УДК 547.727

СИНТЕЗ НОВЫХ ПРОИЗВОДНЫХ 2-АМИНОПИРРОЛОВ РЕАКЦИЕЙ 3-АЦИЛГИДРАЗОНОВ 2,3-ФУРАНДИОНОВ С СН-НУКЛЕОФИЛАМИ

© 2020 г. И. А. Кизимова a,* , Н. М. Игидов a , М. А. Киселев a , М. В. Дмитриев b , С. В. Чащина a,b , А. И. Сюткина a

^а Пермская государственная фармацевтическая академия Министерства здравоохранения Российской Федерации, ул. Екатерининская 10, Пермь, 614990, Россия

^b Пермский государственный национальный исследовательский университет, Пермь, 614068 Россия *e-mail: icekingakiratotsuka@gmail.com

Поступило в Редакцию 8 июля 2019 г. После доработки 8 июля 2019 г. Принято к печати 11 июля 2019 г.

Рециклизацией ацилгидразонов 2,3-фурандионов под действием эфиров, амидов и нитрилов циануксусных кислот получены соответствующие эфиры, амиды и нитрилы 2-амино-1-R-4-оксо-5-(2-оксо-2-арил/*трет*-бутилэтилиден)-4,5-дигидро-1*H*-пиррол-3-карбоновых кислот.

Ключевые слова: производные 2-амино-1-R-4-оксо-5-(2-оксо-2-арил/*трет*-бутилэтилиден)-4,5-дигидро-1*H*-пиррол-3-карбоновых кислот, 3-ацилгидразоны 2,3-фурандионов, рециклизация

DOI: 10.31857/S0044460X20020031

Ранее было показано, что 5-арил-3-имино-3*H*фуран-2-оны и 4-ариламино-2-трет-бутил-5-оксо-2,5-дигидрофуран-2-илацетаты вступают реакции с производными циануксусной кислоты с образованием продуктов рециклизации – 2-амино-1-арил-4-оксо-5-(2-оксоэтилиден)-1*H*-4,5-дигидропиррол-3-карбоновых кислот [1-6]. При взаимодействии 5-R-3-арилгидразоно-3H-фуран-2-онов с малондинитрилом образуются иные продукты рециклизации – производные пиразола [3]. Литературные данные об участии 3-ацилгидразонов 2,3-фурандионов в реакциях с СНнуклеофилами ограничиваются несколькими примерами [7, 8]. Результаты исследований последних лет показали, что производные 2-аминопирролов проявляют антирадикальную, антигипоксическую и противовоспалительную активность [4, 5, 8], а также обладают цитотоксичностью в отношении опухолевых клеток сарком мягких тканей, в том числе гастроинтестинальной стромальной опухоли [4, 5, 7, 9].

С целью исследования химического поведения 3-ацилгидразонов 2,3-фурандионов в реакции с

СН-нуклеофилами нами изучено их взаимодействие с этилцианоацетатом, амидами циануксусной кислоты, динитрилом малоновой кислоты. При нагревании эквимолярных количеств реагентов в абсолютном толуоле в присутствии триэтиламина в качестве основания образуются этиловые эфиры, амиды и нитрилы 2-амино-1-R-4-оксо-5-(2-оксо-2-арил/*трет*-бутилэтилиден)-4,5-дигидро-1*H*-пиррол-3-карбоновых кислот **2а**—т (схема 1).

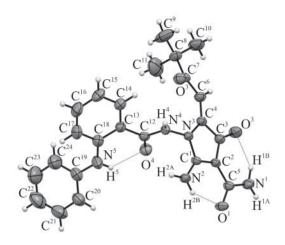
Полученные соединения **2**а-т представляют собой бесцветные или окрашенные кристаллические вещества, растворимые в диметилсульфоксиде, диметилформамиде, трудно растворимые в этаноле и нерастворимые в бензоле, воде и гексане.

ИК спектры синтезированных соединений характеризуются наличием полос поглощения валентных колебаний NH-групп в области 3204—3479 см⁻¹, карбонильных групп в области 1699—1711 и 1658—1679 см⁻¹, а также валентных колебаний двойной связи C=C в области 1590—1628 см⁻¹. В спектрах ЯМР ¹Н помимо сигналов заместителей в ароматическом кольце и сложноэфирной группы регистрируются синглеты протонов NH-

Схема 1.

 $\begin{array}{l} R^1 = t\text{-Bu }(\mathbf{2a}, \mathbf{2\pi}, \mathbf{2o}, \mathbf{2p}), \ Ph = (\mathbf{26}, \mathbf{2e}, \mathbf{2m}, \mathbf{2c}), \ 4\text{-MeC}_6H_4 \ (\mathbf{2\pi}, \mathbf{2\pi}, \mathbf{2T}), \ 4\text{-EtC}_6H_4 \ (\mathbf{2B}), \\ 4\text{-EtOC}_6H_4 \ (\mathbf{23}), \ 1\text{-Napht }(\mathbf{2r}, \mathbf{2H}), \ 4\text{-BrC}_6H_4 \ (\mathbf{2u}), \ 4\text{-FC}_6H_4 \ (\mathbf{2\pi}), \ 4\text{-ClC}_6H_4 \ (\mathbf{2\kappa}); \\ R^2 = \text{PhCONH }(\mathbf{2a-\pi}, \mathbf{2\pi-H}, \mathbf{2p-T}), \ 2\text{-PhNHPhCONH }(\mathbf{2e-\kappa}, \mathbf{2o}, \mathbf{2H}); \ X = \text{COOEt }(\mathbf{2a-\kappa}), \\ \text{CONH}_2 \ (\mathbf{2\pi-H}), \ 4\text{-MeC}_6H_4 \text{NHCO }(\mathbf{2p}), \ \text{CN }(\mathbf{2c}, \mathbf{2T}). \end{array}$

группы амидного фрагмента при 10.65—11.11 м. д., сигналы протонов аминогруппы при 9.07—9.39 м. д., вторичной аминогруппы при 8.40—8.80 м. д., мультиплетные сигналы ароматических протонов при 7.18—7.48 м. д. и синглет винильного протона при 6.42—6.66 м. д.


Для установления пространственной структуры соединения **20** в кристаллическом состоянии были получены монокристаллы в результате медленной кристаллизации из этанола для проведения рентгеноструктурного анализа. Полученные результаты свидетельствуют о полном соответствии предложенной структуры соединения данным РСА (см. рисунок).

Соединение 20 кристаллизуется в центросимметричной пространственной группе моноклин-

ной сингонии. Кристаллографически независимая часть элементарной ячейки состоит из двух молекул с близкой геометрией, на рисунке изображена одна из них (нумерация атомов второй молекулы имеет дополнительный индекс А). Пиррольные циклы в обеих независимых молекулах плоские в пределах 0.03-0.04 Å. Первичные аминогруппы и карбамоильные заместители участвуют в образовании внутримолекулярных водородных связей (см. таблицу), и, как следствие, лежат практически в плоскостях гетероциклов, торсионные углы N¹C⁵C²C³ 5.5(3)°, N¹AC⁵AC²AC³A 0.8(3)°. Остальные заместители развернуты на значительные углы относительно пиррольных циклов. В кристалле наблюдается развитая система внутрии межмолекулярных связей: каждая из групп NH и NH₂ участвует в их образовании (см. таблицу).

Геометрия водородных связей в молекуле соединения 20

D–H···A	D–H, Å	H···A, Å	D…A, Å	Угол D–H···A, град
N_1 - H_{1} A···· O_{1} A	0.83(3)	2.24(3)	3.059(3)	169(2)
N^1 – H^{1B} ···O ²	0.96(3)	2.08(3)	2.872(3)	138(2)
$N^2-H^2A\cdots O^1[-x, y-1/2, -z+1/2]$	0.98(3)	1.88(3)	2.846(3)	168(2)
N ² _H ² B····O ¹	0.86(2)	2.20(2)	2.852(3)	131(19)
$N^4-H^4\cdots O^{1A}[x, y-1, z]$	0.84(2)	2.08(2)	2.895(3)	163(2)
$N^5-H^5\cdots O^4$	0.82(3)	2.15(3)	2.768(3)	132(3)
N^{1A} H^{1AA} O^{2A}	0.91(3)	2.11(3)	2.839(3)	137(2)
N^{1A} - H^{1AB} ···· O^{4} [- x , y +1/2, - z +1/2]	0.84(3)	2.36(3)	2.972(3)	130(2)
$N^{2A}-H^{2AA}\cdots O^{3}[x, y+1, z]$	0.90(3)	2.10(3)	2.852(3)	141(2)
N2A_H2AAO1A	0.90(3)	2.29(3)	2.899(3)	125(2)
$N^{2A}-H^{2AB}\cdots O^{2}[-x+1/2,-y+3/2,-z+1/2]$	0.88(3)	2.02(3)	2.836(3)	153(2)
N^{4A} H^{4A} O^{3A}	0.85(3)	2.11(3)	2.748(3)	132(3)
N5A_H5AO4A	0.86(3)	1.96(3)	2.654(3)	138(3)

Общий вид молекулы соединения 20 в кристалле.

За счет межмолекулярных связей молекулы в кристалле связаны в параллельную плоскости (001) двумерную сеть, состоящую из двух слоев молекул.

Таким образом, реакция рециклизации 3-ацилгидразонов 2,3-фурандионов с СН-нуклеофилами открывает широкие возможности в синтезе новых потенциально биологически активных производных 2-аминопиррола.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры записаны на приборе ФСМ-1201 в вазелиновом масле. Спектры ЯМР ¹Н (400 и 100 МГц) зарегистрированы на приборе ВгикегАvance III в ДМСО- d_6 . Контроль за чистотой соединений и протеканием реакций осуществляли методом ТСХ на пластинах Sorbfil ПТСХ П-А-УФ-254 в системе диэтиловый эфир—бензолацетон (10:9:1), детектирование проводили парами иода. Температуры плавления определяли на приборе SMP40. Элементный анализ проводили на приборе Leco CHNS-932.

Рентгеноструктурный анализ. Рентгеноструктурный анализ выполнен на монокристальном дифрактометре Xcalibur Ruby с ССРдетектором по стандартной методике [Мо K_{α} -излучение, 295(2) К, ω -сканирование с шагом 1°]. Поглощение учтено эмпирически с использованием алгоритма SCALE3 ABSPACK [10]. Сингония кристалла ($C_{24}H_{25}N_5O_4$, M 447.49) моноклинная, пространственная группа I2/a, a=24.782(5) Å, b=10.4247(16) Å, c=38.542(10) Å, $\beta=107.98(2)^\circ$, V=9471(4) ų, Z=16, $d_{\mathrm{Выч}}=1.255$ г/см³, $\mu=0.088$ мм $^{-1}$. Структура расшифрована с помощью

программы SHELXS [11] и уточнена полноматричным МНК по F^2 в анизотропном приближении для всех неводородных атомов с использованием программы SHELXL [12] с графическим интерфейсом OLEX2 [13]. Атомы водорода, связанные с гетероатомами, уточнены независимо в изотропном приближении. При уточнении остальных атомов водорода использована модель *наездника*. Окончательные параметры уточнения: $R_1 = 0.0675$, $wR_2 = 0.1354$ [для 6077 отражений с $I > 2\sigma(I)$], $R_1 = 0.1367$, $wR_2 = 0.1684$ (для всех 11187 независимых отражений), S = 1.022. Результаты РСА зарегистрированы в Кембриджском центре кристаллографических данных под номером ССDC 1937434.

Общая методика получения производных 2-амино-1-R-4-оксо-5-(2-оксо-2-арил/трем-бутилэтилиден)-4,5-дигидро-1*Н*-пиррол-3-кар-боновых кислот (2а-т). К раствору 0.001 моль соответствующего 3-ацилгидразона 2,3-дигидро-2,3-фурандиона в 20 мл безводного толуола добавляли эквивалентное количество этилового эфира или амида циануксусной кислоты, динитрила малоновой кислоты и эквивалентное количество триэтиламина. Полученную смесь нагревали в течение 30–40 мин, затем охлаждали до 0°С. Осадок отфильтровывали и перекристализовывали.

Этил-(E)-2-амино-1-бензамидо-5-(3,3-диметил-2-оксобутилиден)-4-оксо-4,5-дигидро-1H-пиррол-3-карбоксилат (2a). Выход 1.2 г (63%), желтые кристаллы, т. пл. 262–263°C (АсОН). Спектр ЯМР 1 H (ДМСО- d_6), δ , м. д.: 0.95 с (9H, 3Me), 1.25 т (3H, Me, J = 7.4 Γ μ), 4.14 к (2H, CH $_2$, J = 7.4 Γ μ), 6.22 с (1H, CH), 7.55 м (5H, H $_{Ar}$), 8.29 с (1H, NH), 9.04 с (1H, NH), 10.75 с (1H, NH). Найдено, %: C 62.33; H 6.02; N 10.90. $C_{20}H_{23}N_3O_5$. Вычислено, %: C 62.34; H 6.03; N 10.92.

Этил-(E)-2-амино-1-бензамидо-4-оксо-5-(2-оксо-2-фенилэтилиден)-4,5-дигидро-1H-пиррол-3-карбоксилат (26). Выход 1.43 г (71%), желтые кристаллы, т. пл. 258–259°С (AcOH). Спектр ЯМР 1 Н (ДМСО- d_6), δ , м. д.: 1.23 т (3H, Me, J = 7.4 Γ ц), 4.15 к (2H, CH₂, J = 7.4 Γ ц), 6.58 с (1H, CH), 7.46 м (10H, H_{Ar}), 8.40 с (1H, NH), 9.10 с (1H, NH), 10.93 с (1H, NH). Найдено, %: C 65.18; H 4.72; N 10.37. C_{22} H₁₉N₃O₅. Вычислено, %: C 65.17; H 4.73; N 10.35.

Этил-(Е)-2-амино-1-бензамидо-5-[2-(4-этил-фенил)-2-оксоэтилиден]-4-оксо-4,5-дигидро-

1*Н***-пиррол-3-карбоксилат (2в).** Выход 1.23 г (57%), желтые кристаллы, т. пл. 248–250°С (АсОН). Спектр ЯМР ¹H (ДМСО- d_6), δ , м. д.: 1.18 т (3H, Me, J=7.5 Гц), 1.29 т (3H, CH₂, J=6.9 Гц), 2.65 к (2H, CH₂, J=7.5 Гц), 4.21 к (2H, CH₂, J=6.9 Гц), 6.63 с (1H, CH), 7.48 м (9H, H_{Ar}), 8.32 с (1H, NH), 9.07 с (1H, NH), 10.82 с (1H, NH). Найдено, %: С 66.50; H 5.35; N 9.69. $C_{24}H_{23}N_3O_5$. Вычислено, %: С 66.52; H 5.36; N 9.68.

Этил-(E)-2-амино-1-бензамидо-5-[2-(нафт-1-ил)-2-оксоэтилиден]-4-оксо-4,5-дигидро-1H-пиррол-3-карбоксилат (2г). Выход 1.58 г (70%), желтые кристаллы, т. пл. 210–212°С (AcOH). Спектр ЯМР 1 Н (ДМСО- d_6), δ , м. д.: 1.24 т (3H, Me, J = 7.4 Γ ц), 4.15 к (2H, CH₂, J = 7.4 Γ ц), 6.48 с (1H, CH), 7.75 м (12H, H_{Ar}), 8.47 с (1H, NH), 9.21 с (1H, NH), 11.07 с (1H, NH).Найдено, %: С 68.56; Н 4.65; N 9.23. $C_{26}H_{21}N_3O_5$. Вычислено, %: С 68.54; Н 4.67; N 9.24.

Этил-(*E*)-2-амино-1-бензамидо-5-[2-(4-фторфенил)-2-оксоэтилиден]-4-оксо-4,5-дигидро-1*Н*-пиррол-3-карбоксилат (2д). Выход 1.14 г (54%), желтые кристаллы, т. пл. 252–254°C (АсОН). Спектр ЯМР 1 Н (ДМСО- d_6), δ , м. д.: 1.23 т (3H, Me, J=6.5 Гц), 4.12 к (2H, CH₂, J=6.5 Гц), 6.58 с (1H, CH), 7.37 м (9H, H_{Ar}), 8.46 с (1H, NH), 9.22 с (1H, NH), 10.98 с (1H, NH). Найдено, %: С 62.41; H 4.29; N 9.92. C_{22} H₁₈FN₃O₅. Вычислено, %: С 62.44; H 4.28; N 9.93.

Этил-(E)-2-амино-4-оксо-5-(2-оксо-2-фенилэтилиден)-1-[2-(фениламино)бензамидо]-4,5-дигидро-1H-пиррол-3-карбоксилат (2e). Выход 1.6 г (73%), желтые кристаллы, т. пл. 220–222°С (этанол). Спектр ЯМР 1 Н (ДМСО- d_{6}), δ , м. д.: 1.27 г (3H, Me, J = 7.0 Гц), 4.21 к (2H, CH₂, J = 6.8 Гц), 6.66 с (1H, CH), 7.25 м (9H, H_{Ar}), 8.44 уш. с (1H, NH), 9.11 с (1H, NH), 9.18 уш. с (1H, NH), 10.94 уш. с (1H, NH). Найдено, %: С 67.73; Н 4.87; N 11.28. C_{28} H₂₄N₄O₅. Вычислено, %: С 67.74; Н 4.86; N 11.27.

Этил-(E)-2-амино-4-оксо-5-[2-оксо-2-(4-метилфенилэтилиден)-1-(2-(фениламино)бензамидо]-4,5-дигидро-1H-пиррол-3-карбоксилат (2ж). Выход 1.3 г (58%), желтые кристаллы, т. пл. 260–262°С (этанол). ИК спектр, v, см⁻¹: 3354, 3274, 1750, 1689, 1612. Спектр ЯМР ¹H (ДМСО- d_6), δ , м. д.: 1.27 т (3H, Me, J = 7.0 Гц), 2.28 с (3H, Me),

4.21 к (2H, CH₂, J = 7.0 Гц), 6.66 с (1H, CH), 7.22 м (9H, H_{Ar}), 8.44 с (1H, NH), 9.12 с (1H, NH), 9.18 уш. с (1H, NH), 10.94 уш. с (1H, NH). Спектр ЯМР ¹³С (ДМСО- d_6), δ_C , м. д.: 14.47, 21.07, 58.48, 84.89, 102.52, 114.02, 117.1, 120.22, 122.21, 128.22, 129.03, 129.18, 129.93, 132.91, 134.68, 140.66, 140.99, 143.67, 145.35, 163.66, 167.21, 167.48, 174.11, 189.72. Найдено, %: С 68.22; Н 5.13; N 10.97. $C_{29}H_{26}N_4O_5$. Вычислено, %: С 68.23; Н 5.14; N 10.98.

Этил-(E)-2-амино-5-[2-(4-этоксифенил)-2-оксоэтилиден]-4-оксо-1-[2-(фениламино)-бензамидо]-4,5-дигидро-1H-пиррол-3-кар-боксилат (23). Выход 1.25 г (52%), желтые кристаллы, т. пл. 238–240°С (этанол). Спектр ЯМР 1 Н (ДМСО- d_6), δ , м. д.: 1.25 т (3H, Me, J = 6.3 Гц), 1.29 т (3H, Me, J = 6.1 Гц), 3.99 к (2H, CH₂, J = 6.9 Гц), 4.19 к (2H, CH₂, J = 7.0 Гц), 6.61 с (1H, CH), 7.18 м (9H, H_{Ar}), 8.35 уш. с (1H, NH), 9.1 уш. с (2H, 2NH), 10.65 уш. с (1H, NH). Массспектр, m/z (I_{OTH} , %): 540 (100.0) [M]+, 495 (5.6) [M-ОС₂H₅]+, 391 (21.5) [M – 4-EtOC₆H₄CO]+, 196 (30.0) [2PhNHC₆H₄CO)]+. Найдено, %: С 66.66; H 5.22; N 10.36. C_{30} H₂₈N₄O₆. Вычислено, %: С 66.67; H 5.23; N 10.35.

Этил-(Е)-2-амино-5-[2-(4-бромфенил)-2оксоэтилиден]-4-оксо-1-[2-(фениламино)бензамидо]-4,5-дигидро-1*H*-пиррол-3-карбоксилат (2и). Выход 1.3 г (51%), желтые кристаллы, т. пл. 235–237°С (этанол). ИК спектр, v, см⁻¹: 3227 ш, 1774, 1659, 1657. Спектр ЯМР 1 Н (ДМСО- d_6), δ , м. д.: 1.27 т (3H, Me, $J = 7.1 \Gamma \mu$), 4.21 к (2H, CH₂, $J = 7.0 \Gamma$ ц), 6.63 с (1H, CH), 7.29 м (9H, H_{Ar}), 8.49 уш. с (1H, NH), 9.12 c (2H, 2NH), 9.23 ym. c (1H, NH), 10.98 уш. с (1H, NH). Спектр ЯМР ¹³С (ДМСО- d_6), δ_C, м. д.: 14.54, 58.57, 84.92, 101.99, 113.95, 114.15, 117.18, 120.32, 122.38, 127.46, 129.25, 130.06, 131.61, 133.05, 136.05, 140.66, 141.39, 145.48, 163.68, 167.29, 167.67, 174.03, 189.44. Найдено, %: С 58.45; H 4.03; N 9.74. С₂₈H₂₃BrN₄O₅. Вычислено, %: C 58.46; H 4.05; N 9.73.

Этил-(E)-2-амино-5-[2-(4-хлорфенил)-2-оксоэтилиден]-4-оксо-1-[2-(фениламино)бензамидо]-4,5-дигидро-1H-пиррол-3-карбоксилат (2κ). Выход 1.37 г (58%), светло-оранжевые кристаллы, т. пл. 235–237°С (этанол). ИК спектр, v, см⁻¹: 3238, 1753, 1656, 1594. Спектр ЯМР ¹Н (ДМСО- d_6), δ , м. д.: 1.26 т (3H, Me, J=7.1 Гц), 4.19 к

(2H, CH₂, J = 7.0 Гц), 6.65 с (1H, CH), 7.29 м (9H, H_{Ar}), 8.47 уш. с (1H, NH), 9.14 с (2H, 2NH), 9.21 уш. с (1H, NH), 10.96 уш. с (1H, NH). Найдено, %: С 63.34; H 4.37; N 10.55. $C_{28}H_{23}ClN_4O_5$. Вычислено, %: С 63.35; H 4.38; N 10.56.

2-Амино-1-бензамидо-5-(3,3-диметил-2оксобутилиден)-4-оксо-4,5-дигидро-1*H*-пиррол-**3-карбоксамид (2л).** Выход 0.92 г (52%), желтые кристаллы, т. пл. 230–231°С (AcOH). ИК спектр, v. см⁻¹: 3408, 3318, 3204, 1679, 1648, 1591, Спектр ЯМР 1 Н (ДМСО- d_{6}), δ , м. д.: 1.02 с (9H, 3 Me), 6.42 с (1Н, СН), 7.01 уш. с (1Н, NН), 7.34 уш. с (1H, NH), 7.65 m (5H, H_{Ar}), 8.70 ym. c (1H, NH), 9.15 c (1H, NH), 10.86 c (1H, NH). Спектр ЯМР ¹³С (ДМСО- d_6), δ_C , м. д.: 25.98, 87.47, 101.80, 128.02, 128.05, 131.16, 132.08, 141.20, 164.90, 165.52, 167.01, 179.99, 204.57. Масс-спектр, m/z ($I_{\text{отн}}$, %): 356 (74.7) $[M]^+$, 300 (19.2) $[M - 2CO]^+$, 299 (38.9) $[M - t\text{-BuCO}]^+$, 282 (23.7) $[M - 2\text{CO} - \text{H}_2\text{O}]^+$, 105 (100.0) [PhCO]+, 77 (20.9) [Ph]+. Найдено, %: С 60.66; H 5.66; N 15.72. $C_{18}H_{20}N_4O_4$. Вычислено, %: C 60.65; H 5.64; N 15.73.

2-Амино-1-бензамидо-4-оксо-5-(2-оксо-2-фенилэтилиден)-4,5-дигидро-1*H*-пиррол-3-карбоксамид (2м). Выход 1.1 г (59%), желтые кристаллы, т. пл. 235–237°С (АсОН). ИК спектр, v, см⁻¹: 3441, 3398, 3290, 1699, 1666, 1619. Спектр ЯМР 1 Н (ДМСО- 4 д), 5 д, м. д.: 6.75 с (1H, CH), 7.12 с (1H, NH), 7.65 м (11H, Ar + NH), 8.73 с (1H, NH), 9.26 с (1H, NH), 11.04 с (1H, NH). Найдено, %: С 63.83; H 4.29; N 14.89. 2 С 2 0H 1 6N4O4. Вычислено, %: С 63.84; H 4.28; N 14.87.

2-Амино-1-бензамидо-5-(2-(нафталин-1-ил)-2-оксоэтилиден)-4-оксо-4,5-дигидро-1*Н***-пиррол-3-карбоксамид (2н).** Выход 1.28 г (60%), желтые кристаллы, т. пл. 260–262°С (АсОН). ИК спектр, v, см⁻¹: 3406, 3337, 3206, 1701, 1679, 1628. Спектр ЯМР ¹H (ДМСО- d_6), δ , м. д.: 6.69 с (1H, CH), 7.06 с (1H, NH), 7.70 м (13H, H_{Ar}), 8.80 уш. с (1H, NH), 9.25 уш. с (1H, NH), 11.11 с (1H, NH), 11.86 уш. с (1H, NH). Спектр ЯМР ¹³С (ДМСО- d_6), δ _C, м. д.: 20.90, 87.64, 105.46, 124.71, 125.01, 126.27, 127.59, 127.90, 128.38, 129.27, 129.85, 130.95, 131.89, 132.96, 133.26, 134.99, 141.26, 165.30, 165.54, 166.96, 171.82, 176.00, 192.63. Найдено, %: С 67.60; H 4.25; N 13.14. $C_{24}H_{18}N_4O_4$. Вычислено, %: С 67.62; H 4.26; N 13.15.

2-Амино-5-(3,3-диметил-2-оксобутилиден)-4-оксо-1-[2-(фениламино)бензамидо]-4,5дигидро-1*H*-пиррол-3-карбоксамид (20). Выход 1.2 г (50%), белые кристаллы, т. пл. 265–267°С (этанол). ИК спектр, v, см $^{-1}$: 3450, 3310, 1685, 1647, 1598. Спектр ЯМР 1 H (ДМСО- d_{6}), δ , м. д.: 1.14 с (9H, 3 Me), 6.39 с (1H, CH), 6.46 с (1H, CH), 7.37 м (9H, H $_{Ar}$), 7.11 с (1H, NH), 7.13 с (1H, NH), 7.77 с (1H, NH), 7.79 с (1H, NH), 7.92 с (1H, NH), 7.94 с (1H, NH). Масс-спектр, m/z (I_{OTH} , %): 447 (100.0) [M] $^{+}$, 196 (74.0) [2PhNHC $_{6}$ H $_{4}$ CO)] $^{+}$, 168 (5.5) [2PhNHC $_{6}$ H $_{4}$)] $^{+}$. Найдено, %: C 64.42; H 5.63; N 15.65. С $_{24}$ H $_{25}$ N $_{5}$ O $_{4}$. Вычислено, %: С 64.43; H 5.62; N 15.66.

2-Амино-4-оксо-5-(2-оксо-2-метил-фенилэтилиден)-1-[2-(фениламино)бензамидо]-4,5-дигидро-1*Н***-пиррол-3-карбоксамид (2п).** Выход 1.06 г (50%), желтые кристаллы, т. пл. 238–240°С (этанол). ИК спектр, v, см $^{-1}$: 3479, 3344, 1666, 1601. Спектр ЯМР 1 Н (ДМСО- 2 d₆), δ , м. д.: 2.24 с (3H, Me), 6.70 с (1H, CH), 7.27 м (9H, H_{Ar}), 8.69 уш. с (1H, NH), 9.11 уш. с (2H, 2NH), 10.70 уш. с (1H, NH). Найдено, %: С 67.35; Н 4.81; N 14.54. С $_{27}$ Н $_{23}$ N $_{5}$ О $_{4}$. Вычислено, %: С 67.36; Н 4.82; N 14.56.

2-Амино-1-бензамидо-5-(3,3-диметил-2-оксо-бутилиден)-4-оксо-1-*N***-(***n***-толил)-4,5-дигидро-1***H***-пиррол-3-карбоксамид (2р).** Выход 1.72 г (77%), желтые кристаллы, т. пл. 178–180°С (АсОН). Спектр ЯМР ¹H (ДМСО- d_6), δ , м.д.: 0.98 с (9H, 3Me), 2.28 с (3H, Me), 6.51 с (1H, CH), 7.14 д (2H, H_{Ar}, J = 8.1 Γ ц), 7.50 д (2H, H_{Ar}, J = 8.1 Γ ц), 7.57 м (3H, H_{Ar}), 7.94 д (2H, H_{Ar}, J = 7.5 Γ ц), 8.77 уш. с (1H, NH), 9.39 с (1H, NH), 9.99 с (1H, NH), 10.94 с (1H, NH). Спектр ЯМР ¹³С (ДМСО- d_6), δ _С, м. д.: 20.29, 25.96, 87.90, 102.55, 118.95, 128.02, 128.10, 128.78, 129.23, 131.13, 131.82, 132.11, 136.08, 140.73, 161.90, 164.94, 166.51, 176.16, 204.48. Найдено, %: C 67.25; H 5.87; N 12.55. C_{25} H₂₆N₄O₄. Вычислено, %: C 67.26; H 5.88; N 12.56.

N-[5-Амино-4-циано-3-оксо-2-(2-око-2-фенилэтилиден)-2,3-дигидро-1H-пиррол-1-ил]-бензамид (2c). Выход 0.89 г (50%), бесцветные кристаллы, т. пл. 261–263°С (АсОН). Спектр ЯМР 1 Н (ДМСО- d_6), δ , м. д.: 6.75 с (1H, CH), 7.57 м (10H, Ar), 9.12 уш. с (1H, NH), 9.49 уш. с (1H, NH), 11.04 с (1H, NH). Спектр ЯМР 13 С (ДМСО- d_6), δ С, м. д.: 66.28, 103.81, 113.83, 127.86, 127.90, 128.27, 128.55, 130.95, 132.00, 133.39, 136.82, 140.18, 165.30, 165.97, 176.42, 189.92. Найдено, %: С

67.03; H 3.94; N 15.63. С $_{20}$ Н $_{14}$ N $_{4}$ О $_{3}$. Вычислено, %: С 67.04; H 3.95; N 15.64.

N-{5-Амино-4-циано-3-оксо-2-[2-оксо-2-(n-толилэтилиден)-2,3-дигидро-1H-пиррол-1-ил]}-бензамид (2т). Выход 0.95 г (60%), бесцветные кристаллы, т. пл. 258–260°С (АсОН). Спектр ЯМР 1 H (ДМСО- d_6), δ , м. д.: 2.32 с (1H, Me), 6.72 с (1H, CH), 7.22 д (2H, H_{Ar}, J = 7.9 Гц), 7.42 м (2H, H_{Ar}), 7.54 м (1H, H_{Ar}), 7.63 д (2H, H_{Ar}, J = 8.2 Гц), 7.67 д (2H, H_{Ar}, J = 7.9 Гц), 9.08 уш. с (1H, NH), 9.48 уш. с (1H, NH), 11.05 с (1H, NH). Спектр ЯМР 13 С (ДМСО- d_6), δ _С, м. д.: 21.07, 66.23, 104.09, 113.90, 127.83, 127.90, 128.89, 128.44, 129.10, 130.90, 131.99, 134.34, 139.91, 143.99, 165.24, 165.88, 176.45, 189.49. Найдено, %: С 67.73; H 4.33; N 15.05. C_{21} H $_{16}$ N $_4$ O $_3$. Вычислено, %: С 67.72; H 4.34; N 15.06.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Рубцов А.Е., Алиев З.Г., Майорова О.А.* // ЖОрХ. 2010. Т. 46. № 6. С. 932; *Rubtsov A.E., Aliev Z.G., Maiorova O.A.* // Russ. J. Org. Chem. 2010. N 6. P.933. doi 10.1134/s107042801006028x
- 2. Харитонова С.С., Игидов Н.М., Захматов А.В., Рубцов А.Е. // ЖОрХ. 2013. Т. 49. № 2. С. 252; Kharitonova S.S., Igidov N.M., Zakhmatov A.V., Rubtsov A.E. // Russ. J. Org. Chem. 2013. Vol. 49. N 2. P. 243. doi 10.1134/s1070428013020115
- 3. Игидов Н.М., Захматов А.В., Рубцов А.Е. // ЖОрХ. 2016. Т. 52. № 7. С. 981; Igidov N.M., Zakhmatov A.V., Rubtsov A.E. // Russ. J. Org. Chem. 2016. Vol. 52. N 7. P. 974. doi 10.1134/s1070428016070083
- 4. Зыкова С.С., Бойчук С.В., Игидов Н.М., Одегова Т.Ф.,

- Захматов А.В., Галембикова А.Р., Рамазанов Б.Р. А. с. 2605091 (2016) // Б. И. 2016. № 34.
- 5. Игидов Н.М., Зыкова С.С., Киселев М.А. А. с. 2607920 (2017) // Б. И. 2017. № 2.
- 6. Зыкова С.С., Игидов Н.М., Захматов А.В., Киселев М.А., Галембикова А.Р., Хуснутдинов Р.Р., Родин, И.А. // Хим.-фарм. ж. 2018. Т. 52. № 3. С. 10; Zykova S.S., Igidov N.M., Zakhmatov A.V., Kiselev М.А., Galembikova A.R., Khusnutdinov R.R., Rodin I.A. // Pharm. Chem. J. 2018. Vol. 52. № 3. Р. 198. doi 10.1007/s11094-018-1790-9
- 7. Зыкова С. С., Галембикова А.Р., Рамазанов Б.Р., Одегова Т.Ф., Игидов Н.М., Киселев М.А., Бойчук С.В. // Хим.-фарм. ж. 2015. Т. 49. № 12. С. 19; Zykova S.S., Galembikova A.R., Ramazanov B.R., Odegova T.F., Igidov N.M., Kiselev M.A., Boichuk S.V. // Pharm. Chem. J. 2016. Vol. 49. № 12. Р. 817. doi 10.1007/s11094-016-1378-1
- 8. Зыкова С.С., Даровских А.А., Одегова Т.Ф., Киселев М.А., Игидов Н.М. // Хим.-фарм. ж. 2015. Т. 49. № 10. С. 15; Zykova S.S., Darovskikh A.A., Odegova T.F., Kiselev M.A., Igidov N.M. // Pharm. Chem. J. 2016. Vol. 49. N 10. P. 657. doi 10.1007/s11094-016-1347-8
- 9. Зыкова С.С., Игидов Н.М., Киселев М.А., Бойчук С.В., Галембикова А.Р., Загулова Д.В. // Здоровье и образование в XXI веке. 2016. Т. 18. № 7. С. 121.
- 10. CrysAlisPro, Agilent Technologies, Version 1.171.37.33 (release 27-03-2014 CrysAlis171 .NET).
- Sheldrick G.M. // Acta Crystallogr. (A). 2008. Vol. 64.
 P. 112. doi 10.1107/S0108767307043930
- Sheldrick G.M. // ActaCrystallogr. (C). 2015. Vol. 71.
 P. 3. doi 10.1107/S2053229614024218
- Dolomanov O.V., Bourhis L.J., Gildea R.J, Howard J.A.K., Puschmann H. J. // Appl. Cryst. 2009.
 Vol. 42. P. 339. doi 10.1107/S0021889808042726

Synthesis of New 2-Aminopyrrole Derivatives By Reaction of Furan-2,3-diones 3-Acylhydrazones with CH-Nucleophiles

I. A. Kizimova^{a,*}, N. M. Igidov^a, M. A. Kiselev^a, M. V. Dmitriev^b, S. V. Chashchina^{a,b}, and A. I. Siutkina^a

^a Perm State Pharmaceutical Academy of the Ministry of Health of the Russian Federation, Perm, 614990 Russia

^b Perm State National Research University, Perm, 614068 Russia

*e-mail: icekingakiratotsuka@gmail.com

Received July 8, 2019; revised July 8, 2019; accepted July 11, 2019

Recyclization of furan-2,3-diones acylhydrazones under the action of esters, amides and nitriles of cyanoacetic acids gave the corresponding esters, amides and nitriles of 2-amino-1-R-4-oxo-5- (2-oxo-2-aryl/*tert*-butylethylidene)-4,5-dihydro-1*H*-pyrrole-3-carboxylic acids.

Keywords: 2-amino-1-R-4-oxo-5-(2-oxo-2-aryl/*tert*-butylethylidene)-4,5-dihydro-1*H*-pyrrole-3-carboxylic acids derivatives, furan-2,3-diones acylhydrazones, recyclization