УДК 547.816:535.37

СИНТЕЗ, СПЕКТРАЛЬНО-ЛЮМИНЕСЦЕНТНЫЕ И ИОНОХРОМНЫЕ СВОЙСТВА ИМИНОВ И ГИДРАЗОНОВ 9-ГИДРОКСИ-1-МЕТИЛ-3-ОКСО-*ЗН*-БЕНЗО[*f*]ХРОМЕН-8-КАРБАЛЬДЕГИДА

© 2020 г. О. Г. Николаева^{*a*}, О. Ю. Карлутова^{*a*}, А. Д. Дубоносов^{*b*,*}, В. А. Брень^{*a*}, В. И. Минкин^{*a*}

^а Научно-исследовательский институт физической и органической химии Южного федерального университета, Ростов-на-Дону, 344090 Россия

> ^b Федеральный исследовательский центр «Южный научный центр Российской академии наук», пр. Чехова 41, Ростов-на-Дону, 344006 Россия *e-mail: aled@ipoc.sfedu.ru

> > Поступило в Редакцию 28 июня 2019 г. После доработки 4 июля 2019 г. Принято к печати 4 июля 2019 г.

Синтезированы имины и гидразоны 9-гидрокси-1-метил-3-оксо-3*H*-бензо[*f*]хромен-8-карбальдегида. По данным ЯМР ¹Н и УФ спектроскопии, имины существуют в виде кето-изомеров, тогда как ароилгидразоны – полифункциональные ионохромные соединения, находящиеся в енольной таутомерной форме, образуют окрашенные комплексы как с катионами *d*-металлов, так и с фторид-, цианид- и ацетат-анионами. Комплексообразование приводит к переключению оптических и флуоресцентных свойств исходных соединений: катионы металлов вызывают видимое изменение окраски раствора с бесцветной на ярко-оранжевую и тушение исходной флуоресценции, а анионы – видимое изменение окраски раствора с бесцветной на красную, а также батохромный сдвиг и увеличение интенсивности эмиссии.

Ключевые слова: бензо[f]хромен, кумарины, ионохромные свойства, флуоресценция, naked-eye эффект

DOI: 10.31857/S0044460X20020055

Замещенные кумарины широко исследуются в плане их биологической активности [1–4], благодаря ценным фотофизическим свойствам они нашли применение в качестве элементов молекулярных переключателей, лазерных красителей, светоизлучающих устройств, хемо- и биосенсоров [5–8]. Бензо[*f*]кумарины и их производные исследованы в относительно малой степени [9, 10].

Спектрально-люминесцентные свойства кумаринов в значительной мере зависят как от аннелирования различных циклов, так и от введения в структуру молекулы донорных или электроноакцепторных заместителей [11, 12]. В связи с этим мы разработали метод получения 9-гидрокси-1-метил-3-оксо-3*H*-бензо[*f*]хромен-8-карбальдегида, а также его иминов и гидразонов, которые потенциально способны к проявлению ионохромных и сенсорных свойств. Имеющиеся примеры сенсоров на основе бензоаннелированных кумаринов весьма немногочисленны [13, 14]. Гидроксиениминный фрагмент в синтезированных соединениях создает принципиальную возможность детектирования катионов металлов, а группа NH гидразонового заместителя может образовывать координационные связи с анионами [15–17]. Кроме того, полученные соединения представляют объект для исследования внутримолекулярной прототропной таутомерии.

НМТ - гексаметилентетрамин.

9-Гидрокси-1-метил-3*H*-бензо[*f*]хромен-3-он **1** получен по методу Пехмана конденсацией 2,7-дигидроксинафталина с ацетоуксусным эфиром в присутствии конц. H₂SO₄ [18, 19]. Его формилирование по реакции Даффа в уксусной кислоте приводит к 9-гидрокси-1-метил-3-оксо-3*H*-бензо[*f*]хромен-8-карбальдегиду **2** (схема 1).

Из данных спектроскопии ЯМР ¹Н следует, что формилирование соединения **1** протекает исключительно по положению 8. В спектре ЯМР ¹Н карбальдегида **2** присутствует группа сигналов протонов бензопиранонового фрагмента, идентичных сигналам соединения **1**: синглетные сигналы протонов H² и H¹⁰ при 6.40 и 8.84 м. д. соответственно и два дублетных сигнала протонов H⁵ и H⁶ при 8.25 и 7.25 м. д. Вместо дублетных сигналов протонов H⁷ и H⁸ наблюдается синглет протона H⁷ при 8.83 м. д.

Конденсацией карбальдегида 2 с *п*-толуидином или бензиламином в смеси пропан-2-ол–ДМФА (1:1) были получены имины **3а**, **б** (схема 2), которые, по данным ЯМР ¹Н (ДМСО-*d*₆), находятся преимущественно в виде кето-изомеров **А**. Синглетные сигналы протонов групп СН и NH енаминного фрагмента регистрируются в областях 9.28–9.48 и 13.78–15.93 м. д. соответственно.

Конденсация соединения 2 с гидразидами ароматических кислот в аналогичных условиях (схема 2) привела к образованию ароилгидразонов 4а–д. В ИК спектрах соединений 4 наблюдаются полосы колебаний карбонильных групп кумаринового и гидразонового фрагментов при 1701–1717 и 1643–1687 см⁻¹ соответственно, а также полосы С=N в области 1626–1629 см⁻¹.

В спектрах ЯМР ¹Н ароилгидразонов **4а**-д в ДМСО-d₆ при 9.28–9.42 и 12.02–12.26 м. д. про-

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 90 № 2 2020

являются два синглетных сигнала протонов групп СН и NH гидразонового фрагмента соответственно. Синглетный сигнал 9-гидроксигруппы кумаринового цикла наблюдается в области 12.45– 12.83 м. д. Эти данные свидетельствуют о нахождении ароилгидразонов **4а**–д в виде енольной таутомерной формы **Б** (схема 2).

Соединения **3** не проявляют сольватохромных свойств, в их электронных спектрах в ДМСО присутствуют максимумы в области 396–446 нм (табл. 1, рис. 1), характерные для кетоенаминных изомеров замещенных кумаринов [5]. Электронные спектры енольных форм ароилгидразонов **4** в ДМСО характеризуются более коротковолновыми полосами в диапазоне 330–380 нм (табл. 1).

Гидразоны 4 обладают флуоресценцией в области 497–502 нм с большой величиной сдвига Стокса (табл. 1, рис. 1), типичной для ESIPT (Excited-State Intramolecular Proton Transfer) систем, которая обусловлена быстрым внутримолекулярным $O \rightarrow N$ переносом протона в возбужденном состоянии [20, 21]. Соединения 3 демонстрируют в растворах малоинтенсивную эмиссию в спектральном диапазоне 460–510 нм. Спектры возбуждения флуорес-

Рис. 1. Спектры поглощения (1) и флуоресценции (2) соединения **4a** в ДМСО ($\lambda_{возб} = 330$ нм, $c = 2.0 \times 10^{-5}$ моль/л).

Таблица 1. Данные УФ спектроскопии и флуоресценции для иминов **3** и гидразонов **4** в ДМСО

№	λ _{max} , нм (ε, л·моль ^{-1.} см ⁻¹)	λ_{fl} , нм $(I,$ отн. ед.) ^a
3 a	340 (35200), 446 (8200)	510 (170)
36	318 (20400), 396 (7800)	460 (105)
4 a	333 (34400), 376 пл (16100)	497 (420)
46	334 (35500), 372 пл (17700)	498 (490)
4в	334 (35300), 374 пл (18000)	498 (520)
4Γ	330 (28400), 370 пл (15500)	496 (550)
4д	338 (30200), 380 пл (15200)	502 (560)

а $c = 2.0 \times 10^{-6}$ моль/л.

ценции соединений 3, 4 совпадают с их спектрами поглощения.

Добавление перхлоратов *d*-металлов к растворам соединений 4а-д в ДМСО приводит к появлению новых максимумов поглощения в видимой области спектра 420-440 нм (рис. 2). Во всех случаях наибольшая интенсивность полосы поглощения соответствует образующемуся комплексу ароилгидразона с катионом Zn²⁺ (табл. 2), при этом наблюдается контрастное изменение окраски с бесцветной на ярко-оранжевую [16, 22, 23]. Одновременно происходит практически полное тушение исходной флуоресценции раствора (для комплекса с катионом цинка вплоть до нулевых значений). Наблюдаемый усиленный хелатированием эффект тушения флуоресценции (CHEQ) в ениминных структурах обусловлен частичным или полным замещением протонов групп ОН ка-

Рис. 2. Электронные спектры поглощения ароилгидразона **46** в ДМСО ($c = 2.0 \cdot 10^{-5}$ моль/л) до (1) и после прибавления катионов Ni²⁺ (2), Co²⁺ (3) и Zn²⁺ (4) ($c = 4.0 \times 10^{-5}$ моль/л).

тионами металлов, приводящим к дезактивации внутримолекулярного переноса протона [21, 23]. В отличие от ароилгидразонов **4** имины **3** не проявляют сенсорной активности по отношению к ионам металлов.

Добавление фторид-, цианид- и ацетат-анионов в виде тетрабутиламмониевых солей к растворам ароилгидразонов **4а**–д в ДМСО приводит к появлению новых максимумов поглощения в видимой области спектра (рис. 3), причем в присутствии анионов F[–] наблюдается наиболее отчетливое изменение окраски с бесцветной на красную. Комплексообразование с ионами AcO[–], CN[–] приводит к батохромному сдвигу полосы испускания до 570 нм, с ионами F[–] – до 590 нм с одновременным увеличением интенсивности эмиссии (рис. 3). Анион наиболее вероятно координируется с атомом водорода группы NH гидразонового фрагмента [14, 17].

Рис. 3. Спектры поглощения и флуоресценции ароилгидразона **46** в ДМСО ($c = 2.0 \cdot 10^{-5}$ моль/л) до (1, 1') и после прибавления анионов AcO⁻ (2), CN⁻ (3, 3') и F⁻ (4, 4') ($c = 4.0 \times 10^{-5}$ моль/л).

При помощи метода изомолярных серий установлено, что ароилгидразоны **4**E образуют с катионами комплексы состава 2:1, а с анионами – комплексы состава 1:1. Предполагаемое строение образующихся комплексов показано на схеме 3.

Таким образом, имины 9-гидрокси-1-метил-3-оксо-3*H*-бензо[*f*]хромен-8-карбальдегида представляют собой кето-изомеры **A**, тогда как его ароилгидразоны находятся в енольной таутомерной форме **Б** и в качестве полифункциональных ионохромных соединений способны к образованию комплексов как с катионами *d*-металлов, так и с фторид-, цианид- и ацетат-анионами. Образование комплексов приводит к переключению оптических и флуоресцентных свойств исходных соединений: катионы металлов вызывают видимое невооруженным глазом изменение окраски раствора с бесцветной на ярко-оранжевую и тушение исходной флуоресценции, а анионы – изменение окра-

N₂	Pb ²⁺	Cd ²⁺	Cu ²⁺	Hg ²⁺	Ni ²⁺	Co ²⁺	Zn ²⁺
4 a	1.0	0.9	10.0	10.4	8.0	11.5	13.6
46	1.0	1.1	11.0	4.0	9.0	11.8	15.6
4в	1.0	1.0	11.0	9.0	9.6	11.6	14.4
4Γ	1.0	2.1	5.0	5.1	6.1	8.0	10.0
4д	1.0	1.0	12.4	9.0	9.4	12.2	15.0

Таблица 2. Относительное изменение интенсивности поглощения (A/A_0) соединений 4 ($\lambda = 430$ нм, $c = 2.0 \times 10^{-5}$ моль/л) в ДМСО при добавлении катионов ($c = 4.0 \times 10^{-5}$ моль/л)

ски раствора с бесцветной на красную, а также батохромный сдвиг и увеличение интенсивности эмиссии.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н получены на спектрометре Bruker DPX-250 (250 МГц) в ДМСО-d₆. В качестве внутреннего стандарта использовали остаточные сигналы протонов дейтерорастворителя. Колебательные спектры записаны на приборе Varian Excalibur 3100 FT-IR методом нарушенного полного внутреннего отражения с использованием кристалла ZnSe. Электронные спектры поглощения сняты на спектрофотометре Varian Cary 100, спектры люминесценции измерены на спектрофлуориметре Varian Cary Eclipse. Для приготовления растворов использовали ДМСО спектральной чистоты, перхлораты *d*-металлов и тетрабутиламмониевые соли (Aldrich). Растворы облучали ртутной лампой ДРШ-250 (250 Вт) с набором интерференционных светофильтров для выделения линий ртутного спектра в кварцевой кювете (l = 1 см). Температуры плавления определяли в стеклянных капиллярах на приборе ПТП (М). Элементный анализ выполняли классическим методом [24].

9-Гидрокси-1-метил-3*H*-бензо[*f*]хромен-3-он 1 получали по методике [19].

9-Гидрокси-1-метил-3-оксо-3*H***-бензо[***f***]хромен-8-карбальдегид (2). К горячему раствору 30 ммоль (6.39 г) соединения 1** в 60 мл ледяной уксусной кислоты прибавляли 70 ммоль (10 г) гексаметилентетрамина. Реакционную смесь нагревали на водяной бане 5 ч и добавляли 100 мл 20%-ной HCl. Полученный раствор нагревали 2 ч при 95°С, охлаждали до 25°С и добавляли 500 мл воды. Из реакционной смеси продукт реакции экстрагировали хлороформом (1×500 мл, 1×250 мл), экстракт промывали 125 мл насыщенного раствора NaCl и сушили безводным CaCl₂. Растворитель отгоняли при пониженном давлении. Остаток перекристаллизовывали из СН₂СООН. Выход 0.71 г (7.5%), светло-коричневые кристаллы, т. пл. 260-262°С (CH₂COOH). ИК спектр, v, см⁻¹: 1712, 1686, 1621, 1573, 1512. Спектр ЯМР ¹Н (ДМСО-*d*₆), б, м. д. (*J*, Гц): 2.49 с (3Н, Ме), 6.40 с (1Н, Н²), 7.25 д (1Н, H⁶, J = 9.1), 8.25 д (1H, H⁵, J = 9.1), 8.83 c (1H, H⁷), 8.84 c (1H, H¹⁰), 10.69 c (1H, CHO), 12.19 c (1Н, ОН). Найдено, %: С 70.72; Н 3.85. С₁₅Н₁₀О₄. Вычислено, %: С 70.86; Н 3.96.

Общая методика синтеза иминов 9-гидрокси-1-метил-3-оксо-3*H*-бензо[*f*]хромен-8-карбальдегида (3а, б). К раствору 1 ммоль (0.254 г) альдегида 2 в 30 мл смеси *i*-PrOH–ДМФА (1:1) прибавляли 1 ммоль соответствующего амина. Реакционную смесь кипятили 2.5 (3а) или 11 ч (3б). Осадок отфильтровывали и перекристаллизовывали из смеси *i*-PrOH–ДМФА, 1:1.

1-Метил-8-{[(4-метилфенил)амино]метилиден}-3H-бензо[f]хромен-3,9(8H)-дион (3а). Выход 0.08 г (46%), оранжево-желтый порошок, т. пл. 290–292°С (*i*-PrOH–ДМФА, 1:1). ИК спектр, v, см⁻¹: 3266, 3025, 3005, 2920, 2856, 1709, 1624, 1595, 1542, 1515. Спектр ЯМР ¹Н (ДМСО-*d*₆), δ, м. д. (*J*, Гц): 2.33 с (3H, Me), 2.49 с (3H, Me), 6.30 с (1H, H²), 6.79 д (1H, H⁵, J = 9.3), 7.29 д (2H, ArH, J = 8.4), 7.59 д (2H, ArH, J = 8.1), 7.91 д (1H, H⁶, J = 9.3), 8.08 с (1H, H¹⁰), 8.34 с (1H, H⁷), 9.49 д (1H, CH, J = 9.0), 15.93 д (1H, NH, J = 8.7). Найдено, %: С 76.79; H 4.82; N 4.16. С₂₂H₁₇NO₃. Вычислено, %: С 76.95; H 4.99; N 4.08.

8-[(Бензиламино)метилиден]-1-метил-3*H*бензо[*f*]хромен-3,9(8*H*)-дион (36). Выход 0.13 г (56%), темно-желтый порошок, т. пл. 268–270°С (*i*-PrOH–ДМФА, 1:1). ИК спектр, v, см⁻¹: 3256, 3022, 2989, 2918, 2854, 1706, 1625, 1595, 1546, 1518. Спектр ЯМР ¹H (ДМСО-*d*₆), δ, м. д. (*J*, Гц): 2.60 с (3H, Me), 4.86 д (2H, CH₂, *J* = 5.3), 6.28 с (1H, H²), 6.64 д (1H, H⁵, *J* = 9.5), 7.39 с (1H, ArH), 7.40–7.44 м (4H, ArH), 7.82 д (1H, H⁶, *J* 9.5), 7.99 с (1H, H¹⁰), 8.04 с (1H, H⁷), 9.28 д (1H, CH, *J* 11.3), 13.78 уш. с (1H, NH). Найдено, %: С 76.80; H 4.80; N 4.12. С₂₂H₁₇NO₃. Вычислено, %: С 76.95; H 4.99; N 4.08.

Общая методика синтеза ароилгидразонов 9-гидрокси-1-метил-3-оксо-3*H*-бензо[*f*]хромен-8-карбальдегида (4а–д). Смесь 1 ммоль (0.254 г) альдегида 2 и 1 ммоль соответствующего гидразида ароматической кислоты в 20 мл смеси *i*-PrOH– ДМФА (1:1) кипятили 1.5 ч. Выпавший осадок отфильтровывали, промывали *i*-PrOH и перекристаллизовывали из ДМФА.

N-**[(9-Гидрокси-1-метил-3-оксо-***3H*-бензо[*f*]хромен-8-ил)метилиден]бензогидразид (4а). Выход 0.12 г (63%), желтоватый порошок, т. пл. >300°С (ДМФА). ИК спектр, v, см⁻¹: 3277, 3214, 3057, 2952, 2853, 1701, 1770, 1680, 1628, 1582, 1551. Спектр ЯМР ¹Н (ДМСО-*d*₆), δ, м. д. (*J*, Гц): 2.49 с (3H, Me), 6.42 с (1H, H²), 6.27 д (1H, H⁵, *J* = 9.0 Гц), 7.55–7.64 м (3H, ArH), 7.94–7.99 м (2H, ArH), 8.10 д (1H, H⁶, *J* = 9.0), 8.30 с (1H, H¹¹), 8.39 с (1H, H⁷), 9.39 с (1H, CH), 12.17 уш. с (1H, NH), 12.56 уш. с (1H, OH). Найдено, %: С 70.88; H 4.25; N 7.63. С₂₂H₁₆N₂O₄. Вычислено, %: С 70.96; H 4.33; N 7.52.

*N***-**[(9-Гидрокси-1-метил-3-оксо-3*H*-бензо[*f*]хромен-8-ил)метилиден]-4-метоксибензогидразид (46). Выход 0.12 г (59%), желтоватый порошок, т. пл. >300°С (ДМФА). ИК спектр, v, см⁻¹: 3206, 3027, 3005, 2942, 2848, 1705, 1687, 1626, 1606, 1578, 1536, 1505. Спектр ЯМР ¹Н (ДМСО-*d*₆), δ, м. д. (*J*, Гц): 2.49 с (3H, Me), 3.85 с (3H, OMe), 6.42

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 90 № 2 2020

с (1H, H²), 7.12 д (2H, ArH, J = 9.0), 7.26 д (1H, H⁵, J = 9.0), 7.97 д (2H, ArH, J = 8.7), 8.10 д (1H, H⁶, J = 9.0), 8.25 с (1H, H¹¹), 8.39 с (1H, H⁷), 9.37 с (1H, CH), 12.02 с (1H, NH), 12.83 с (1H, OH). Найдено, %: С 68.56; H 4.43; N 7.03. C₂₃H₁₈N₂O₅. Вычислено, %: С 68.65; H 4.51; N 6.96.

N'-[(9-Гидрокси-1-метил-3-оксо-3*H*-бензо[*f*]хромен-8-ил)метилиден]бифенил-4-карбогидразид (4в). Выход 0.17 г (74%), желтоватый порошок, т. пл. 290–292°С (ДМФА). ИК спектр, v, см⁻¹: 3198, 3059, 3029, 2953, 2918, 2854, 1750, 1707, 1644, 1629, 1575, 1536. Спектр ЯМР ¹Н (ДМСО-*d*₆), δ, м. д. (*J*, Гц): 2.49 с (3H, Me), 6.42 с (1H, H²), 7.28 д (1H, H⁵, Гц, *J* = 9.0), 7.44 д (1H, ArH, *J* = 7.2), 7.51 т (2H, ArH, *J* = 7.8), 7.78 д (2H, ArH, *J* = 7.2), 7.91 т (2H, ArH, *J* = 8.4, 9.0), 8.10 д (3H, 2ArH + H⁶), 8.33 с (1H, H¹¹), 8.40 с (1H, H⁷), 9.42 с (1H, CH), 12.18 уш. с (1H, NH), 12.45 уш. с (1H, OH). Найдено, %: С 74.88; H 4.39; N 6.37. С₂₈H₂₀N₂O₄. Вычислено, %: С 74.99; H 4.50; N 6.25.

N-**[(9-Гидрокси-1-метил-3-оксо-3***H***-бензо[***f***]хромен-8-ил)метилиден]нафталин-1-карбогидразид (4г). Выход 0.14 г (65%), желтоватый порошок, т. пл. >300°С (ДМФА). ИК спектр, v, см⁻¹: 3163, 2949, 2931, 2909, 2853, 1853, 1717, 1627, 1591, 1512. Спектр ЯМР ¹Н (ДМСО-***d***₆), δ, м.д. (***J***, Гц): 2.49 с (3H, Me), 6.41 с (1H, H²), 7.28 д (1H, H⁵,** *J* **= 9.0), 7.59–7.68 м (3H, ArH), 7.86 д (1H, ArH,** *J* **= 6.9), 7.94 с (1H, ArH), 8.05 д (1H, H⁶,** *J* **= 9.0), 8.12 т (2H, ArH,** *J* **= 9.9), 8.32 с (1H, H¹¹), 8.38 с (1H, H⁷), 9.28 с (1H, CH), 12.25 уш. с (1H, NH), 12.65 уш. с (1H, OH). Найдено, %: С 73.77; Н 4.15; N 6.55. С₂₆Н₁₈N₂O₄. Вычислено, %: С 73.92; Н 4.29; N 6.63.**

N-[(9-Гидрокси-1-метил-3-оксо-3*H*-бензо[*f*]хромен-8-ил)метилиден]-6-метоксинафталин-2-карбогидразид (4д). Выход 0.14 г (61%), желтоватый порошок, т. пл. >300°С (ДМФА). ИК спектр, v, см⁻¹: 3219, 3032, 2952, 2912, 2855, 1748, 1706, 1643, 1629, 1577, 1537. Спектр ЯМР ¹Н (ДМСО- d_6), δ, м.д. (*J*, Гц): 2.49 с (3H, Me), 3.92 с (3H, OMe), 6.42 с (1H, H²), 7.25–7.30 м (2H, ArH, H⁵), 7.43 с (1H, ArH), 7.94–8.02 м (3H, ArH), 8.11 д (1H, H⁶, *J* = 9.0), 8.31 с (1H, H¹¹), 8.39 с (1H, H⁷), 8.53 с (1H, ArH), 9.42 с (1H, CH), 12.21 уш. с (1H, NH), 12.78 уш. с (1H, OH). Найдено, %: С 71.58; H 4.33; N 6.25. С₂₇H₂₀N₂O₅. Вычислено, %: С 71.67; H 4.46; N 6.19.

ФОНДОВАЯ ПОДДЕРЖКА

Работа выполнена в рамках базовой части государственного задания РФ в сфере научной деятельности (проект № 4.6497.2017/8.9, задание № 4.5593.2017/6.7) и государственного задания Южного научного центра РАН № 01201354239.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Advances in Structure and Activity Relationship of Coumarin Derivatives / Ed. S. Penta. Amsterdam: Elsevier-Academic Press, 2015. 190 p.
- Coumarins: Biology, Applications and Mode of Action / Eds. R.O. Kennedy, R.D. Thornes. Chichester: Wiley, 1997. 360 p.
- Calcio Gaudino E., Tagliapietra S., Martina K., Palmisano G., Cravotto G. // RSC Adv. 2016. Vol. 6. P. 46394. doi 10.1039/C6RA07071J
- Medina F.G., Marrero J.G., Macias-Alonso M., González M.C., Córdova-Guerrero I., Teissier García A.G., Osegueda-Robles S. // Nat. Prod. Rep. 2015. Vol. 32. N 10. P. 1472. doi 10.1039/c4np00162a
- Дубоносов А.Д., Николаева О.Г., Тихомирова К.С., Брень В.А. Кумарины: Химия и биологическая активность / Под ред. В.Г. Карцева. М.: ICSPF Press, 2019. С. 111.
- Yamaji M., Hakoda Y., Okamoto H., Tani F. // Photochem. Photobiol. Sci. 2017. Vol. 12. N 4. P. 555. doi 10.1039/c6pp00399k
- Al-Masoudi N.A., Al-Salihi N.J., Marich Y.A., Markus T. // J. Fluoresc. 2015. Vol. 25. N 6. P. 1847. doi 10.1007/ s10895-015-1677-z
- Nazir R., Stasyuk A.J., Gryko D.T. // J. Org. Chem. 2016.
 Vol. 81. N 22. P. 11104. doi 10.1021/acs.joc.6b02094
- Осянин В.А., Осипов Д.В., Попова Ю.В., Семенова И.А., Климочкин Ю.Н. // ХГС. 2016. № 12. С. 1012; Osyanin V.A., Osipov D.V., Popova Y.V., Semenova, Y.N. Klimochkin // Chem. Heterocycl. Compd. 2016. Vol. 52. N 12. P. 1012. doi 10.1007/s10593-017-2001-4

- Kim D., Xuan Q.P., Moon H., Jun Y.W., Ahn K.H. // Asian J. Org. Chem. 2014. Vol. 3. N 10. P. 1089. doi 10.1002/ajoc.201402107
- Kotchapadist P., Prachumrak N., Sunonnam T., Namuangruk S., Sudyoadsuk T., Keawin T., Jungsuttiwong S., Promarak V. // Eur. J. Org. Chem. 2015. Vol. 2015. N 3. P. 496. doi 10.1002/ejoc.201402680
- Liu X., Cole J.M., Waddell P.G, Tze-Chia L., Jignesh R., Zeidler A. // J. Phys. Chem. (A). 2012. Vol. 116. N 1. P. 727. doi 10.1021/jp209925y
- Roy N., Dutta A., Mondal P., Paul P.C., Singh T.S. // Sens. Actuators (B). 2016. Vol. 236. N 29. P. 719. doi 10.1016/j.snb.2016.06.061
- Николаева О.Г., Ревинский Ю.В., Тихомирова К.С., Дмитриева О.И., Дубоносов А.Д., Брень В.А. // Наука Юга России. 2018. Т. 14. № 2. С. 14. doi 10.23885/2500-0640-2018-14-2-14-19
- Kaur B., Kaur N., Kumar S. // Coord. Chem. Rev. 2018.
 Vol. 358. P. 13. doi 10.1016/j.ccr.2017.12.002
- Gale P.A., Caltagirone C. // Coord. Chem. Rev. 2018. Vol. 354. P. 2. doi 10.1016/j.ccr.2017.05.003
- Kaur N., Kaur G., Fegade U.A., Singh A., Sahoo S.K., Kuwar A.S., Singh N. // Trends Anal. Chem. 2017. Vol. 95. P. 86. doi 10.1016/j.trac.2017.08.003
- Wolfbeis O.S. // Monatsh. Chem. 1978. Bd. 109. N 6.
 S. 905. doi 10.1007/BF00906054
- Tao Z.-F., Qian X., Fan M. // Tetrahedron. 1997. Vol. 53.
 N 39. P. 13329. doi 10.1016/S0040-4020(97)00845-4
- Kwon J.E., Park S.Y. // Adv. Mater. 2011. Vol. 23. N 32.
 P. 3615. doi 10.1002/adma.201102046
- Zhao J., Ji S., Chen Y., Guo H., Yang P. // Phys. Chem. Chem. Phys. 2012. Vol. 14. P. 8803. doi 10.1039/ C2CP23144A
- Anslyn E.V., Wang B. Chemosensors: Principles, Strategies, and Applications. Hoboken: Wiley, 2011. 540 p.
- Dubonosov A.D., Bren V.A., Minkin V.I. Tautomerism: Concepts and Applications in Science and Technology / Ed. L. Antonov. Weinheim: Wiley-VCH, 2016. P. 229.
- Гельман Н.Э., Терентьева Н.А., Шанина Г.М., Кипаренко Л.М., Резл В. Методы количественного органического элементного микроанализа. М.: Химия, 1987.

Synthesis, Spectral-Luminescent and Ionochromic Properties of Imines and Hydrazones of 9-Hydroxy-1-methyl-3-oxo-3*H*benzo[*f*]chromene-8-carbaldehyde

O. G. Nikolaeva^a, O. Yu. Karlutova^a, A. D. Dubonosov^{b,*}, V. A. Bren^a, and V. I. Minkin^a

^a Institute of Physical and Organic Chemistry, Southern Federal University, Rostov-on-Don, 344090 Russia ^b Federal Research Center Southern Scientific Center of the Russian Academy of Sciences, Rostov-on-Don, 344006 Russia *e-mail: aled@ipoc.sfedu.ru

Received June 28, 2019; revised July 4, 2019; accepted July 4, 2019

Imines and hydrazones of 9-hydroxy-1-methyl-3-oxo-3*H*-benzo[*f*]chromene-8-carbaldehyde were synthesized. According to ¹H NMR and UV spectroscopy data imines are keto isomers, whereas aroylhydrazones exist in the enol tautomeric form. Aroylhydrazones represent multifunctional ionochromic compounds capable to form colored complexes with *d*-metals cations and fluoride, cyanide and acetate anions. Complexation results in the switching of optical and fluorescent properties of the initial compounds: metal cations cause "naked-eye" effect with a change in the solution color from colorless to bright orange and quenching the initial fluorescence, and anions lead to naked-eye effect with a change in the solution color from color from color from colorless to red, coupled with a bathochromic shift and increase in the emission intensity.

Keywords: benzo[f]chromene, coumarins, ionochromic properties, fluorescence, naked-eye effect