УДК 547.563.1;547.566

ПРЕНИЛИРОВАНИЕ 4-МЕТИЛФЕНОЛА

© 2020 г. И. Ю. Чукичева*, И. В. Федорова, Т. А. Колегова, А. В. Кучин

Институт химии Федерального исследовательского центра «Коми научный центр Уральского отделения Российской академии наук», ул. Первомайская 48, Сыктывкар, 167000 Россия *e-mail: chukichevaiy@mail.ru

> Поступило в Редакцию 25 июля 2019 г. После доработки 25 июля 2019 г. Принято к печати 6 августа 2019 г.

Изучены органоалюминиевые (фенолят алюминия и изопропилат алюминия) и кислотные гетерогенные катализаторы (цеолиты Ц-10, Ц-100 и ZSM, монтмориллонит KSF, сульфокатиониты Фибан K-1 и Amberlist 36 Dry) в реакции алкилирования 4-метилфенола пренолом. Выявлены эффективные катализаторы и условия для синтеза 4-метил-2-пренилфенола, 2,6-дипренил-4-метилфенола, хромана.

Ключевые слова: 4-метилфенол, пренол, катализаторы, алкилирование

DOI: 10.31857/S0044460X20030038

Пренилированные фенолы образуют группу природных соединений и участвуют во многих биологических процессах. Они проявляют широкий спектр фармакологической активности, в том числе противовоспалительную, противоопухолевую, противогрибковую, обладают анти-ВИЧ действием, являются сильными фитоэстрогенами [1–4].

Как правило, *орто*-пренилированные фенолы синтезируют алкилированием по реакции Фриделя–Крафтса, перегруппировкой Кляйзена, путем анионного алкилирования, направленного *орто*-металлирования и реакцией обмена металл-галоген [5–10]. Для синтеза пренилированных соединений в качестве катализаторов используют сильные кислоты Бренстеда, кислоты Льюиса, в том числе в среде ионной жидкости, глины, мезопористые алюмосиликаты. В присутствии этих катализаторов возможно селективное образование 4-метил-2-пренилфенола (69–88%) и производных хромана (бензопирана) (78%), однако для их получения требуются длительное время реакции или сложные каталитические системы [6–9].

В предыдущих работах [11, 12] нами было изучено алкилирование фенола и дигидроксибензолов пренолом под действием органоалюминиевых катализаторов — фенолята алюминия (PhO)₃Al и

изопропилата алюминия (*i*-PrO)₃Al. Выявлены оптимальные условия эффективного получения соответствующих хроманов (56–87%) и пренилфенолов (52–65%). Известно, что органоалюминиевые гомогенные катализаторы обладают высокой селективностью *орто*-алкилирования фенолов, одним из наиболее активных является фенолят алюминия [13–15]. Однако проведение кислотно-катализируемых реакций на твердых катализаторах отличается простотой последующей обработки реакционной смеси и улучшением экологических характеристик процессов по сравнению с гомогенными катализаторами, что имеет немаловажное значение для дальнейшей разработки технологии.

В настоящей работе проведено сравнительное исследование различного типа катализаторов с целью выявления наиболее эффективных в реакции алкилирования 4-метилфенола 1 аллильным спиртом – пренолом (3-метил-2-бутен-1-олом) 2 и селективных для синтеза 4-метил-пренилфенолов или хромана (схема 1). С этой целью был изучен ряд гетерогенных кислотных катализаторов (цеолиты Ц-10, Ц-100 и ZSM, монтмориллонит KSF, сульфокатиониты Фибан K-1 и Amberlist 36 Dry) и органоалюминиевых соединений [крезолят алюминия $(4\text{-MeC}_6\text{H}_4\text{O})_3\text{Al}$ и $(i\text{-PrO})_3\text{Al}$] в каталитических и эквимолярных количествах (см. таблицу).

Условия и продукты алкилирования 4-метилфенола пренолом

1:2:cat	Условия реакции ^а	Конверсия, %	Содержание продуктов алкилирования, %								
			3	4	5	6		7		3	другое6
			(4 M.	CHO) A 1		a	б	a	б	
1.1.0.1	16000 1 -	(0	I	eC ₆ H ₄ O	ı	20	12		20	(0
1:1:0.1	160°С, 1 ч	60	6	_	_	29	12	20	38	6	9
	160°С, 2 ч	98	3	_	_	15	14	38	_	30	_
	160°С, 5 ч	98	_	91	_	_	2	2	_	_	5
1:2:0.1	160°С, 2 ч	97	10	_	_	20	23	28	_	19	_
1:2:1	120°С, 4 ч	98	_	-	_	16	14	7	45	_	18
			(<i>i</i> -	PrO) ₃ A	.1				ĺ		
1:2:0.1	140°С, 6 ч	99	5	_	_	25	11	_	36	9	14
	160°С, 4 ч	99	5	_	_	21	23	3	21	_	27
1:2:1	120°С, 3.5 ч	95	3	_	4	10	42	_	36	_	5
	160°С, 1ч	98	_	15	17	_	42	_	13	_	13
				KSF							
1:2:1	40°С, 2 ч	84	_	_	_	6	16	_	62	_	16
	70°С, 2 ч	96	_	67	13	_	7	_	3	_	10
	100°С, 2ч	97	_	67	23	_	_	_	_	_	10
			Ambe	erlist 36	Dry						
1:2:1	40°С, 1ч	98	_	30	11	3	5	_	46	_	5
	70°С, 1 ч	98	_	87	6	_	_	_	_	_	7
	100°С, 0.5 ч	90	_	74	2	_	3	_	16	_	5
1:2:0.1	100°С, 3 ч	95	_	90	2	_	2	_	1	_	5
		'	Фи	ıбан К-	-1						
1:2:0.1	40°С, 2 ч	93	6	32	3	3	11	_	38	_	7
	70°С, 1 ч	97	_	68	15	_	9	_	_	_	8
	100°С, 2 ч	98	_	85	8	_	1	_	_	_	6
	1	ı	Цео.	лит Ц-1	100			1	ı		1
1:2:0.1	40°С, 24 ч	48	_	1	.6	23	20	_	38	_	_
	70°С, 8 ч	74	23	-	-	16	17	_	36	_	8
	100°С, 7 ч	83	_	6	7	13	16	_	45	_	3
1:2:1	100°С, 2 ч	92	-	30	9	-	23	_	26	_	12
			Цес	лит Ц-	10						
1:2:1	100°С, 2 ч	90	_	32	13	_	24	_	25	_	6
		1	Цес	лит ZS	SM	1		1	ı	ı	1
1:2:0.1	100°С, 10 ч	26	5	2	_	3	_	_	90	_	_
1:2:0.2	100°С, 5 ч	40	48	25	_	13	_	_	14	_	_
1:2:1	100°С, 5 ч	45	8	1	_	26	9	1	47	_	8

^а Растворитель при 40°C – CH₂Cl₂, 70°C – гексан, 100°C – гептан. ^б Продукты полимеризации и окисления.

Схема 1.

OH

1
2

$$R_a = O - R_a$$
 $R_a = O - R_a$
 $R_a = O - R_$

Продукты реакции **3–8** были выделены с помощью препаративной колоночной хроматографии. Строеание синтезированных соединений установлено с использованием спектральных методов исследования.

Установлено, что алкилирование 4-метилфенола 1 пренолом 2 в присутствии каталитических количеств (4-MeC₆H₄O)₃Al проходит при температуре не ниже 160°C. Взаимодействие 4-метилфенола 1 пренолом 2 в этих условиях в течение 1 ч при неполной конверсии 4-метилфенола (60%) приводит к преимущественному образованию 4-метил-2-пренилфенола 8а (38%) (см. таблицу). Кроме того, выделены эфир 6 и диалкилированный фенол 7а (29 и 12% соответственно). Увеличение времени проведения реакции (2-5 ч) позволяет повысить конверсию исходных реагентов до 98%. Через 2 ч алкилирования суммарный выход пренилфенолов 7 и 8 составил 82%, количество эфира 6 при этом уменьшилось до 15%. Дальнейшее увеличение времени реакции до 5 ч способствовало внутримолекулярной циклизации орто-пренильного заместителя и, в результате, селективному получению хромана 4 (91%). Алкилирование 4-метилфенола 1 двукратным избытком пренола 2 в присутствии каталитических количеств (4-MeC₆H₄O)₃Al проходит неселективно с образованием смеси продуктов О- и С-алкилирования.

В присутствии эквимолярных количеств $(4-\text{MeC}_6\text{H}_4\text{O})_3\text{Al}$ и двукратного избытка пренола при 120°C 4-метил-2-пренилфенол 8a получен с выходом 45%. Однако при этом кроме эфира 6 и диалкилфенолов 7a, 6 образуется достаточно большое количество продуктов полимеризации и окисления (18%).

Следует отметить, что в присутствии $(4-\text{MeC}_6\text{H}_4\text{O})_3\text{Al}$ изомеризация исходного пренола не определяется количеством катализатора. Возможно, это объясняется высокой температурой реакционной смеси и значительной химической активностью пренильного карбкатиона.

Использование в качестве катализатора изопропилата алюминия позволило снизить температуру реакционной смеси до $120-140^{\circ}$ С. Независимо от количества (*i*-PrO)₃Al) образуется 4-метил-2-пренилфенол **8a** с выходом 36%. Однако повышение температуры реакционной смеси до 160° С приводит к уменьшению селективности процесса и увеличению выхода диалкилированных фенолов **7a**, **6**.

Пренилирование 4-метилфенола 1 в присутствии гетерогенных катализаторов глины монт-

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 90 № 3 2020

мориллонит KSF и сульфокатионитов Amberlyst 36 Dry, Фибан К-1 проходит с высокой конверсией (84–98%). Нагревание в хлористом метилене (40°С) приводит к образованию 4-метил-2-пренилфенола **8a** с выходом до 62% в случае KSF, 46% – при использовании Amberlyst 36 Dry и 38% - в присутствии Фибан К-1. Повышение температуры реакционной смеси до 70 или 100°C способствует внутримолекулярной циклизации пренильного заместителя и преимущественному образованию эфиров хроманового типа 4 и 5 с суммарным выходом до 90%. Сульфокатионит Фибан К-1 использовали в количестве 10%, которого было достаточно для протекания реакции с высокой конверсией. В присутствии 10% Amberlyst 36 Dry реакция проходила при нагревании не ниже 100°C.

Для взаимодействия фенола 1 с пренолом 2 в присутствии цеолитов оптимальным является нагрев реакционной смеси до 100°С. Цеолит Ц-10 (100% от массы исходного 4-метилфенола) не показал себя селективным катализатором: в результате пренилирования образуются фенолы 7 и 8, а также эфиры хроманового типа 4 и 5. В этих же условиях в присутствии цеолита Ц-100 в эквимолярных к 4-метилфенолу количествах реакция протекает аналогично.

При использовании цеолита Ц-100 в количестве 10% от массы исходного фенола алкилирование пренолом проходит с неполной конверсией (48–83%) и низкой селективностью независимо от температуры реакционной смеси (см. таблицу). Только нагревание реакционной смеси до 100°C приводит к преимущественному образованию 4-метил-2-пренилфенола 8а (45%).

В присутствии каталитических количеств (10%) цеолита ZSM происходит селективное образование соединения **8a**, но конверсия исходного 4-метилфенола при этом весьма незначительная (26%). Увеличение содержания катализатора до 20% от массы исходного фенола **1** приводит к преимущественному образованию хроманов **4** и **5** при умеренной конверсии. При использовании цеолита ZSM в количестве 100% от массы исходного фенола **1** получен 4-метил-2-пренилфенол **8a** в качестве основного продукта (47%).

Таким образом, выявлены эффективные гетерогенные катализаторы, которые по селективности

не уступают действию гомогенных органоалюминиевых соединений. Определены катализаторы и оптимальные условия для селективного синтеза целевых 4-метил-2-пренилфенола, 2,6-дипренил-4-метилфенола и 3,4-дигидро-2,2,6-триметил-2*H*-хромана.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н и ¹³С записывали на спектрометре Bruker Avance II 300 на частотах 300 (¹Н) и 75 МГц (¹³С) в CDCl₃. Отнесение сигналов выполняли с использованием спектров ЯМР ¹³С, записанных в режиме *J*-модуляции, а также в ряде случаев с привлечением методов двумерной спектроскопии ЯМР (эксперименты COSY, NOESY и HSQC). ИК-спектры диффузного отражения записывали на ИК Фурье-спектрометре Shimadzu IR Prestige 21 в тонком слое. Элементный анализ выполняли на автоматическом анализаторе vario Micro cube в режиме CHNS.

Тонкослойную хроматографию (TCX) выполняли на пластинках Sorbfil. Для обнаружения веществ пластины обрабатывали раствором $KMnO_4$ (15 г $KMnO_4$, 300 мл H_2O , 0.5 мл конц. H_2SO_4), а также раствором ванилина (1 г ванилина, 100 мл 95%-ного этанола, 5 мл конц. серной кислоты) с последующим нагреванием пластин до $100-150^{\circ}C$.

Разделение продуктов реакций проводили с помощью колоночной хроматографии на силикагеле (Alfa Aesar, 70/230µ), элюент – петролейный эфир–Еt₂O с увеличением доли последнего.

В реакциях использовали 3-метил-2-бутен-1-ол (пренол) (Alfa Aesar) без дополнительной очистки, остальные растворители и реактивы применяли свежеперегнанными. В качестве катализаторов применяли (4-MeC $_6$ H $_4$ O) $_3$ Al (*in situ*), (*i*-PrO) $_3$ Al (Alfa Aesar), цеолиты (Ц-10, Ц-100 и ZSM), монтмориллонит KSF (Acros Organics), Фибан K-1 (сульфокислотный катионит), предоставленный Институтом физико-органической химии НАН Беларуси. Цеолиты (Ц-10, Ц-100 и ZSM) предварительно сушили. Количественный состав продуктов алкилирования представлен в таблице.

Алкилирование 4-метилфенола пренолом в присутствии (4- MeC_6H_4O)₃Al (каталитический способ). К нагретому до 160°C 4-метилфенолу (0.48 г, 4.5 ммоль) добавляли небольшими порци-

ями алюминиевую стружку (0.0038 г, 0.14 ммоль). После полного растворения алюминия в 4-метилфеноле раствор охлаждали до 40°C, затем добавляли 0.39 г (4.5 ммоль) пренола. Реакцию проводили, поддерживая температуру 160°C, до полной конверсии пренола. За ходом реакции следили с помощью ТСХ (система растворителей петролейный: $Et_2O = 3:1$, проявитель – ванилин). По окончании реакции реакционную смесь охлаждали, разбавляли Et₂O. приливали 50%-ный раствор HCl для разложения катализатора, затем промывали 5%-ным раствором NaOH и водой до нейтральной реакции. Органический слой сушили безводным Na₂SO₄. После удаления растворителя разделение продуктов реакции проводили методом колоночной хроматографии.

3-Метил-1-(3-метилбут-2-енилокси)бут-2-ен (3). Желтое масло. Спектральные характеристики соединения соответствуют данным, представленным в работе [1].

3,4-Дигидро-2,2,6-триметил-2*H***-хроман (4).** Бесцветное масло. ИК спектр, v, см $^{-1}$: 2974, 2927, 1496 и 1375 (СН $_3$, СН $_2$), 1618, 1585 (Аг), 1157 и 1122 (С $^{-}$ О $^{-}$ С), 814 ($^{-}$ С $^{-}$ H). Спектр ЯМР 1 H, δ , м. д.: 1.40 с (6H, СН $_3$ 10, СН $_3$ 11), 1.86 т (2H, H 3 , J=6.6 Гц), 2.33 с (3H, СН $_3$ 9), 2.81 т (2H, H 4 , J=6.6 Гц), 6.76 д (1H, H 8 , J=8.1 Гц), 6.95 $^{-}$ 6.98 м (2H, H 5 , H 7). Спектр ЯМР 13 С, δ С, м. д.: 73.90 (С 2), 32.98 (С 3), 22.51 (С 4), 120.58 (С 4 a), 127.95 (С 5), 128.70 (С 6), 129.81 (С 7), 117.03 (С 8), 151.75 (С 8 a), 20.50 (С 9), 26.88 (С 10 , 11). Результаты спектральных исследований совпадают с литературными данными [16].

1-(3-Метилбут-2-енилокси)-4-метилбензол (6). Светло-желтое масло. Спектр ЯМР 1 Н, δ , м. д.: 1.77 с (3H, $\text{CH}_3^{5'}$), 1.83 с (3H, $\text{CH}_3^{4'}$), 2.32 с (3H, CH_3^{7}), 4.51 д (2H, $\text{H}^{1'}$, J = 6.6 Гц), 5.55 т (1H, $\text{H}^{2'}$, J = 7.2 Гц), 6.85 д (2H, H^2 , H^6 , J = 8.1 Гц), 7.11 д (2H, H^3 , H^5 , J = 8.1 Гц). Спектр ЯМР 13 С, δ_{C} , м. д.: 156.97 (С 1), 64.80 (С 1), 119.93 (С 2), 114.51 (С 2 , С 6), 129.85 (С 3 , С 5), 137.94 (С 3), 132.00 (С 4), 25.83 (С 4), 18.18 (С 5), 20.47 (С 7). Найдено, %: С 81.60; H 9.77. С $_{12}$ Н $_{16}$ О. Вычислено, %: С 81.77; H 9.15.

2,6-Бис(3-метилбут-2-ен-1-ил)-4-метилфенол (7а). Светло-желтое масло. ИК спектр, v, см⁻¹: 3445 (ОН), 2970, 2918, 1444 и 1377 (СН₃, СН₂),

1612 и 1504 (C=C), 854 (=C-H). Спектр ЯМР 1 H, δ , м. д.: 1.83 с (12H, CH $_3$ ⁴, CH $_3$ ⁴", CH $_3$ ⁵", CH $_3$ ⁵"), 2.30 с (3H, CH $_3$ ⁷), 3.37 д (4H, 2H 1 ", 2H 1 ", J = 7.2 Гц), 5.03 с (1H, OH), 5.37 т (2H, H 2 ", H^2 ",

2,6-Бис(2-метилбут-3-ен-2-ил)-4-метилфенол (76). Светло-желтое масло. ИК спектр, v, см $^{-1}$: 3495 (ОН), 2972, 2927, 1496 и 1375 (СН $_3$, СН $_2$), 1618 и 1587 (С=С), 852 (=C-С). Спектр ЯМР 1 Н, δ , м. д.: 1.48 с (12H, СН $_3$ ⁴', СН $_3$ ⁴', СН $_3$ ⁵', СН $_3$ ⁵'), 2.33 с (3H, СН $_3$ ⁷), 5.31–5.41 м (4H, 2H $_3$ ³', 2H $_3$ ³"), 5.69 с (H, ОН), 6.23 д. д (2H, H $_2$ ²', H $_2$ ²", J = 10.5, 17.7 Гц), 7.09 с (2H, H $_3$ ³, H $_3$ ⁵). Спектр ЯМР $_3$ ¹³С, δ С, м. д.: 152.4 (С $_3$), 40.27 (С $_3$ ¹', С $_3$ ¹"), 128.63 (С $_3$ ², С $_3$ ²"), 129.77 (С $_3$ ⁴), 26.97 (С $_3$ ⁴", С $_3$ ⁵"), 126.82 (С $_3$ ⁵), 20.56 (С $_3$ ⁷). Найдено, %: С 83.14; Н 10.39. С $_1$ 7 $_2$ 4 $_3$ 0. Вычислено, %: С 83.55; Н 9.90.

4-Метил-2-(3-метилбут-2-ен-1-ил)фенол (8а). Светло-желтое масло. Спектральные характеристики соединения соответствуют данным, представленным в работе [6].

4-Метил-2-(2-метилбут-3-ен-2-ил)фенол (8б). Светло-желтое масло. ИК спектр, \mathbf{v} , \mathbf{cm}^{-1} : 3495 (OH), 2973, 2929, 1496 и 1373 (CH₃, CH₂), 1615 и 1587 (C=C), 812 (=C-C). Спектр ЯМР 1 Н, δ , м. д.: 1.47 с (6H, CH₃⁴', CH₃⁵'), 2.33 с (3H, CH₃⁷), 5.33 м и 5.36 м (2H, H³'), 5.68 с (H, OH), 6.22 д. д (1H, H²', $J=10.5, 17.7 \Gamma$ ц), 6.77 д (1H, H6, $J=8.1 \Gamma$ ц), 7.00 д (1H, H5, $J=8.1 \Gamma$ ц), 7.09 с (1H, H³). Спектр ЯМР 13 С, δ _C, м. д.: 152.44 (C¹), 40.27 (С¹'), 127.00 (С²), 147.92 (С²'), 126.83 (С³), 113.38 (С³'), 129.69 (С⁴), 26.97 (С⁴', С⁵'), 128.63 (С⁵), 117.55 (С6), 20.84 (С7). Найдено, %: С 81.36; Н 9.38. C_{12} H_{16} О. Вычислено, %: С 81.77; Н 9.15.

Пренилирование 4-метилфенола в присутствии (*i*-PrO)₃Al (общая методика). Смесь 0.5 г (4.6 ммоль) 4-метилфенола, 0.79 г (9.2 ммоль) пренола и (*i*-PrO)₃Al [0.05 г (0.25 ммоль) в случае каталитического способа или 0.95 г (4.6 ммоль) при использовании эквимолярных количеств катализатора] нагревали при соответствующей температуре (120, 140 и 160°C). Обработку реакционной

смеси и разделение продуктов реакции осуществляли аналогично описанной выше методике.

3,4-Дигидро-2,2,6-триметил-8-(3-метил-2бутен-1-ил)-2*H*-1-бензопиран (5). Бесцветное масло. ИК спектр, v, см⁻¹: 2974, 2924, 1473 и 1375 (CH₃, CH₂), 1647 и 1595 (C=C), 1207 и 1157 (С-О-С), 852 (=С-Н). Спектр ЯМР 1Н, δ, м. д.: 1.36 c (6H, CH₃¹⁰, CH₃¹¹), 1.77 c (6H, CH₃⁴, CH₃⁵), 1.82 т (2H, H^3 , $J = 6.9 \Gamma \mu$), 2.28 с (3H, CH_3^9), 2.78 т (2H, H⁴, J = 6.9 Гц), 3.29 д (2H, H¹, J =7.2 $\Gamma_{\rm H}$), 5.34 τ (1H, H²', $J = 7.2 \Gamma_{\rm H}$), 6.77 c (1H, H⁷), 6.81 с (1H, H⁵). Спектр ЯМР 13 С, δ_{C} , м. д.: 28.55 $(C^{1'})$, 73.67 (C^{2}) , 123.26 $(C^{2'})$, 32.95 (C^{3}) , 132.00 $(C^{3'})$, 22.68 (C^4), 120.19 (C^{4a}), 26.04 ($C^{4'}$), 127.47 (C^5), 17.83 (C5), 129.53 (C6), 127.91 (C7), 128.05 (C8), 140.05 (С⁸а), 20.54 (С⁹), 27.14 (С¹⁰, С¹¹). Найдено, %: С 83.09; Н 10.15. С₁₇Н₂₄О. Вычислено, %: С 83.55; H 9.90.

Пренилирование 4-метилфенола в присутствии кислотных катализаторов (общая методика). Алкилирование 4-метилфенола проводили 2-кратным избытком пренола. Масса катализатора в случае использования сульфокислотного катионита Фибан К-1 составляла 10% по отношению к массе исходного 4-метилфенола; монтмориллонит KSF брали в массовом отношении 1:1 относительно количества исходного фенола. Цеолиты Ц-10, Ц-100, ZSM и сульфокатионит Amberlist 36 Dry брали в количестве 10 и 100% от массы исходного 4-метилфенола. Рассчитанные количества 4-метилфенола, пренола и катализатора нагревали при заданной температуре. Реакцию вели до значительной конверсии исходного 4-метилфенола (контроль по ГЖХ и ТСХ), после этого реакционную смесь растворяли в Et₂O, отфильтровывали от катализатора. Разделение продуктов реакции осуществляли аналогично выше описанной методике. Содержание продуктов алкилирования представлено в таблице.

ФОНДОВАЯ ПОДДЕРЖКА

Исследование выполнено при финансовой поддержке Российского фонда фундаментальных исследований (проект № 18-03-00950 а).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 90 № 3 2020

СПИСОК ЛИТЕРАТУРЫ

- Bhargava P., Grover A., Nigam N., Kaul A., Doi M., Ishida Y., Kakuta H., Kaul S.C., Terao K., Wadhwa R. // Int. J. Oncol. 2018. Vol. 52. N 3. P. 925. doi 10.3892/ ijo.2018.4249
- 2. Wang S., Dunlap T.L., Howell C.E., Mbachu O.C., Rue E.A., Phansalkar R., Chen S.-N., Pauli G.F., Dietz B.M., Bolton J.L. // Chem. Res. Toxicol. 2016. Vol. 29. N 7. P. 1142. doi 10.1021/acs.chemrestox.6b00112
- 3. Sansom C.E., Larsen L., Perry N.B., Berridge M.V., Chia E.W., Harper J.L., Webb V.L. // J. Nat. Prod. 2007. Vol. 70. N 12. P. 2042. doi 10.1021/np070436t
- Štulíková K., Karabín M., Nešpor J., Dostálek P. // Molecules. 2018. Vol. 23. N 3. P. 660. doi 10.3390/ molecules23030660
- Hoarau C., Pettus Tomas R.R. // Synlett. 2003. Vol. 1.
 P. 127. doi 10.1055/s-2003-36234
- 6. Varghese S., Anand C., Dhawale D., Mane G.P., Wahad M.A., Mano A., Raj G.A.G., Nagarajan S., Vinu A. // ChemCatChem. 2013. Vol. 5. N 4. P. 899. doi 10.1002/cctc.201200332
- 7. *Ricardo C.L., Mo X., McCubbin J.A., Hall D.G. //* Chem. Eur. J. 2015. Vol. 21. N 11. P. 4218. doi 10.1002/ chem.201500020
- So Won Youn // Synlett. 2007. Vol. 19. P. 3050. doi 10.1055/s-2007-990963
- Dintzner M.R., McClelland K.M., Morse K.M., Akroush M.H. // Synlett. 2004. Vol. 11. P. 2028. doi 10.1055/s-2004-830865
- Helesbeux J.-J., Duval O., Guilet D., Séraphin D., Rondeau D., Richomme P. // Tetrahedron. 2003.
 Vol. 59. P. 5091. doi 10.1016/S0040-4020(03)00733-6
- 11. Чукичева И.Ю., Федорова И.В., Королева А.А., Кучин А.В. // ХПС. 2018. № 1. С. 5; Chukicheva I.Yu., Fedorova I.V., Koroleva А.А., Kuchin A.V. // Chem. Nat. Compd. 2018. Vol. 54. N 1. P. 1. doi 10.1007/s10600-018-2245-y
- Чукичева И.Ю., Федорова И.В., Низовцев Н.А., Королева А.А., Шевченко О.Г., Кучин А.В. // ХПС. 2018.
 № 5. С. 743; Chukicheva I.Yu., Fedorova I.V., Nizovtsev N.A., Koroleva A.A., Shevchenko O.G., Kuchin A.V. // Chem. Nat. Compd. 2018. Vol. 54. N 5. P. 875. doi 10.1007/s10600-018-2503-z
- 13. *Kolka A.J., Napolitano J.P., Ecke G.G.* // J. Org. Chem. 1956. Vol. 21. N 6. P. 712. doi 10.1021/jo01112a621
- 14. Гунько В.М., Роев Л.М. // ТЭХ. 1982. С. 85.
- 15. *Kuepper F.-W., Mueller W.* Pat. US 5292970 (1991). Germany.
- 16. *Yamamoto Y., Itonaga K.* // Org. Lett. 2009. Vol. 11. N 3. P. 717. doi 10.1021/ol802800s

Prenylation of 4-Methylphenol

I. Yu. Chukicheva*, I. V. Fedorova, T. A. Kolegova, and A.V. Kutchin

Institute of Chemistry, Federal Research Centre "Komi Science Centre of the Ural Branch of the Russian Academy of Sciences", Syktyvkar, 167000 Russia
*e-mail: chukichevaiy@mail.ru

Received July 25, 2019; revised July 25, 2019; accepted August 6, 2019

Organoaluminum (aluminum phenolate and aluminum isopropylate) and acidic heterogeneous catalysts (zeolites C-10, C-100 and ZSM, clay KSF, sulfonic cation exchangers Fiban K-1 and Amberlist 36 Dry) were studied in the alkylation of 4-methylphenol with prenol. Effective catalysts and conditions for the synthesis of 4-methyl-2-prenylphenol, 2,6-diprenyl-4-methylphenol, and chroman were revealed.

Keywords: 4-methylphenol, prenol, catalysts, alkylation