |
| $C^1C^2C^3C^4$          | -52.1(2)  | $C^{8}C^{9}C^{11}C^{12}$   | 46.5(2)  |  |  |
| $C^2C^3C^4C^5$          | 51.7(2)   | $C^{9}C^{11}C^{12}C^{13}$  | -52.0(3) |  |  |
| $C^{3}C^{4}C^{5}C^{10}$ | -56.1 (2) | $C^{11}C^{12}C^{13}C^{14}$ | 57.0(2)  |  |  |
| $C^4C^5C^{10}C^1$       | 56.4(2)   | $C^{12}C^{13}C^{14}C^{8}$  | -60.0(2) |  |  |
| $C^{2}C^{1}C^{10}C^{5}$ | -56.6(2)  | $C^{9}C^{8}C^{14}C^{13}$   | 57.1(2)  |  |  |
| Цикл В                  |           | Цикл D                     |          |  |  |
| $C^{10}C^5C^6C^7$       | -47.9(2)  | $C^{17}C^{13}C^{14}C^{15}$ | 45.8(2)  |  |  |
| $C^{5}C^{6}C^{7}C^{8}$  | 15.4(3)   | $C^{13}C^{14}C^{15}C^{16}$ | -35.3(2) |  |  |
| $C^{6}C^{7}C^{8}C^{9}$  | 5.6(3)    | $C^{14}C^{15}C^{16}C^{17}$ | 10.5(2)  |  |  |
| $C^{7}C^{8}C^{9}C^{10}$ | 6.6(3)    | $C^{15}C^{16}C^{17}C^{13}$ | 17.6(2)  |  |  |
| $C^{8}C^{9}C^{10}C^{5}$ | -38.1(2)  | $C^{14}C^{13}C^{17}C^{16}$ | -38.0(2) |  |  |
| $C^{6}C^{5}C^{10}C^{9}$ | 58.3(2)   |                            |          |  |  |

Таблица 1. Внутрициклические торсионные углы в кристаллогидрате 2

та 1 и  $\beta$ -циклодекстрина в свободном состоянии и в составе комплекса. По величине изменения химических сдвигов внутренних или внешних протонов циклодекстрина можно выявить образование, соответственно, внутренних, внешних или смешанных комплексов. Изменение химических сдвигов <sup>1</sup>H и <sup>13</sup>C в спектрах субстрата позволяет определить направление вхождения последнего в полость циклодекстрина [14–16].

Строение соединения 1 установлено методом спектроскопии ЯМР <sup>1</sup>Н и <sup>13</sup>С в растворе ДМСО- $d_6$  (табл. 2). Отнесение сигналов в одномерных спектров ЯМР <sup>1</sup>Н и <sup>13</sup>С подтверждено данными двумерных корреляций <sup>1</sup>Н-<sup>1</sup>Н СОЅҮ, <sup>1</sup>Н-<sup>1</sup>Н ROESY, <sup>1</sup>Н-<sup>13</sup>С НМQС и <sup>1</sup>Н-<sup>13</sup>С НМВС (табл. 2). Как видно из данных табл. 2, наибольшее изменение хими-

ческих сдвигов протонов глюкопиранозного звена претерпевают внутренние протоны H-3 и H-5, входящие во внутреннюю часть усеченного циклодекстринового конуса (схема 3). Это позволяет сделать вывод о вхождении молекулы субстрата 1 во внутреннюю полость β-циклодекстринами с образованием комплекса включения 3 (схема 2). Комплекс 3 сравнительно хорошо растворим в воде. Соотношение интегральных интенсивностей сигналов протонов субстрата 1 и β-циклодекстрина в комплексах показало, что на одну молекулу субстрата 1 приходится одна молекула β-циклодекстрина.

Результаты биоскрининга по изучению противовоспалительной активности триацетата 20-гидроксиэкдизона 1 и его комплекса с β-ци-





|                                   | F                    | δο. М. Л.                               |                 | δмл                   |                 | $\Delta \delta = \delta - \delta_0$ |                 |  |  |  |
|-----------------------------------|----------------------|-----------------------------------------|-----------------|-----------------------|-----------------|-------------------------------------|-----------------|--|--|--|
| № атома                           | Группа               | <sup>1</sup> H                          | <sup>13</sup> C | <sup>1</sup> H        | <sup>13</sup> C | <sup>1</sup> H                      | <sup>13</sup> C |  |  |  |
| Субстрат 1                        |                      |                                         |                 |                       |                 |                                     |                 |  |  |  |
| 1 1                               | CH <sub>2</sub>      | 1 65–1 70 м                             | 37 19           | 1 65–1 70 м           |                 | 0.00                                |                 |  |  |  |
| ax eq                             | 0112                 | 2 11–2 22 м                             | 07.125          | 2 11-2 20 м           |                 | 0.00                                |                 |  |  |  |
| 2                                 | СН                   | $4.95 \pi^{-3} I = 12.0 \Gamma \mu$     | 68 75           | Δ.11 2.20 M<br>Δ 9Δ π |                 | _0.01                               |                 |  |  |  |
| 2                                 |                      | 4.95                                    | 67.34           | т.94 д<br>5 16        |                 | -0.01                               |                 |  |  |  |
| 1 1                               |                      | 1.65 1.70 M                             | 21.41           | 1.65 1.70 x           |                 | -0.01                               |                 |  |  |  |
| 4ax4eq                            | СП2                  | 1.03-1.70 M                             | 51.41           | 1.00-1.02 M           |                 | 0.00                                |                 |  |  |  |
| 5                                 | CU                   | 1.90-1.93 M                             | 51.10           | 1.90-1.92 M           |                 | -0.01                               |                 |  |  |  |
| 5                                 | Сн                   | 2.11–2.22 M                             | 51.10           | 2.11–2.20 M           |                 | 0.02                                |                 |  |  |  |
| 6                                 | >(=0                 |                                         | 201.32          | -                     |                 | 0.01                                |                 |  |  |  |
| 7                                 | СН                   | 5.65 c                                  | 121.07          | 5.66                  |                 | 0.01                                |                 |  |  |  |
| 8                                 | >C<                  |                                         | 165.83          | _                     |                 |                                     |                 |  |  |  |
| 9                                 | СН                   | 3.02–3.08 м                             | 34.09           | 3.02-3.08 м           |                 | 0.00                                |                 |  |  |  |
| 10                                | >C<                  | _                                       | 38.24           |                       |                 |                                     |                 |  |  |  |
| $11_{ax}11_{eq}$                  | CH <sub>2</sub>      | 1.65–1.70 м                             | 21.37           | 1.65–1.70 м           |                 | 0.00                                |                 |  |  |  |
|                                   |                      | 1.78–1.81 м                             |                 | 1.76–1.82 м           |                 | 0.01                                |                 |  |  |  |
| $12_{ax}12_{eq}$                  | CH <sub>2</sub>      | 1.90–1.93 м                             | 30.81           | 1.90–1.92 м           |                 | -0.01                               |                 |  |  |  |
| un eq                             | -                    | 2.44-2.48 м                             |                 | 2.44–2.48 м           |                 | 0.00                                |                 |  |  |  |
| 13                                | >C<                  | _                                       | 47.34           | _                     |                 |                                     |                 |  |  |  |
| 14                                | >C<                  | _                                       | 83.51           | _                     |                 |                                     |                 |  |  |  |
| 1515                              | CH                   | 191 c                                   | 33.52           | 1 90 c                |                 | -0.01                               |                 |  |  |  |
| 10 ax 10 eq                       |                      | 2 11-2 22                               | 55.52           | 2 11-2 20             |                 | -0.02                               |                 |  |  |  |
| 16 16                             | CH.                  | 2.11 2.22                               | 21.70           | 2.11 2.20             |                 | _0.02                               |                 |  |  |  |
| 10 <sub>ax</sub> 10 <sub>eq</sub> |                      | 2.11 - 2.22  M                          | 21.70           | 2.11-2.20             |                 | -0.02                               |                 |  |  |  |
| 17                                | СЦ                   | 2.44-2.46                               | 10.59           | 2.44-2.40             |                 | 0.00                                |                 |  |  |  |
| 17                                |                      | 5.02-5.08                               | 49.30           | 5.02-5.08             |                 | 0.00                                |                 |  |  |  |
| 18                                |                      | 0.88 C                                  | 23.90           | 0.88 C                |                 | 0.00                                |                 |  |  |  |
| 19                                | -CH <sub>3</sub>     | 0.73 c                                  | 17.68           | 0.72 c                |                 | -0.01                               |                 |  |  |  |
| 20                                | >C<                  | -                                       | 79.11           | _                     |                 |                                     |                 |  |  |  |
| 21                                | -CH <sub>3</sub>     | 1.13 c                                  | 23.91           | 1.12 c                |                 | -0.01                               |                 |  |  |  |
| 22                                | СН                   | 4.63 д, <sup>3</sup> <i>J</i> = 10.0 Гц | 81.86           | 4.63 д                |                 | 0.00                                |                 |  |  |  |
| 23 <sub>av</sub> 23 <sub>aa</sub> | CH <sub>2</sub>      | 1.78–1.81 м                             | 26.54           | 1.76–1.82 м           |                 | 0.01                                |                 |  |  |  |
| ax eq                             | - 2                  | 2.11–2.22 м                             |                 | 2 11–2 20 м           |                 | -0.02                               |                 |  |  |  |
| 24 24                             | CH                   | 1 78–1 81 м                             | 40.63           | 1 76–1 82 м           |                 | 0.01                                |                 |  |  |  |
| - ·ax- ·eq                        |                      | 2 11–2 22 м                             | 10.05           | 2 11-2 20 м           |                 | _0.01                               |                 |  |  |  |
| 25                                | >C<                  | 2.11 2.22 W                             | 75.24           | 2.11 2.20 M           |                 | 0.02                                |                 |  |  |  |
| 25                                | CH                   | 1.28 c                                  | 26.29           | 1 27 0                |                 | 0.01                                |                 |  |  |  |
| 20                                |                      |                                         | 20.29           | 1.27 0                |                 | -0.01                               |                 |  |  |  |
| 27                                | $-C\Pi_3$            | 1.55 C                                  | 29.09           | 1.52 0                |                 | -0.01                               |                 |  |  |  |
| 2                                 | -00C-CH <sub>3</sub> | 1.88 C                                  | 170.51          | 1.8/C                 |                 | -0.01                               |                 |  |  |  |
| 3                                 | -00C-CH <sub>3</sub> | 1.98 c                                  | 170.18          | 1.97 C                |                 | -0.01                               |                 |  |  |  |
| 22                                | $ -00C-CH_3 $        | 2.05 c                                  | 172.92          | 2.04 c                |                 | -0.01                               | I               |  |  |  |
| β–Циклодекстрин                   |                      |                                         |                 |                       |                 |                                     |                 |  |  |  |
| 1                                 | СН                   | 4.77 д, $J = 4.0$ Гц                    | 102.40          | 4.78 д                | 102.45          | 0.01                                | 0.05            |  |  |  |
| 2                                 | СН                   | 3.26 д, <sup>3</sup> <i>J</i> = 12.1 Гц | 72.83           | 3.26 д                | 72.92           | 0.00                                | 0.09            |  |  |  |
| 3                                 | CH                   | 3.58 т, <sup>3</sup> J = 8.3 Гц         | 73.54           | 3.60 т                | 73.56           | 0.02                                | 0.02            |  |  |  |
| 4                                 | CH                   | 3.28 т, <sup>3</sup> <i>J</i> = 10.0 Гц | 81.98           | 3.28 т                | 82.03           | 0.00                                | 0.05            |  |  |  |
| 5                                 | СН                   | 3.50 c                                  | 72.50           | 3.53 c                | 72.55           | 0.03                                | 0.05            |  |  |  |
| 6                                 | CH <sub>2</sub>      | 3.58 c                                  | 60.42           | 3.59 c                | 60.42           | 0.01                                | 0.00            |  |  |  |

**Таблица 2.** Химические сдвиги ядер <sup>1</sup>H и <sup>13</sup>C субстрата **1** и  $\beta$ -циклодекстрина в свободном состоянии ( $\delta_0$ ) и в составе комплекса **3** ( $\delta$ )

клодекстрином **3** показали, что комплекс в дозе 25 мг/кг обладает противовоспалительной активностью на модели острой экссудативной реакции и по активности сопоставим с препаратом сравнения Диклофенаком натрия, тогда как исходный триацетат 20-гидроксиэкдизона в данной дозе обладает слабой противовоспалительной активностью.

Таким образом, получен триацетат 20-гидроксиэкдизона, структура которого подтверждена методами рентгеноструктурного и ЯМР-спектроскопического анализов. Супракомплекс триацетата 20-гидроксиэкдизона с β-циклодекстрином показал противовоспалительную активность.

#### ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В работе использовали β-циклодекстрин (99%) производства фирмы «Fluka».

Спектры ЯМР <sup>1</sup>Н и <sup>13</sup>С записаны на спектрометре Jeol JNM-ECA 400 (399.78 и 100.53 МГц на ядрах <sup>1</sup>Н и <sup>13</sup>С соответственно) в растворе ДМСО $d_6$  при комнатной температуре. Химические сдвиги измерены относительно остаточных сигналов протонов или атомов углерода растворителя.

Рентгеноструктурный анализ. Параметры ячейки и интенсивности 55472 отражений (8130 независимых,  $R_{int} = 0.0363$ ) измерены на дифрактометре Bruker Kappa APEX2 CCD (Мо $K_{\alpha}$ , графитовый монохроматор,  $\varphi$ , $\omega$ -сканирование, 2.33  $\leq \theta \leq 27.48^{\circ}$ ) при температуре 180 К. Кристаллы моноклинные, a = 31.052(6), b = 7.995(2), c = 15.196(3) Å,  $\beta = 110.55(3)^{\circ}$ , V = 3533(1) Å<sup>3</sup>, Z = 4 (C<sub>33</sub>H<sub>50</sub>O<sub>10</sub>·2.5H<sub>2</sub>O), пространственная группа *C*2,  $d_{выч} = 1.242$  г/см<sup>3</sup>,  $\mu = 0.095$  мм<sup>-1</sup>. Обработку исходного массива измеренных интенсивностей и учет поглощения проводили по программам SAINT [17] и SADABS [18], включенных в программный пакет APEX2.

Структура расшифрована прямым методом. Позиции неводородных атомов уточнены в анизотропном приближении полноматричным МНК. Атомы водородов гидроксильных групп и двух кристаллогидратных молекул воды (О<sup>1w</sup> и О<sup>2w</sup>) выявлены из разностного синтеза и их позиции уточнены в изотропном приближении. Атомы водорода третьей молекулы воды (О<sup>3</sup><sup>w</sup>) выявить не удалось из-за того, что ее заселенность составляет 1/2 молекулы на элементарную ячейку. Остальные атомы водорода помещали в геометрически рассчитанные положения и их позиции уточняли в изотропном приближении с фиксированными позиционными и тепловыми параметрами (модель наездника). В расчетах использовано 7591 отражение с  $I \ge 2\sigma(I)$ , число уточняемых параметров 451. Окончательные факторы расходимости:  $R_1 =$ 0.0476,  $_{W}R_{2} = 0.1010$  (по отражениям с  $I \ge 2\sigma(I)$ ,  $R_1 = 0.0414$ ,  $_{\rm W}R_2 = 0.1032$  (по всем отражениям), GooF 1.046. Пики остаточной плотности: Δρ=0.667

и –0.337 *e*/Å<sup>3</sup>. Структура расшифрована и уточнена по программам SIR-97 [19] и SHELXL-2018/3 [20] соответственно. Структурные данные депонированы в Кембриджском центре кристаллоструктурных данных (ССDС 1919742).

Комплекс 3. Комплекс получен взаимодействием эквимолекулярных количеств соединения 1 с  $\beta$ -циклодекстрином. К раствору 0.050 г (0.83 ммоль) 1 в 3 мл абс. этанола добавляли раствор 0.094 г (0.83 ммоль)  $\beta$ -циклодекстрина в 4 мл дистиллированной воды, смесь перемешивали при 50°Св течение 8 ч. Осадок отфильтровывали, промывали этанолом и сушили в вакуумном шкафу при 40°С. Белый порошок, т. пл. 267° (разл.). ИК спектр (КВг), v, см<sup>-1</sup>: 579, 609, 707, 757, 858, 947, 1029, 1081, 1157, 1254, 1216, 1254, 1336, 1371, 1426, 1660 (С=О), 1742, 2928, 3445 (ОН), УФ спектр,  $\lambda_{max}$ : 245 нм.

Исследование противовоспалительной активности. Эксперименты выполнены на 32 белых беспородных крысах обоего пола, массой 250-320 г. Противовоспалительное действие изучали на модели острой экссудативной реакции воспаления (перитонит). Антиэкссудативную активность оценивали по объему экссудата, образовавшегося в брюшной полости. Острую экссудативную реакцию (перитонит) вызывали внутрибрюшинным введением 1%-ного раствора АсОН в объеме 1 мл на 100 г массы тела крыс. Исследование проводили по методике [21]. Исследуемые объекты изучали в дозе 25 мг/кг при пероральном введении в виде крахмальной слизи. Препарат сравнения (диклофенак натрия) изучали в дозе 25 мг/кг. Контрольные животные получали эквиобъемное количество крахмальной слизи. Исследуемые объекты вводили однократно за 1 ч до введения 1%-ного раствора АсОН.

Статистическую обработку результатов проводили с использованием пакета программ Statistica 6.0. Межгрупповые отличия оценивали непараметрическим *U*-критерием Манна–Уитни. Достоверными считались различия при достигнутом уровне значимости p < 0.05. Животные были разделены на 4 группы с массой тела: группа «Контроль»  $(n = 8) - 293.0 \pm 15.4$ ; группа «Диклофенак натрия»  $(n = 8) - 319.5 \pm 25.9$ ; группа «1»  $(n = 8) - 275.3 \pm 17.7$ ; группа «**3**»  $(n = 8) - 263.8 \pm 12.9$ . В результате проведенного эксперимента показано, что образец **3** в дозе 25 мг/кг обладает противовоспалительной активностью на модели острой экссудативной реакций (количество экссудата 4.9±0.5 мл) и по активности сопоставим с препаратом сравнения Диклофенаком натрия (количество экссудата 4.4±0.7 мл). Образец **1** в дозе 25 мг/кг обладает слабой противовоспалительной активностью на модели острой экссудативной реакций (количество экссудата 6.5±1.2 мл)

Работа выполнена с соблюдением всех применимых международных, национальных и институциональных руководящих принципов по уходу и использованию животных.

#### ФОНДОВАЯ ПОДДЕРЖКА

Работа выполнена при поддержке Комитета науки Министерства образования и науки Республики Казахстан (грант AP05133718 «Синтез, строение и биологическая активность новых водорастворимых производных полиоксистероидов»).

#### КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

#### СПИСОК ЛИТЕРАТУРЫ

- Rinaldi L., Binello A., Stolle A., Curini M., Cravotto G. // Steroids. 2015. Vol. 98. P. 58. doi 10.1016/j. steroids.2015.02.016
- Forgo P., Vincze I., Kover K.E. // Steroids. 2003. Vol. 68.
  P. 321. doi 10.1016/S0039-128X(03)00041-2
- Jover A., Budal R.M., Al-Soufi W., Meijide F., Tato J.V., Yunes R.A. // Steroids. 2003. Vol. 68. P. 55. doi 10.1016/ S0039-128X(02)00115-0
- Szejtli J. Cyclodextrins and Their Inclusion Complexes. Budapest: Akademiai Kiado, 1982. 296 p. doi 10.1002/ S19820341113
- Uekama K., Hirayama F., Irie T. // Chem. Rev. 1998.
  Vol. 98. N 5. P. 2045. doi 10.1021/cr970025p
- Rasheed A., Kumar A.S.K., Sravanthi V.V. // Sci. Pharm. 2008.Vol. 76. N 4. P. 567. doi 10.3797/scipharm.0808-05
- Temirgaziyev B., Kucakova K., Baizhigit E., Jurasek M., Dzubak P., Hajduch M., Dolensky B., Drasar P., Tuleuov B., Adekenov S. // Steroids. 2019. Vol. 147. P. 37. doi 10.1016/j.steroids.2018.11.007

- Темиргазиев Б.С., Тулеуов Б.И., Романова М.А., Сейдахметова Р.Б., Сейлханов Т.М., Сейлханов О.Т., Салькеева Л.К., Адекенов С.М. // ЖОХ. 2019. Т. 89. Вып. 3. С. 394; Temirgaziev B.S., Tuleuov B.I., Romanova M.A., Seidakhmetova R.B., Seilkhanov T.M., Seilkhanov O.T., Salkeeva L.K., Adekenov S.M. // Russ. J. Gen. Chem. 2019. Vol. 89. N 3. P. 394. doi 10.1134/ S1070363219030095
- 9. Политова Н.К., Ковлер Л.А., Володин В.В., Лукша В.Г., Пииунетлева Е.А. // Хим. раст. сырья. 2001. № 2. С. 69.
- Allen F.H., Kennard O., Watson D.G., Brammer L., Orpen A.G., Taylor R. // J. Chem. Soc. Perkin Trans. 2, 1987. N 12. P. S1. doi 10.1039/P298700000S1
- Зефиров Ю.В., Зоркий П.М. // Усп. хим. 1989.
  Т. 58. С. 713; Zefirov Yu.V., Zorkii P.M. // Russ. Chem. Rev. 1989. Vol. 58. P. 421. doi 10.1070/ RC1989v058n05ABEH003451
- Fabian L., Argay G., Kalman A., Bathori M. // Acta Crystallogr. 2002. Vol. 58. P. 710. doi 10.1107/ S0108768102005608
- Parsons S., Flack H.D., Wagner T. // Acta Crystallogr. 2013. Vol. 69. P. 249. doi 10.1107/S2052519213010014
- Demarco P.V., Thakkar A.I. // J. Chem. Soc. Chem. Commun. 1970. N 1. P. 2. doi 10.1039/C2970000002
- Hazra S., Hossain M., Kumar G.S. // J. Incl. Phenom. Macrocycl. Chem. 2014. Vol. 78. N 1–4. P. 311. doi 10.1007/s10847-013-0301-6
- Loftsson T., Masson M., Brewster M.E. // J. Pharm. Sci. 2004. Vol. 93. N 5. P. 1091. doi 10.1002/jps.20047
- SMART V5.051 and SAINT V5.00, Area detector control and integration software. Bruker AXS Inc., Madison, WI-53719, USA,1998.
- Sheldrick G. M., SADABS, Bruker AXS Inc., Madison, WI-53719, USA, 1997.
- Altomare A., Burla M.C., Camalli M., Cascarano G.L., Giacovazzo C., Guagliardi A., Moliterni A.G.G., Polidori G., Spagna R. // J. Appl. Cryst. 1999. Vol. 32. P. 115. doi 10.1107/S0021889898007717
- Sheldrick G.M. // Acta Crystallogr. 2015. Vol. 71. P. 3. doi 10.1107/S2053229614024218
- Руководство по проведению доклинических исследований лекарственных средств / Под ред. А.Н. Миронова, Н.Д. Бунятяна, А.Н. Васильева, О.Л. Верстаковой, М.В. Журавлевой, В.К. Лепахина, Н.В. Коробова, В.А. Меркулова, С.Н. Орехова, И.В. Сакаевой, Д.Б. Утешева, А. Яворского. М.: Гриф и К, 2012. Ч. 1. 944 с.

### Supramolecular Complex of 20-Hydroxyecdysone-3-acetate with β-Cyclodextrin and Its Biological Activity

B. I. Tuleuov<sup>*a*,\*</sup>, B. S. Temirgaziev<sup>*a*,*b*</sup>, A. M. Kozhanova<sup>*a*</sup>, R. B. Seydakhmetova<sup>*a*</sup>, K. M. Turdybekov<sup>*b*</sup>, T. M. Seilkhanov<sup>*c*</sup>, O. T. Seilkhanov<sup>*c*</sup>, P. Drasar<sup>*d*</sup>, and S. M. Adekenov<sup>*a*</sup>

<sup>a</sup> International Scientific and Production Holding "Phytochemistry", Karaganda, 100009 Kazakhstan
 <sup>b</sup> E.A. Buketov Karaganda State University, Karaganda, 100028 Kazakhstan
 <sup>c</sup> Sh. Ualikhanov Kokshetau State University, Kokshetau, 020000 Kazakhstan
 <sup>d</sup> University of Chemistry and Technology, Prague, 16628 Czech Republic
 \*e-mail: info@phyto.kz

Received August 18, 2020; revised August 18, 2020; accepted August 30, 2020

In order to obtain new potentially bioactive substances and to study the effect of bulky functional groups on the formation of supramolecular complexes, 20-hydroxyecdysone triacetate was synthesized, its spatial structure was studied, and complexation with  $\beta$ -cyclodextrin was studied by NMR method. The anti-inflammatory activity of the obtained water-soluble complex was studied.

Keywords: 20-hydroxyecdysone triacetate,  $\beta$ -cyclodextrin, supramolecular complex, X-ray structural analysis, NMR spectroscopy