#### УДК 547.661.4

## АЛКИЛИРОВАНИЕ 1,3,2-ДИГЕТЕРОФОСФИНАНОВ, КОНЪЮГИРОВАННЫХ С ДИНАФТИЛМЕТАНАМИ

© 2020 г. О. С. Серкова, В. В. Глушко, М. Р. Гусейнова, В. И. Масленникова\*

Институт биологии и химии, Московский педагогический государственный университет, ул. Кибальчича 6, Москва, 129164 Россия \*e-mail: vi.maslennikova@mpgu.su

> Поступило в Редакцию 14 сентября 2019 г. После доработки 14 сентября 2019 г. Принято к печати 18 сентября 2019 г.

Изучены реакции алкилирования 2,2'-ди- и 2,2',7,7'-тетра-(1,3,2-дигетерофосфинанил)динафтилметанов алкил(арилалкил)галогенидами и бромэтилацетатом. Установлены факторы, влияющие на хемоселективность реакции и выход конечных продуктов.

**Ключевые слова:** 1,3,2-дигетерофосфинаны, фосфодинафтилметаны, алкилирование, реакция Михаэлиса–Арбузова, фосфонаты, квазифосфониевые соли

DOI: 10.31857/S0044460X20030075

Одним из активно развивающихся направлений современной химии является дизайн олигофункционализированных ароматических соединений, прикладные возможности которых определяются сочетанием свойств базовой платформы и вводимых групп [1-5]. Особый интерес представляют олигоароматические системы, содержащие сайты, способные к последующей трансформации, что может быть использовано для дизайна рецепторов, сенсорных устройств, полимерных и дендримерных конструкций [6-8]. К соединениям такого типа относятся фосфорилированные производные, в которых на олигоароматическом остове иммобилизовано несколько фосфитных или амидофосфитных групп, обладающих высокой реакционной способностью и легко вступающих в реакции, приводящие к увеличению координационного числа атома фосфора [9-12]. В частности, эффективным методом создания олигоциклических систем, содержащих фрагменты с Р-С связью является реакция Михаэлиса-Арбузова [13, 14], приводящая к образованию фосфонатов. Причем при использовании в качестве объектов алкилирования фосфоцикланов в зависимости от заместителей у атома фосфора возможна реализация двух маршрутов реакции, протекающих с сохранением и раскрытием фосфорсодержащих циклов [15-23].

В настоящей работе рассмотрено алкилирование простейшими иодистыми алкилами, бромбензилом и бромэтилацетатом ди- и тетра(дигетерофосфинанил)динафтилметанов **1–6**, отличающихся количеством и природой фосфинановых циклов. 1,3,2-Дигетерофосфинанилдинафтилметаны **1–6** были получены фосфорилированием 2,2'-дигидроксо-1,1'-динафтилметана **7a** и 2,2',7,7'-тетрагидроксо-1,1'-динафтилметана **7b** 2-диэтиламино-1,3,2-дигетерофосфинанами **8а–в** (схема 1).

Реакции осуществляли в ацетонитриле при небольшом избытке фосфорилирующего реагента в атмосфере аргона при комнатной температуре. Продукты фосфорилирования 1-3, 5, 6 самопроизвольно кристаллизовались из реакционной смеси; тетрафосфинан 4 осаждали гексаном. Выходы соединений 1-6 составляли 60-97%. Олигофосфинанилдинафтилметаны 1-3 были описаны ранее [24, 25], соединения 4-6 получены впервые. Данные элементного анализа и масс-спектрометрии подтверждают наличие 2 и 4 дигетерофосфинановых фрагментов в составе фосфодинафтилметанов 5 и 4, 6 соответственно. В спектре ЯМР <sup>31</sup>Р дифосфинана 5 фиксировали один синглетный сигнал, в спектрах ЯМР <sup>1</sup>Н и <sup>13</sup>С – по одному набору сигналов для всех групп атомов водорода и углерода ди-



нафтилметанового остова и диазафосфинановых фрагментов. В спектрах ЯМР тетрафосфинанов 4, 6 наблюдалось удвоение сигналов всех магнитных ядер фосфинановых фрагментов, обусловленное неэквивалентностью заместителей в положениях 2 и 7.

В молекулах олигофосфинанилдинафтилметанов **1–6** два нафталиновых кольца связаны метиленовым мостиком и расположены относительно друг друга под углом, величина которого может изменяться в зависимости от природы заместителей, что обусловливает возможность *цис/mpaнс*-конформационных переходов в растворах [24, 25]. Подбор оптимальных условий взаимодействия осуществляли на примере алкилирования 2,2'-ди-(5,5-диметил-1,3,2-диоксафосфинанил)динафтилметана 1 (схема 2). Установлено, что наиболее эффективно процесс происходит в микроволновом реакторе в растворе 1,2-дихлорбензола (DCB) при 100–110°С и соотношении субстрат:реагент = 1:5. Время реакции составляло 0.5–1 ч.

Окончание реакции определяли по исчезновению сигналов ядер трехкоординированного фосфора в области 114 м. д. в спектрах ЯМР <sup>31</sup>Р реакционных смесей. Во всех случаях реакция протекала



| Динафтилметан | RHlg                    | <i>T</i> ,<br>℃ | Время,<br>ч | Продукт<br>реакции |
|---------------|-------------------------|-----------------|-------------|--------------------|
| 1             | MeI                     | 100             | 0.5         | 9                  |
|               | EtI                     |                 | 1           | 10                 |
|               | PhCH <sub>2</sub> Br    | 110             | 1           | 11                 |
|               | BrCH <sub>2</sub> COOEt |                 | 1           | 12                 |
| 2             | MeI                     | 100             | 1           | 13                 |
|               | EtI                     | 100             | 2           | 14                 |
|               | PhCH <sub>2</sub> Br    | 110             | 2           | 15                 |
|               | BrCH <sub>2</sub> COOEt | 110             | 2           | 16                 |

Таблица 1. Условия алкилирования фосфодинафтилметанов 1 и 2

по механизму Михаэлиса–Арбузова с раскрытием диоксафосфинановых циклов и образованием динафтилметанов **9–12**, содержащих линейные асимметрические фосфонатные фрагменты (табл. 1, 2). Независимо от природы алкилирующего реагента взаимодействие приводило к образованию двух стереоизомеров. На хроматографических пластинах до и после выделения продуктов реакции наблюдалось по два пятна с близкими значениями  $R_{\rm f}$ . В спектрах ЯМР <sup>31</sup>Р фосфонатов **9–12** фиксировали по два синглета с близкими химическими сдвигами и равной интегральной интенсивностью в области 18–32 м. д. (табл. 2). В спектрах ЯМР <sup>1</sup>Н и <sup>13</sup>С регистрировалось удвоение сигналов атомов водорода и углерода алкильных заместителей у атомов фосфора и метиленовых групп, связанных с атомом иода (табл. 3).

В случае бисфосфонатов 9 с использованием колоночной хроматографии нам удалось частично разделить полученную смесь продуктов реакции и выделить две фракции. Данные масс-спектрометрии до и после разделения на колонке показали, что молекулярные массы полученных соединений идентичны. В спектре ЯМР <sup>31</sup>Р одной из фракций фиксировали узкий синглет с химическим сдвигом 28.6 м. д. В спектре ЯМР <sup>1</sup>Н присутствовал один набор сигналов всех групп протонов, что позволяло сделать вывод об индивидуальности выделенного соединения 9\* (табл. 3). Спектры ЯМР <sup>31</sup>Р и <sup>1</sup>Н второй фракции отличались от таковых исходной смеси только соотношением сигналов ядер фосфонатного фрагмента. Причем сигналы с меньшей интенсивностью соответствовали сигналам в спектрах индивидуального стереоизомера 9\*.



13-16

|     |                       | 1   |          | 1 1 1 1                   |                                      |
|-----|-----------------------|-----|----------|---------------------------|--------------------------------------|
| N₂  | R                     | Hlg | Выход, % | δ <sub>р</sub> , м. д.    | m/z                                  |
| 9   | Me                    | Ι   | 70       | 29.09, 29.14              | 848.4 [ <i>M</i> ] <sup>+</sup>      |
| 9*  | Me                    | I   | 30       | 29.11                     | $848.4 \ [M]^+$                      |
| 10  | Et                    | Ι   | 64       | 32.09 (уш. с)             | 876.9 [ <i>M</i> ]+                  |
| 11  | CH <sub>2</sub> Ph    | Br  | 75       | 24.69, 24.61              | 906.9 [ <i>M</i> ] <sup>+</sup>      |
| 12  | $CH_2COOEt$           | Br  | 70       | 18.24, 18.19              | 921.1 $[M + Na]^+$                   |
| 13  | Me                    | Ι   | 74       | 28.95,28.71, 28.15, 28.04 | 1428.7 [ <i>M</i> ] <sup>+</sup>     |
| 14  | Et                    | Ι   | 74       | 32.33, 31.39              | 1484.7 [ <i>M</i> ] <sup>+</sup>     |
| 15  | CH <sub>2</sub> Ph    | Br  | 81       | 24.91, 24.08              | 1566.9 [ <i>M</i> + Na] <sup>+</sup> |
| 16  | CH <sub>2</sub> COOEt | Br  | 79       | 17.12, 18.29              | 1528.8 [ <i>M</i> ] <sup>+</sup>     |
| 17  | Me                    | Ι   | 70, 87   | 29.41 29.36               | 792 [ <i>M</i> ] <sup>+</sup>        |
| 17* | Me                    | Ι   | 14       | 29.33                     | 792 [ <i>M</i> ] <sup>+</sup>        |
| 18  | Me                    | _   | 25       | 26.89                     | 363 [ <i>M</i> ] <sup>+</sup>        |
| 19* | Et                    | Ι   | 19, 38   | 32.52                     | $820 \ [M]^+$                        |
| 20  | Et                    | _   | 45       | 29.68                     | 376 [ <i>M</i> ] <sup>+</sup>        |
| 21  | CH <sub>2</sub> COOEt | Br  | 75       | 18.62, 18.53              | 843 [ <i>M</i> ] <sup>+</sup>        |
| 22  | Me                    | I   | 74       | 29.57, 29.49 29.41, 29.30 | 1316 [ <i>M</i> ] <sup>+</sup>       |

Таблица 2. Выходы, данные спектроскопии ЯМР <sup>31</sup>Р и масс-спектрометрии для фосфонатов 9-22

Полученные данные позволяют предположить, что бисфосфорилированные динафтилметаны **9–12** представляют собой смесь стереоизомеров, содержащую рацемат (R/S, R/S) и R, S-диастереомер, близость физико-химических и спектральных характеристик которых затрудняет их разделение и идентификацию.

Алкилирование 2,2',7,7'-тетра(5,5-диметилдиоксафосфинанил)динафтилметана 2 протекало в указанных выше условиях по аналогичному маршруту, но стереоселективность реакции зависела от объема алкильного заместителя алкилирующего реагента (схема 3, табл. 1). Так, использование иодистого метила приводило к образованию смеси тетрафосфонатов 13, различающихся взаимным расположением нафтильных ядер и фосфорсодержащих заместителей в пространстве. В спектре ЯМР <sup>31</sup>Р соединения **13** фиксировали набор сигналов в области 30 м. д. (табл. 2), а в спектре ЯМР <sup>1</sup>Н – уширение сигналов всех групп протонов метилфосфонатных фрагментов.

При введении в реакцию алкилирующих реагентов с более объемными группами происходила конформационная стабилизация молекул тетрафосфорилированных продуктов **14–16**, приводящая к стереохимической гомотопности фосфонатных групп, расположенных в одинаковых положениях нафталиновых ядер (2,2' и 7,7'). В спектрах ЯМР <sup>31</sup>Р соединений **14–16** фиксировали по два равных синглетных сигнала с близкими химическими сдвигами (табл. 2). В спектрах ЯМР <sup>13</sup>С и <sup>1</sup>Н налюдалось удвоение сигналов атомов водоро-

| Мо  | δ <sub>Н</sub> , м. д. ( <i>J</i> , Гц)              |                  |                   | δ <sub>C</sub> , м. д. ( <i>J</i> , Гц)               |                  |                   |                |
|-----|------------------------------------------------------|------------------|-------------------|-------------------------------------------------------|------------------|-------------------|----------------|
| JNG | P-CH <sub>3</sub>                                    | OCH <sub>2</sub> | CH <sub>2</sub> I | P-CH <sub>3</sub>                                     | OCH <sub>2</sub> | CH <sub>2</sub> I | C <sup>2</sup> |
| 9   | 1.33 д ( <sup>2</sup> <i>J</i> <sub>PH</sub> = 17.4) | 3.61 м           | 3.04 м            | 10.5 д ( <sup>1</sup> <i>J</i> <sub>PC</sub> = 145.7) | 72.6 72.7        | 18.4              | 146.3          |
|     | 1.35 д ( <sup>2</sup> <i>J</i> <sub>PH</sub> = 17.4) | 3.74 м           | 3.07 м            | 11.8 д ( <sup>1</sup> <i>J</i> <sub>PC</sub> = 147.3) |                  |                   | 146.4          |
| 9*  | 1.33 д ( <sup>2</sup> <i>J</i> <sub>PH</sub> = 17.4) | 3.61 д. д        | 3.04 д            | 11.8 д (1 <i>J</i> <sub>PC</sub> = 145.7)             | 72.7             | 18.4              | 146.4          |
|     |                                                      | 3.74 д. д        | 3.06 д            |                                                       |                  |                   |                |
| 17  | 1.30 д ( <sup>2</sup> <i>J</i> <sub>PH</sub> = 17.4) | 3.91 м           | 3.05 м            | 11.2 д ( <sup>1</sup> <i>J</i> <sub>PC</sub> = 144.7) | 65.9 66.0        | 1.21              | 146.4          |
|     | 1.35 д ( $^{2}J_{\rm PH} = 17.8$ )                   | 4.02 м           | 3.07 м            | 11.3 д ( ${}^{1}J_{PC} = 144.7$ )                     |                  | 1.24              | 146.5          |
| 17* | 1.31 д ( <sup>2</sup> <i>J</i> <sub>PH</sub> = 17.9) | 3.91 м           | 3.07 м            | 11.5 д ( <sup>1</sup> <i>J</i> <sub>PC</sub> = 144.7) | 65.9             | 1.16              | 146.3          |
|     |                                                      | 4.02 м           |                   |                                                       |                  |                   |                |
| 18  | 1.94 д ( <sup>2</sup> <i>J</i> <sub>PH</sub> = 17.9) | _                | —                 | 12.7 д (1 <i>J</i> <sub>PC</sub> = 146.6)             |                  | _                 | 148.5          |

Таблица 3. Параметры спектров ЯМР <sup>1</sup>Н и <sup>13</sup>С соединений 9, 9\*, 17, 17\* и 18



 $R = Et (20); R = CH_{COOEt}, Hlg = Br (21);$ 

да и углерода фосфонатных фрагментов, что обусловлено их иммобилизацией в положениях 2,2' и 7,7' динафтиметанового остова.

Алкилирование 2,2'-ди-(1,3,2-диоксафосфинанил)динафтилметана 3 (схема 4, *i*) происходило не столь однозначно как его более стерически затрудненного неопентиленового аналога 1 (схема 2). Результат реакции зависел от природы алкилирующего реагента и растворителя, а также от соотношения реагирующих веществ. Так, при алкилировании динафтилметана 3 метилиодидом в оптимальных условиях с использованием колоночной хроматографии из реакционной смеси было выделено два соединения, одно из которых, по данным элементного анализа, масс-спектрометрии, ИК и ЯМР спектроскопии, представляло собой динафтилметан 17\*, содержащий линейные фосфонатные фрагменты (табл. 3). Наличие в спектре ЯМР <sup>31</sup>Р одного узкого синглетного сигнала ядер фосфора и одного набора сигналов для всех групп атомов водорода и углерода динафтилметанового остова и фосфонатных фрагментов (табл. 2) свидетельствует о том, что соединение **17**\*, также как его неопентиленовый аналог **9**\*, является индивидуальным стереоизомером.

В спектре ЯМР <sup>31</sup>Р второго выделенного соединения **18** также фиксировали синглет в области 27 м. д. (табл. 2), однако в спектрах ЯМР <sup>1</sup>Н и <sup>13</sup>С отсутствовали сигналы протонов и атомов углерода всех метиленовых групп и наблюдались сигналы атомов водорода и углерода алкильных групп, связанных с атомом фосфора (табл. 3). Дублет дублетов протонов метиленового мостика подтверждал циклическую структуру соединения **18**, где два нафталиновых ядра включены в диоксафосфоциновый цикл [26]. Об этом же свидетельствовали данные масс-спектрометрии и элементного анализа.



При увеличении в 2 раза количества иодистого метила в реакционной смеси (3:MeI =1:10, DCB) образования фосфоцинового производного 18 не происходило и единственными продуктами были стереоизомерные линейные фосфонаты 17. В диоксане взаимодействие фосфодинафтилметана 3 с иодистым метилом уже при соотношении реагирующих веществ 3:MeI = 1:5 протекало селективно с образованием только фосфонатов 17, выделенных из реакционной смеси осаждением гексаном с выходом 87%. Данные спектроскопии ЯМР для соединений 17 аналогичны таковым для фосфонатов 9 (табл. 2, 3), что указывает на образование двух стереоизомеров в равных количествах.

Аналогично происходило алкилирование соединения **3** иодистым этилом. При соотношении **3**:EtI = 1:5 с использованием колоночной хроматографии из реакционной смеси было выделено два соединения: индивидуальный стереоизомер динафтилметана **19\***, содержащий линейные фосфонатные фрагменты, и фосфоциновое производное **20** (табл. 3). По данным спектроскопии ЯМР <sup>31</sup>P, увеличение количества иодистого этила в реакционной смеси способствовало повышению содержания в продуктах реакции стереоизомерных фосфонатов **19**, однако сигнал соединения **20** фиксировался в реакционной смеси даже при соотношении 3:EtI = 1:20.

Следует отметить, что использование в качестве алкилирующего реагента бромэтилацетата, так же как и в случае иодистого метила, при соотношении субстрат:реагент = 1:10 направленно приводило к образованию двух стереоизомерных линейных фосфонатов **21**, выделенных с выходом 75%.

С целью изучения предполагаемого пути образования циклофосфонатов **18**, **20** мы провели дополнительный эксперимент. Раствор стереоизомерных фосфонатов **17** выдерживали в дихлорбензоле в условиях алкилирования (схема 4, *ii*, MW, 100°C). Через 2 ч в спектрах ЯМР <sup>31</sup>Р отсутствовали сигналы фосфонатов **17**, и фиксировался синглет циклического продукта **18**. Спектральные характеристики и физико-химические параметры соединения **18** полностью соответствовали таковым, полученным ранее. Исходя из этих данных, мы можем предположить, что образование фосфоциновых производных **18**, **20** происходит за счет внутримолекулярной фосфоциклизации линейных фосфонатных групп.

Алкилирование иодистым метилом более сложного по структуре, чем соединение **3**, тетра-

| N⁰ |              | Условия реакции   | Dimor 0/ | S M T     |                  |                                  |
|----|--------------|-------------------|----------|-----------|------------------|----------------------------------|
|    | <i>T</i> ,°C | растворитель      | время    | Быход, 70 | 0р, м. д.        | m/z                              |
| 23 | 20–25        | CHCl <sub>3</sub> | 8 сут    | 82        | 50.38            | 717 [ <i>M</i> – I] <sup>+</sup> |
|    | 50-55        |                   | 30 ч     | 80        |                  |                                  |
|    | 20–25        | 1,2-Дихлорбензол  | 15 сут   | 57        |                  |                                  |
|    | 50-55        |                   | 30 ч     | 55        |                  |                                  |
|    | 20–25        | Бензол            | 15 сут   | 94        |                  |                                  |
| 24 | 20–25        | Бензол            | 15 сут   | 85        | 52.47,           | 1453 [ <i>M</i> ]+               |
|    | 20–25        | CHCl <sub>3</sub> | 8 сут    | 60        | 52.29,<br>51.62, |                                  |
|    |              |                   |          |           | 51.48            |                                  |

Таблица 4. Условия синтеза, выходы, данные спектроскопии ЯМР <sup>31</sup>Р и масс-спектрометрии для соединений 23 и 24

(1,3,2-диоксафосфинанил)динафтилметана **4** в 1,2-дихлорбензоле (MW, 100°С) приводило к образованию трудноразделимой смеси продуктов. Провести процесс селективно удалось в диоксане при 85°С: через 1,5 ч наблюдалась полная конверсия исходного тетрафосфита **4** в фосфонатное производное **22** (схема 5).

В спектре ЯМР <sup>31</sup>Р реакционной смеси отсутствовал сигнал в области, характерной для трехвалентного фосфора, и фиксировались сигналы фосфонатного производного **22** (табл. 3), которое было выделено с выходом 70%. Данные элементного анализа и масс-спектрометрии подтверждали наличие в нем 4 фосфонатных фрагментов. В спектрах ЯМР <sup>31</sup>Р соединения **22** фиксировали 4 синглетных сигнала с близкими химическими сдвигами и равной интегральной интенсивностью. В спектрах ЯМР <sup>1</sup>Н и <sup>13</sup>С наблюдалось удвоение сигналов атомов водорода и углерода метилфосфонатных групп. Такая спектральная картина обусловлена диастереотопностью фосфонатных фрагментов, иммобилизованных на динафтилметановой матрице.

Алкилирование иодистым метилом ди- и тетрадиазафосфинанилдинафтилметанов 5 и 6, осуществляемое в микроволновом реакторе, приводило к деструкции гетероциклов уже при 50°С. Однако при проведении реакции в отсутствие микроволновой активации в интервале температур 20-55°С процесс протекал селективно и завершался образованием квазифосфониевых солей 23 и 24 (схема 6, табл. 4).

Варьирование условий реакции (растворитель, температура, длительность процесса) влияло только на выход продуктов, причем максимальное влияние на результативность реакции оказывал растворитель (табл. 4).

Наличие двух и четырех квазифосфониевых фрагментов в соединениях 23 и 24 подтверждалось



Схема 6.

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 90 № 3 2020

данными масс-спектрометрии (табл. 2). В спектре ЯМР <sup>31</sup>Р соединения 23 фиксировали синглетный сигнал с химическим сдвигом 50 м. д., в спектре соединения 24 регистрировали 4 синглетных попарно сдвоенных сигнала в этой же области, что обусловлено неэквивалентностью всех квазифосфониевых заместителей за счет их различного расположения в пространстве. В спектрах ЯМР <sup>1</sup>Н и <sup>13</sup>С производных 23 и 24, помимо сигналов атомов водорода и углерода динафтилметанового остова и диазафосфинановых циклов с немного измененными химическими сдвигами по сравнению с исходными диамидофосфитами 5 и 6, фиксировали дублетные сигналы атомов водорода и углерода метильных групп, связанных с атомами фосфора, что подтверждало сохранение циклической структуры фосфорсодержащих фрагментов.

Таким образом, в результате алкилирования дигетерофосфинановых групп, иммобилизованных на динафтилметановой платформе, синтезирована серия новых соединений, содержащих Р–С связь и различающихся количеством, природой и структурой фосфорсодержащих фрагментов.

#### ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Все эксперименты проводили в абсолютированных обескислороженных растворителях в атмосфере аргона. Эксперименты с использованием микроволнового облучения проводили в реакторе CEM Discover (Focused MicrowaveTM Synthesis System Discover) (50–150 Вт, 2455 МГц). Спектры ЯМР <sup>1</sup>H, <sup>13</sup>С (внутренний стандарт – ТМС) и <sup>31</sup>Р (внешний стандарт – 85% Н<sub>3</sub>РО<sub>4</sub>) для всех соединений записывали на спектрометре Jeol ECX-400 (с рабочей частотой для ядер <sup>13</sup>С 100.5 МГц, для ядер <sup>31</sup>Р 161.8 МГц). Для точного отнесения сигналов синтезированных соединений использовали <sup>1</sup>Н-<sup>1</sup>Н гомоядерный двойной резонанс и <sup>1</sup>Н-<sup>13</sup>С Масс-спектры 2D-корреляцию. регистрировали на приборе Bruker Ultraflex TOF/TOF (Bruker Daltonics GmbH), матрица – 1,8,9-тригидроксиантрацен. Элементный анализ проводили на CHN анализаторе Thermo Flash EA112. ИК спектры регистрировали на спектрометре Nicolete 380 Thermo в режиме отражения в диапазоне 4000-500 см<sup>-1</sup> на ZnSe стекле.

2,2'-Дигидроксидинафтилметан 7а, 2,2',7,7'-тетрагидроксидинафтилметан 76, 2-диэтиламидо-

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 90 № 3 2020

1,3,2-дигетерофосфинаны 8, а также фосфодинафтилметаны 1 и 2 были получены по известным методикам [27–29, 24,25].

Общая методика синтеза фосфодинафтилметанов 3–6. Раствор 0.5 ммоль динафтилметана 7а/76 и 1.5/3.0 ммоль 2-диэтиламидо-1,3,2-дигетофосфинана 86/8в в 2 мл ацетонитрила выдерживали 48 ч при 20°С. Кристаллы отфильтровывали, промывали ацетонитрилом и сушили при 70–75°С (1 мм рт. ст.). Для выделения динафтилметана 4 реакционную смесь полностью упаривали, добавляли к остатку 0.5 мл хлороформа и осаждали продукт 15 мл гексана. Осадок отфильтровывали, промывали гексаном и сушили при 70–75°С (1 мм рт. ст.).

2,2'-Ди-(1,3,2-диоксафосфинанил)динафтилметан (3). Выход 93%, бесцветные кристаллы, т. пл. 156–158°С (СН<sub>2</sub>СN) {т. пл. 156–158°С (диоксан) [25]}. Спектр ЯМР <sup>1</sup>Н (CDCl<sub>3</sub>), б, м. д.: 1.62 м (2H, CH<sub>2</sub>,  ${}^{3}J_{HH} = 2.2$ ,  ${}^{2}J_{HH} = 14.2$ ,  ${}^{4}J_{PH} = 4.4$  Гц), 2.53 м (2H, CH<sub>2</sub>,  ${}^{3}J_{HH} = 4.6, {}^{2}J_{HH} = 13.7$  Гц), 3.88 м (4H, OCH<sub>2</sub>,  ${}^{3}J_{PH} = 1.8$ ,  ${}^{3}J_{HH} = 4.6$ ,  ${}^{2}J_{HH} = 11.5 \Gamma \mu$ ), 4.63 M (4H, OCH<sub>2</sub>,  ${}^{3}J_{HH} = 1.8$ ,  ${}^{2}J_{HH} = 12.4$ ,  ${}^{3}J_{PH} =$ 5.0 Гц), 5.06 с (2H, CH<sub>2</sub>), 7.31 м (4H, H<sup>6,7</sup>,  ${}^{3}J_{HH}$  = 6.9,  ${}^{3}J_{\text{HH}} = 9.6$  Гц), 7.43 д (2H, H<sup>3</sup>,  ${}^{3}J_{\text{HH}} = 9.1$  Гц), 7.69 д (2H, H<sup>4</sup>,  ${}^{3}J_{HH} = 8.7 \Gamma$ ц), 7.73 д (2H, H<sup>8</sup>,  ${}^{3}J_{HH} =$ 7.8 Гц), 8.26 д (2Н, Н<sup>5</sup>, <sup>3</sup>*J*<sub>НН</sub> = 8.2 Гц). Спектр ЯМР <sup>13</sup>С (CDCl<sub>3</sub>), δ<sub>C</sub>, м. д.: 23.6 (CH<sub>2</sub>), 28.5 д (CH<sub>2</sub>,  ${}^{3}J_{CP} = 5.7 \text{ }\Gamma\text{u}$ ), 60.3 (OCH<sub>2</sub>), 119.9  $\mu$  (C<sup>3</sup>,  ${}^{3}J_{CP} =$ 13.4 Гц), 124.1 (C<sup>6</sup>), 124.5 (C<sup>5</sup>), 125.8 (C<sup>1</sup>), 126.7  $(C^7)$ , 128.3  $(C^4)$ , 128.5  $(C^8)$ , 130.8  $(C^{10})$ , 133.9  $(C^9)$ , 148.31 д (С<sup>2</sup>ОР,  ${}^{2}J_{CP} = 6.7$  Гц). Спектр ЯМР  ${}^{31}$ Р (CDCl<sub>3</sub>): бр 124.36 м. д. Масс-спектр, *m/z*: 509.1 [*M*]<sup>+</sup>.

**2,2',7,7'-Тетра-(1,3,2-диоксафосфинанил)динафтилметан (4).** Выход 60%, белый порошок, т. пл. 140–141°С. Спектр ЯМР<sup>1</sup> Н (CDCl<sub>3</sub>),  $\delta$ , м. д.: 1.58 д. д (2H, CH<sub>2</sub>, <sup>4</sup>*J*<sub>PH</sub> = 1.9, <sup>2</sup>*J*<sub>HH</sub> =14.3 Гц), 1.64 д. д (2H, CH<sub>2</sub>, <sup>4</sup>*J*<sub>PH</sub> = 1.9, <sup>2</sup>*J*<sub>HH</sub> = 14.1 Гц), 2.51 м (4H, CH<sub>2</sub>, <sup>3</sup>*J*<sub>HH</sub> = 4.9, <sup>3</sup>*J*<sub>HH</sub> = 14.2 Гц), 3.78 м (4H, OCH<sub>2</sub>, <sup>3</sup>*J*<sub>HH</sub> = 4.1, <sup>3</sup>*J*<sub>HH</sub> = 7.8, <sup>3</sup>*J*<sub>PH</sub> = 11.0 Гц), 3.89 м (4H, OCH<sub>2</sub>, <sup>3</sup>*J*<sub>HH</sub> = 4.1, <sup>3</sup>*J*<sub>HH</sub> = 7.8, <sup>3</sup>*J*<sub>PH</sub> = 10.5 Гц), 4.48 м (4H, OCH<sub>2</sub>, <sup>3</sup>*J*<sub>HH</sub> = 11.9 Гц), 4.74 м (4H, OCH<sub>2</sub>, <sup>3</sup>*J*<sub>HH</sub> = 8.7, <sup>4</sup>*J*<sub>PH</sub> = 1.8 Гц), 7.32 д (2H, H<sup>6</sup>, <sup>3</sup>*J*<sub>HH</sub> = 8.7 Гц), 7.61 д (2H, H<sup>4</sup>, <sup>3</sup>*J*<sub>HH</sub> = 9.1 Гц), 7.66 д (2H, H<sup>5</sup>, <sup>3</sup>*J*<sub>HH</sub> = 8.7 Гц), 7.83 с (2H, H<sup>8</sup>). Спектр ЯМР <sup>13</sup>С (CDCl<sub>3</sub>),  $\delta_{\rm C}$ , м. д.: 23.4 (CH<sub>2</sub>), 28.4 д (CH<sub>2</sub>, <sup>3</sup>*J*<sub>CP</sub> = 5.8 Гц), 28.5 д (CH<sub>2</sub>, <sup>3</sup>*J*<sub>CP</sub> = 4.8 Гц), 59.9 (OCH<sub>2</sub>), 60.4 (ОСН<sub>2</sub>), 112.8 д (С<sup>8</sup>,  ${}^{3}J_{CP}$  = 8.6 Гц), 118.8 (С<sup>6</sup>), 118.9 д (С<sup>3</sup>,  ${}^{3}J_{CP}$  = 3.8 Гц), 125.1 (С<sup>1</sup>), 127.5 (С<sup>9</sup>), 127.9 (С<sup>4</sup>), 130.3 (С<sup>5</sup>), 135.1 (С<sup>10</sup>), 148.9 д (С<sup>2</sup>,  ${}^{2}J_{CP}$  = 6.7 Гц), 151.08 д (С<sup>7</sup>,  ${}^{2}J_{CP}$  = 6.7 Гц). Спектр ЯМР <sup>31</sup>Р (CDCl<sub>3</sub>),  $\delta_{\rm P}$ , м. д.: 124.5, 123.77. Масс-спектр, *m/z*: 748 [*M* + H]<sup>+</sup>. Найдено, %: С 56.98; Н 6.42; Р 14.26. С<sub>41</sub>H<sub>52</sub>O<sub>12</sub>P<sub>4</sub>. Вычислено, %: С 57.21; Н 6.09; Р 14.3.

2,2'-Ди-(N,N'-диметил-1,3,2-диазафосфинанил)динафтилметан (5). Выход 85%, бесцветные кристаллы, т. пл. 158–159°С. Спектр ЯМР <sup>1</sup>Н (CDCl<sub>3</sub>), б, м. д.: 1.83 уш. м (4H, CH<sub>2</sub>), 2.15 уш. м (4H, CH<sub>2</sub>), 2.79 уш. д (16H, NCH<sub>3</sub>, NCH<sub>2</sub>, <sup>3</sup>*J*<sub>PH</sub> = 11.0 Гц), 3.42 уш. м (8H, NCH<sub>2</sub>), 5.01 с (2H, CH<sub>2</sub>), 7.21 м (4H, H<sup>6,7</sup>, <sup>3</sup>J<sub>HH</sub> = 7.8 Гц), 7.48 д (2H, H<sup>3</sup>,  ${}^{3}J_{\text{HH}} = 8.7 \,\Gamma$ ц), 7.63 м (4H, H<sup>4,5</sup>,  ${}^{3}J_{\text{HH}} = 7.8 \,\Gamma$ ц), 8.38 д (2H, H<sup>8</sup>,  ${}^{3}J_{\text{HH}}$  = 8.2 Гц). Спектр ЯМР  ${}^{13}$ С (CDCl<sub>3</sub>), δ<sub>C</sub>, м. д.: 22.3 (CH<sub>2</sub>), 25.8 (CH<sub>2</sub>), 40.5 д (NCH<sub>3</sub>, <sup>3</sup>*J*<sub>CP</sub> = 31.6 Гц), 45.1 д (NCH<sub>2</sub>, <sup>3</sup>*J*<sub>CP</sub> = 5.8 Гц), 120.2 д (C<sup>3</sup>,  ${}^{3}J_{CP} = 16.3$  Гц), 123.3 (C<sup>6/7</sup>), 124.9 (C<sup>8</sup>), 125.5 (C<sup>1</sup>), 125.9 (C<sup>6/7</sup>), 127.9 (C<sup>4/5</sup>), 128.2 (C<sup>4/5</sup>), 130.0 (С10), 134.2 (С9), 150.8 (С2). Спектр ЯМР <sup>31</sup>Р (CDCl<sub>3</sub>): бр 126.64 м. д. Масс-спектр, *m/z*: 560 [M]<sup>+</sup>. Найдено, %: С 66.51; Н 6.85; N 10.00. С<sub>31</sub>Н<sub>38</sub>О<sub>2</sub>Р<sub>2</sub>N<sub>4</sub>. Вычислено, %: С 66.42; Н 6.83; N 9.99.

2,2',7,7'-Тетра-(*N*,*N*'-диметил-1,3,2диазафосфинанил)динафтилметан (6). Выход 97%, мелко-кристаллический порошок белого цвета, т. пл. 168–170°С. Спектр ЯМР <sup>1</sup>Н (CDCl<sub>2</sub>), δ, м. д.: 1.70 уш. м (2Н, СН<sub>2</sub>), 1.77 уш. м (2Н, СН<sub>2</sub>), 1.99 уш. м (2Н, СН<sub>2</sub>), 2.10 уш. м (2Н, СН<sub>2</sub>), 2.20 д (6H, NCH<sub>3</sub>, <sup>3</sup>*J*<sub>PH</sub> = 42.4 Гц), 2.35 д (6H, NCH<sub>3</sub>, <sup>3</sup>*J*<sub>PH</sub> = 42.4 Гц), 2.47 уш. м (4H, NCH<sub>2</sub>), 2.53 уш. м (4H, NCH<sub>2</sub>), 2.73 д (6H, NCH<sub>3</sub>,  ${}^{3}J_{PH} = 42.4$  Гц), 2.80 д (6H, NCH<sub>3</sub>, <sup>3</sup>*J*<sub>PH</sub> = 42.4 Гц), 3.06 уш. м (4H, NCH<sub>2</sub>), 3.38 уш. м (4H, NCH<sub>2</sub>), 4.93 с (2H, CH<sub>2</sub>), 6.92 д (2H, H<sup>3</sup>,  ${}^{3}J_{\text{HH}} = 8.4$  Гц), 7.25 д (2H, H<sup>6</sup>,  ${}^{3}J_{\rm HH}$  = 8.4 Гц), 7.53 м (4H, H<sup>4,5</sup>,  ${}^{3}J_{\rm HH}$  = 6.9,  ${}^{3}J_{\rm HH}$  = 8.2 Гц), 7.55 с (2Н, Н8). Спектр ЯМР <sup>13</sup>С (CDCl<sub>3</sub>), δ<sub>C</sub>, м. д.: 23.1 (CH<sub>2</sub>), 25.9 (CH<sub>2</sub>), 26.0 (CH<sub>2</sub>), 40.0 д (NCH<sub>3</sub>,  ${}^{2}J_{CP}$  = 30.7 Гц), 40.4 д (NCH<sub>3</sub>,  ${}^{2}J_{CP}$  = 31.6 Гц), 44.5 д (NCH<sub>2</sub>, <sup>2</sup>J<sub>CP</sub> = 42.2 Гц), 44.9 д (NCH<sub>3</sub>,  ${}^{2}J_{CP} = 45.0$  Гц), 113.4 д (C<sup>8</sup>,  ${}^{3}J_{CP} = 7.7$  Гц), 118.8 д (C<sup>3</sup>,  ${}^{3}J_{CP} = 15.3$  Гц), 119.1 д (C<sup>6</sup>,  ${}^{3}J_{CP} =$ 7.7 Гц), 124.7 (С1), 126.3 (С10), 127.3 (С4), 129.4 (C<sup>5</sup>), 135.3 (C<sup>9</sup>), 151.2 (C<sup>2</sup>), 154.2 (C<sup>7</sup>). Спектр ЯМР <sup>31</sup>Р (CDCl<sub>3</sub>), б<sub>р</sub>, м. д.: 127.71, 126.99. Массспектр, *m/z*: 852 [*M*]<sup>+</sup>. Найдено, %: С 57.78; Н 7.13; N 13.10. С<sub>41</sub>Н<sub>60</sub>О<sub>4</sub>Р<sub>4</sub>N<sub>8</sub>. Вычислено, %: С 57.74; Н 7.09; N 13.14.

Общая методика алкилирования соединений 1, 2. В ампулу помещали раствор 0.06 ммоль фосфодинафтилметана 1/2 в 2 мл 1,2-дихлорбензола и 0.3/0.6 ммоль алкилирующего реагента. Ампулу помещали в микроволновой реактор и выдерживали в условиях, указанных в табл. 1. Для выделения фосфонатов 9-13 реакционные смеси медленно выливали в 50 мл охлажденного до 0°С гексана. Гексан декантировали, масляный слой промывали холодным гексаном (3×5 мл) и сушили в вакууме (1 мм рт. ст.) при 70-75°С. Тетрафосфонаты 14-16 выделяли с помощью колоночной хроматографии. В качестве элюента использовали гексан (15-20 мл), который затем заменяли на смесь бензол:диоксан = 3:2 (14), 5:2 (15), 3:1 (16). Растворители полностью упаривали, остаток сушили в вакууме (1 мм рт. ст.) при 70-75°С.

2,2'-Ди-(3-иод-2,2-диметилпропоксиметилфосфонато)-1,1-динафтилметан (9). Выход 70%, светло-коричневое масло, Rf 0.5, 0.6 (бензол:диоксан = 5:1). ИК спектр, v, см<sup>-1</sup>: 1267.0 (P=O), 1208.9 (Р=О), 1127.3 (Р-О), 1033.7 (Р-О). Спектр ЯМР <sup>1</sup>Н (CDCl<sub>3</sub>), б, м. д.: 0.91 с [3H, C(CH<sub>3</sub>)<sub>2</sub>], 0.92 c [3H, C(CH<sub>3</sub>)<sub>2</sub>], 0.96 c [3H, C(CH<sub>3</sub>)<sub>2</sub>], 0.97 c [3H, C(CH<sub>3</sub>)<sub>2</sub>], 1.33 д (3H, PCH<sub>3</sub>,  ${}^{2}J_{PH} = 17.4$  Гц), 1.35 д  $(3H, PCH_3, {}^2J_{PH} = 17.4 \Gamma \mu), 3.04 м (2H, CH_2I, {}^2J_{HH} =$ 7.3 Гц), 3.06 м (2H, CH<sub>2</sub>I,  ${}^{2}J_{HH} = 6.0$  Гц), 3.61 м (2H,  $CH_2O$ ,  ${}^{3}J_{PH} = 9.7$ ,  ${}^{3}J_{HH} = 5.5$  Гц), 3.74 м (4H,  $CH_2O$ ,  ${}^{3}J_{\text{PH}} = 9.6, \; {}^{3}J_{\text{HH}} = 5.5 \; \Gamma \mu$ ), 4.94 c (2H, Naph-CH<sub>2</sub>-Naph), 7.38 д. д (4H, H<sup>3,7</sup>,  ${}^{3}J_{HH} = 5.5$ ,  ${}^{3}J_{HH} = 7.8 \Gamma$ ц), 7.69 д. д (4H, H<sup>4,6</sup>,  ${}^{3}J_{\text{HH}} = 5.5$ ,  ${}^{3}J_{\text{HH}} = 9.2$  Гц), 7.78 д. д (2H, H<sup>8</sup>,  ${}^{3}J_{\text{HH}} = 6.4$ ,  ${}^{3}J_{\text{HH}} = 9.1$  Гц), 8.11 д. д  $(2H, H^5, {}^3J_{HH} = 6.9, {}^3J_{HH} = 7.3 \Gamma$ ц). Спектр ЯМР  ${}^{13}$ С (CDCl<sub>3</sub>),  $\delta_{\rm C}$ , м. д.: 10.5 д (РСH<sub>3</sub>, <sup>1</sup>*J*<sub>CP</sub> = 145.7 Гц), 11.8 д (PCH<sub>3</sub>,  ${}^{1}J_{CP} = 147.3 \Gamma$ ц), 18.4 (CH<sub>2</sub>I), 23.7 (C<u>C</u>H<sub>3</sub>), 23.8 (С<u>С</u>H<sub>3</sub>), 24.1 (СH<sub>2</sub>), 35.0 д (<u>С</u>СH<sub>3</sub>,  ${}^{3}J_{CP}$  = 7.7 Гц), 72.6 д (CH<sub>2</sub>O, <sup>2</sup>*J*<sub>CP</sub> = 6.7 Гц), 72.7 д (CH<sub>2</sub>O,  ${}^{2}J_{CP} = 6.7 \ \Gamma_{II}$ , 120.3 (C<sup>8</sup>), 124.3 (C<sup>3</sup>), 125.1 (C<sup>7</sup>), 126.9 (C<sup>6</sup>), 128.5 (C<sup>4</sup>), 128.8 (C<sup>5,1</sup>), 131.4 (C<sup>10</sup>), 133.3 (C<sup>9</sup>), 146.3 д (C<sup>2</sup>,  ${}^{2}J_{CP} = 8.6$  Гц), 146.4 д (C<sup>2</sup>,  ${}^{2}J_{CP} =$ 8.6 Гц). Спектр ЯМР <sup>31</sup>Р (CDCl<sub>3</sub>), бр. м. д.: 29.14, 29.09. Масс-спектр, m/z: 848.4 [M]<sup>+</sup>. Найдено, %: С 46.83; Н 4.98. С<sub>33</sub>Н<sub>40</sub>І<sub>2</sub>О<sub>6</sub>Р<sub>2</sub>. Вычислено, %: С 46.71; H 4.75.

2,2'-Ди-(3-иод-2,2-диметилпропоксиметилфосфонато)-1,1-динафтилметан (9\*) выде-

лен из смеси метилфосфонатов 9 с помощью колоночной хроматографии (бензол:диоксан = 5:1). Выход 30%, бесцветное масло,  $R_{\rm f}$  0.5 (бензол:диоксан = 5:1). ИК спектр, v, см<sup>-1</sup>: 1267.0 (Р=О), 1208.9 (P=O), 1127.3 (P–O), 1033.7 (P–O). Спектр ЯМР <sup>1</sup>Н (CDCl<sub>3</sub>), б, м. д.: 0.91 с [6H, С(CH<sub>3</sub>)<sub>2</sub>], 0.97 с [6H,  $C(CH_3)_2$ ], 1.33 д (6H, PCH<sub>3</sub>, <sup>2</sup> $J_{PH}$  = 17.4 Гц), 3.04 д (2H, CH<sub>2</sub>I,  ${}^{2}J_{\text{HH}} = 10.8 \ \Gamma$ ц), 3.06 д (2H, CH<sub>2</sub>I,  ${}^{2}J_{\text{HH}} =$ 9.64 Гц), 3.61 д. д (2H, CH<sub>2</sub>O,  ${}^{3}J_{PH} = 10.8$ ,  ${}^{3}J_{HH} =$ 4.56 Гц), 3.74 д. д (2H, CH<sub>2</sub>O,  ${}^{3}J_{HH} = 9.6$ ,  ${}^{3}J_{HH} =$ 5.5 Гц), 4.94 с (2H, CH<sub>2</sub>), 7.38 д. д (4H, H<sup>3,7</sup>,  ${}^{3}J_{HH} =$ 4.2,  ${}^{3}J_{\rm HH} = 7.4 \ \Gamma \mu$ ), 7.69 м (4H, H<sup>4,6</sup>,  ${}^{3}J_{\rm HH} = 5.5$ ,  ${}^{3}J_{\rm HH} = 9.2$  Гц), 7.78 д (2H, H<sup>8</sup>,  ${}^{3}J_{\rm HH} = 8.7$  Гц), 8.11 д  $(2H, H^5, {}^3J_{HH} = 6.9 \Gamma ц)$ . Спектр ЯМР  ${}^{13}$ С (CDCl<sub>3</sub>), δ<sub>C</sub>, м. д.: 11.8 д (РСН<sub>3</sub>, <sup>1</sup>*J*<sub>PC</sub> = 145.7 Гц), 18.5 (СН<sub>2</sub>I), 23.7 (C<u>C</u>H<sub>3</sub>), 23.8 (C<u>C</u>H<sub>3</sub>), 24.2 (CH<sub>2</sub>), 35.0 д (<u>C</u>CH<sub>3</sub>),  ${}^{3}J_{\rm PC} = 7.7$  Гц), 72.7 д (ОСН<sub>2</sub>,  ${}^{2}J_{\rm CP} = 6.7$  Гц), 120.3 (C<sup>8</sup>), 124.3 (C<sup>3</sup>), 125.1 (C<sup>7</sup>), 126.9 (C<sup>6</sup>), 128.5 (C<sup>4</sup>), 128.8 (C<sup>5,1</sup>), 131.4 (C<sup>10</sup>), 133.3 (C<sup>9</sup>), 146.36 д (C<sup>2</sup>,  $^{2}J_{CP} = 8.6 \ \Gamma$ ц). Спектр ЯМР <sup>31</sup>Р (CDCl<sub>3</sub>):  $\delta_{P}$  29.11 м. д. Масс-спектр, *m/z*: 848.4 [*M*]<sup>+</sup>. Найдено, %: С 46.83; Н 4.98. С<sub>33</sub>Н<sub>40</sub>І<sub>2</sub>О<sub>6</sub>Р<sub>2</sub>. Вычислено, %: С 46.71; H 4.75.

2,2'-Ди-(3-иод-2,2-диметилпропоксиэтилфосфонато)-1,1-динафтилметан (10). Выход 64%, темно-желтое масло, R<sub>f</sub> 0.55, 0.63 (бензол:диоксан = 6:1). ИК спектр, v, cm<sup>-1</sup>: 1254.2 (P=O), 1048.8 (P–O). Спектр ЯМР <sup>1</sup>Н (CDCl<sub>3</sub>), б, м. д.: 0.90 с [3Н,  $C(CH_3)_2$ , 0.93 c [3H,  $C(CH_3)_2$ ], 0.96 c [3H,  $C(CH_3)_2$ ], 0.97 с [3H, C(CH<sub>3</sub>)<sub>2</sub>], 1.33 м (3H, PCH<sub>2</sub>C<u>H<sub>3</sub></u>, <sup>3</sup>*J*<sub>PH</sub> = 14.2,  ${}^{3}J_{\text{HH}} = 7.3$  Гц), 1.35 м (3H, PCH<sub>2</sub>C<u>H<sub>3</sub></u>,  ${}^{3}J_{\text{PH}} =$ 14.2,  ${}^{3}J_{\text{HH}} = 6.4$  Гц), 1.75 м (4H, PC<u>H</u><sub>2</sub>CH<sub>3</sub>,  ${}^{2}J_{\text{PH}} =$ 14.2,  ${}^{3}J_{HH} = 7.3 \Gamma$ ц), 3.04 м (2H, CH<sub>2</sub>I,  ${}^{2}J_{HH} = 9.6 \Gamma$ ц), 3.07 м (2H, CH<sub>2</sub>I,  ${}^{2}J_{HH} = 10.0$  Гц), 3.67 м (2H, CH<sub>2</sub>O,  ${}^{3}J_{\rm PH} = 10.0, {}^{2}J_{\rm HH} = 5.5 \,\Gamma {\rm II}, 3.81 \,{\rm M} \,(2{\rm H}, {\rm CH}_{2}{\rm O}, {}^{3}J_{\rm PH} =$ 9.6, <sup>2</sup>*J*<sub>HH</sub> = 5.5 Гц), 4.94 с (2H, CH<sub>2</sub>), 7.34 м (4H,  $H^{3,7}$ ,  ${}^{3}J_{HH} = 6.4$ ,  ${}^{3}J_{HH} = 9.6$  Γμ), 7.70 м (4H,  $H^{4,6}$ ,  ${}^{3}J_{\rm HH} = 6.8, \, {}^{3}J_{\rm HH} = 9.6$  Гц), 8.09 м (4H, H<sup>8,5</sup>,  ${}^{3}J_{\rm HH} =$ 6.4,  ${}^{3}J_{\text{HH}} = 9.4$  Гц). Спектр ЯМР  ${}^{13}$ С (CDCl<sub>3</sub>),  $\delta_{\text{C}}$ , м. д.: 6.7 д (РСН<sub>2</sub><u>С</u>Н<sub>3</sub>, <sup>2</sup>*J*<sub>СР</sub> = 6.7 Гц), 18.4 (СН<sub>2</sub>I), 19.1 д (Р<u>С</u>H<sub>2</sub>CH<sub>3</sub>,  ${}^{1}J_{CP}$  = 141.9 Гц), 23.8 (С<u>С</u>H<sub>3</sub>), 23.9 (CH<sub>2</sub>), 35.1 д (<u>C</u>CH<sub>3</sub>, <sup>3</sup>*J*<sub>CP</sub> = 7.1 Гц), 72.73 д (CH<sub>2</sub>O,  ${}^{2}J_{\text{PC}}$  = 6.7 Гц), 120.37 (C<sup>8</sup>), 124.37 (C<sup>3</sup>), 125.04 (C<sup>7</sup>), 125.8 (C<sup>1</sup>), 126.75 (C<sup>6</sup>), 128.63 (C<sup>4</sup>), 128.73 (C<sup>5</sup>),131.42 (C<sup>10</sup>), 133.36 (C<sup>9</sup>), 146.2  $\mu$  (C<sup>2</sup>,  ${}^{2}J_{CP}$  = 9.6 Гц), 146.3 д (С<sup>2</sup>, <sup>2</sup>*J*<sub>CP</sub> = 9.6 Гц). Спектр ЯМР <sup>31</sup>Р (CDCl<sub>3</sub>): бр 32.09 м. д. Масс-спектр, *m/z*: 876.9 [*M*]<sup>+</sup>. Найдено, %: С 47.83; Н 4.98. С<sub>35</sub>H<sub>44</sub>I<sub>2</sub>O<sub>6</sub>P<sub>2</sub>. Вычислено, %: С 47.96; Н 5.06.

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 90 № 3 2020

2,2'-Ди-(3-бром-2,2-диметилпропоксибензилфосфонато)-1,1-динафтилметан (11). Выход 75%, зеленое масло, Rf 0.41, 0.56 (гексан:этилацетат = 1:1). ИК спектр, v, см<sup>-1</sup>: 1245.3 (P=O), 1209.8 (Р=О), 1035.7 (Р-О). Спектр ЯМР <sup>1</sup>Н (CDC1<sub>3</sub>), δ, м. д.: 0.79 с [3H, C(CH<sub>3</sub>)<sub>2</sub>], 0.81 с [3H,  $C(CH_3)_2$ , 0.82 c [3H,  $C(CH_3)_2$ ], 0.83 c [3H,  $C(CH_3)_2$ ], 2.95 м (4H, PCH<sub>2</sub>), 3.08 уш. с (4H, CH<sub>2</sub>Br), 3.67 м (2H, CH<sub>2</sub>O,  ${}^{3}J_{PH} = 10.6$ ,  ${}^{2}J_{HH} = 5.48 \Gamma \mu$ ), 4.75 c (2H, CH<sub>2</sub>), 7.19 ym. c (10H, Ph), 7.39 M (2H, H<sup>7</sup>,  ${}^{3}J_{HH} = 5.5, {}^{3}J_{HH} =$ 7.8 Гц), 7.70 м (4H, H<sup>3,4</sup>,  ${}^{3}J_{\rm HH}$  = 8.7 Гц), 7.70 м (2H,  $H^{6}$ ,  ${}^{3}J_{HH} = 7.8$ ,  ${}^{3}J_{HH} = 5.6 \Gamma \mu$ ), 7.78 m (4H, H<sup>8,5</sup>,  ${}^{3}J_{HH} =$ 5.9,  ${}^{3}J_{\text{HH}} = 9.6$  Гц). Спектр ЯМР  ${}^{13}$ С (CDCl<sub>3</sub>),  $\delta_{\text{C}}$ , м. д.: 22.7 (С<u>С</u>Н<sub>3</sub>), 23.8 (СН<sub>2</sub>), 33.4 д (РСН<sub>2</sub>, <sup>1</sup>*J*<sub>СР</sub> = 138.9 Гц), 36.2 д (<u>С</u>СН<sub>3</sub>,  ${}^{3}J_{CP}$  = 6.7 Гц), 41.8 (CH<sub>2</sub>Br), 72.2 д (ОСН<sub>2</sub>, <sup>2</sup>*J*<sub>CP</sub> =7.6 Гц), 120.4 (С<sup>6</sup>), 124.5 (С<sup>5</sup>), 125.2 (С<sup>7</sup>), 126.0 д (С<sup>3</sup>,  ${}^{3}J_{CP} = 4.8$  Гц), 126.8 (Ph), 127.3 (Ph), 128.6 (C<sup>4</sup>), 128.8 (C<sup>8</sup>), 130.0 (Ph), 130.6 (Ph), 131.5 (C<sup>10</sup>), 133.4 (C<sup>9</sup>), 146.3  $\mu$  (C<sup>2</sup>, <sup>2</sup> $J_{CP}$  = 9.5 Гц), 146.4 д (С<sup>2</sup>, <sup>2</sup>*J*<sub>CP</sub> = 8.6 Гц). Спектр ЯМР <sup>31</sup>Р (CDCl<sub>3</sub>), б<sub>р.</sub> м. д.: 24.69, 24.61. Масс-спектр, *m/z*: 906.9 [*M*]<sup>+</sup>, 928.9 [*M* + Na]<sup>+</sup>. Найдено, %: С 59.20; Н 5.68. С<sub>45</sub>Н<sub>48</sub>Вr<sub>2</sub>О<sub>6</sub>Р<sub>2</sub>. Вычислено, %: С 59.62; Н 5.34.

2,2'-Ди-(3-бром-2,2-диметилпропоксиэтилацетатофосфонато)-1,1-динафтилметан (12). Выход 70%, темно-желтое масло, R<sub>f</sub> 0.92 (гексан:этилацетат = 10:1). ИК спектр, v, см<sup>-1</sup>: 1737.3 (C=O), 1279.7 (P=O), 1210.3 (P=O), 1031.1 (P-O), 1002.5 (Р–О). Спектр ЯМР <sup>1</sup>Н (CDCl<sub>3</sub>), б, м. д.: 0.90 c [3H, C(CH<sub>3</sub>)<sub>2</sub>], 0.92 c [3H, C(CH<sub>3</sub>)<sub>2</sub>], 0.95 с [3H, С(СН<sub>3</sub>)<sub>2</sub>], 0.97 с [3H, С(СН<sub>3</sub>)<sub>2</sub>], 1.16 т (3H, OCH<sub>2</sub>C<u>H</u><sub>3</sub>,  ${}^{3}J_{\text{HH}} = 7.3 \ \Gamma \text{II}$ , 1.35 T (3H, OCH<sub>2</sub>C<u>H</u><sub>3</sub>,  ${}^{3}J_{\rm HH} = 6.4 \, \Gamma {\rm II}$ , 2.96 M (4H, PC<u>H</u><sub>2</sub>,  ${}^{3}J_{\rm PH} = 14.2$ ,  ${}^{3}J_{\text{HH}} = 7.3 \,\Gamma \text{u}$ ), 3.04 c (2H, CH<sub>2</sub>Br), 3.07 c (2H, CH<sub>2</sub>Br), 3.67 м (2H, CH<sub>2</sub>O,  ${}^{3}J_{PH} = 10.0$ ,  ${}^{3}J_{HH} = 5.5$  Гц), 3.81 м (2H, CH<sub>2</sub>O,  ${}^{3}J_{\text{HH}} = 9.6$ ,  ${}^{3}J_{\text{HH}} = 5.5$  Гц), 4.09 к (4H,  $OCH_2CH_3$ ,  ${}^3J_{HH} = 6.8$  Гц), 4.94 с (2H, CH<sub>2</sub>), 7.34 м  $(4H, H^{3,7}, {}^{3}J_{HH} = 6.4, {}^{3}J_{HH} = 9.6 \Gamma \mu), 7.70 \text{ M} (4H, H^{4,6},$  ${}^{3}J_{\text{HH}} = 6.8, \, {}^{3}J_{\text{HH}} = 9.6 \, \Gamma \text{II}$ ), 8.09 м (4H, H<sup>8,5</sup>,  ${}^{3}J_{\text{HH}} =$ 6.4,  ${}^{3}J_{\text{HH}} = 9.4$  Гц). Спектр ЯМР  ${}^{13}$ С (CDCl<sub>3</sub>),  $\delta_{\text{C}}$ , м. д.: 14.1 (ОСН<sub>2</sub><u>С</u>Н<sub>3</sub>), 22.7 (С<u>С</u>Н<sub>3</sub>), 22.8 (С<u>С</u>Н<sub>3</sub>), 23.8 (CH<sub>2</sub>), 34.1 д (РСН<sub>2</sub>, <sup>1</sup>*J*<sub>СР</sub> = 137.1 Гц), 35.5 д  $(PCH_2, {}^{1}J_{CP} = 135.2 \Gamma \mu), 36.2 (\underline{C}CH_3), 42.7 (CH_2Br),$ 62.1 (О<u>С</u>H<sub>2</sub>CH<sub>3</sub>), 72.7 д (ОСH<sub>2</sub>,  ${}^{2}J_{CP} = 6.7$  Гц), 120.2 (С<sup>6</sup>), 124.4 (С<sup>5</sup>), 125.3(С<sup>7</sup>), 126.0 д (С<sup>3</sup>,  ${}^{3}J_{CP} =$ 4.8 Γμ), 128.5 (C<sup>4</sup>), 128.8 (C<sup>8</sup>), 131.6 (C<sup>10</sup>), 133.3 (С<sup>9</sup>), 146.4 д (С<sup>2</sup>, <sup>2</sup>*J*<sub>СР</sub> = 8.6 Гц), 165.1 д (С=О,

<sup>2</sup>*J*<sub>CP</sub>=5.8 Гц), 165.2 (C=O). Спектр ЯМР<sup>31</sup>Р (CDCl<sub>3</sub>), δ<sub>р</sub>, м. д.: 18.24, 18.19. Масс-спектр, *m/z*: 921.1 [*M* + Na]<sup>+</sup>. Найдено, %: C 52.20; H 5.18. C<sub>39</sub>H<sub>48</sub>Br<sub>2</sub>O<sub>10</sub>P<sub>2</sub>. Вычислено, %: C 52.13; H 5.38.

2,2',7,7'-Тетра-(3-иод-2,2-диметилпропоксиметилфосфонато)-1,1-динафтилметан (13). Выход 74%, бесцветное масло, R<sub>f</sub> 0.35, 0.50, 0.57 (бензол:диоксан = 3:2). ИК спектр, v, см<sup>-1</sup>: 1255.9 (Р=О), 1207.6 (Р=О), 1037.7 (Р-О). Спектр ЯМР <sup>1</sup>Н (CDCl<sub>3</sub>), б, м. д.: 0.93 с [6Н, С(CH<sub>3</sub>)<sub>2</sub>], 0.94 с [6H, C(CH<sub>3</sub>)<sub>2</sub>], 1.00 c [6H, C(CH<sub>3</sub>)<sub>2</sub>], 1.04 c [6H, С(CH<sub>3</sub>)<sub>2</sub>], 1.45 уш. д (6Н, РСН<sub>3</sub>, <sup>2</sup>*J*<sub>PH</sub> = 18.3 Гц), 1.52 уш. д (3H, PCH<sub>3</sub>, <sup>2</sup>*J*<sub>PH</sub> = 17.9 Гц), 3.05 м (4H, CH<sub>2</sub>I,  $^{2}J_{\rm HH} = 10.1$  Гц), 3.11 м (2H, CH<sub>2</sub>I,  $^{2}J_{\rm HH} = 9.1$  Гц), 3.63 уш. м (2H, CH<sub>2</sub>O), 3.80 уш. м (4H, CH<sub>2</sub>O), 3.90 уш. м  $(2H, CH_2O), 4.84 c (2H, CH_2), 7.33 \exists (2H, H^3, {}^{3}J_{HH} =$ 8.7 Гц), 7.63 д (4H, H<sup>4/6</sup>,  ${}^{3}J_{\text{HH}} = 9.2$  Гц), 7.70 д (4H,  $H^{4/6}$ ,  ${}^{3}J_{HH} = 8.7 \Gamma$ ц), 7.78 д (2H,  $H^{5,8}$ ,  ${}^{3}J_{HH} = 8.7 \Gamma$ ц). Спектр ЯМР <sup>13</sup>С (CDCl<sub>3</sub>),  $\delta_{\rm C}$ , м. д.: 10.9 д (PCH<sub>3</sub>,  ${}^{1}J_{CP} = 145.7 \text{ Gm}$ , 11.1 g (PCH<sub>3</sub>,  ${}^{1}J_{CP} = 147.6 \text{ Gm}$ ), 11.2 д (РСН<sub>3</sub>,  ${}^{1}J_{PC} = 145.7 \Gamma$ ц), 11.3 д (РСН<sub>3</sub>,  ${}^{1}J_{CP} =$ 145.7 Гц), 18.5 (CH<sub>2</sub>I), 23.8 (C<u>C</u>H<sub>3</sub>), 23.9 (C<u>C</u>H<sub>3</sub>), 24.3 (CH), 35.0  $\mu$  (<u>C</u>CH<sub>3</sub>, <sup>3</sup>J<sub>CP</sub>=6.7  $\Gamma$  $\mu$ ), 35.1  $\mu$  (<u>C</u>CH<sub>3</sub>,  ${}^{3}J_{CP} = 6.7$  Гц), 72.3 (CH<sub>2</sub>O), 72.8 д (OCH<sub>2</sub>,  ${}^{2}J_{CP} =$ 7.7 Гц), 114.3 (С<sup>8</sup>), 119.9 (С<sup>6</sup>), 125.1 (С<sup>3,4</sup>), 128.5 (С1), 128.9 (С5), 130.9 (С10), 134.1 (С9), 147.2 д (С2,  ${}^{2}J_{CP} = 8.6$  Гц), 149.1 д (С<sup>7</sup>,  ${}^{2}J_{CP} = 8.6$  Гц). Спектр ЯМР <sup>31</sup>Р (CDCl<sub>3</sub>), б<sub>р</sub>, м. д.: 28.55, 28.66, 29.35, 29.46. Масс-спектр, m/z: 1428.7 [M]+. Найдено, %: С 37.91; Н 4.98. С<sub>45</sub>Н<sub>64</sub>І<sub>4</sub>О<sub>12</sub>Р<sub>4</sub>. Вычислено, %: С 37.84; H 4.52.

2,2',7,7'-Тетра-(3-иод-2,2-диметилпропоксиэтилфосфонато)-1,1-динафтилметан (14). Выход 74%, темно-желтое масло,  $R_{\rm f}$  0.52 (бензол:диоксан = 3:2). ИК спектр, v, см<sup>-1</sup>: 1248.1 (Р=О), 1209.3 (Р=О), 1029.0 (Р-О). Спектр ЯМР <sup>1</sup>Н (CDCl<sub>3</sub>), б, м. д.: 0.91–1.01 [24H, С(СН<sub>3</sub>)<sub>2</sub>], 1.45 м (12H, РСН<sub>2</sub><u>СН<sub>3</sub></u>), 1.70-1.89 м (8Н, Р<u>СН</u><sub>2</sub>СН<sub>3</sub>), 3.04 уш. с (4Н, СН<sub>2</sub>I), 3.08 уш. с (4H, CH<sub>2</sub>I), 3.65 уш. м (2H, CH<sub>2</sub>O), 3.78 уш. м (4H, CH<sub>2</sub>O), 3.88 уш. м (2H, CH<sub>2</sub>O), 4.84 с (2H, CH<sub>2</sub>), 7.34 д (2H, H<sup>3</sup>, <sup>3</sup>*J*<sub>HH</sub> = 8.3 Гц), 7.68–7.75 м (8H, H<sup>4-6,8</sup>). Спектр ЯМР <sup>13</sup>С (CDCl<sub>3</sub>), δ<sub>C</sub>, м. д.: 6.7 (PCH<sub>2</sub><u>CH<sub>3</sub></u>), 6.8 (PCH<sub>2</sub><u>CH<sub>3</sub></u>), 18.4 (CH<sub>2</sub>I), 18.8 д (P<u>CH</u><sub>2</sub>CH<sub>3</sub>,  ${}^{1}J_{CP} = 140.9$  Гц), 18.9 д (P<u>CH</u><sub>2</sub>CH<sub>3</sub>,  ${}^{1}J_{CP} = 140.9$  Гц), 23.8 (С<u>С</u>Н<sub>3</sub>), 24.0 (СН<sub>2</sub>), 35.1 д (<u>С</u>СН<sub>3</sub>,  ${}^{3}J_{CP} = 6.7 \Gamma$ ц), 35.2 д (<u>С</u>СН<sub>3</sub>,  ${}^{3}J_{CP} = 6.7 \Gamma$ ц), 72.1 д (CH<sub>2</sub>O,  ${}^{2}J_{CP}$  = 6.7 Гц), 72.8 д (CH<sub>2</sub>O,  ${}^{2}J_{CP}$  = 6.7 Γμ), 114.3 (C<sup>8</sup>), 120.1 (C<sup>6</sup>), 125.1 (C<sup>3</sup>), 128.5 (C<sup>4</sup>), 128.9 (С<sup>1,5</sup>), 130.7 (С<sup>10</sup>), 134.2 (С<sup>9</sup>), 147.0 д (С<sup>2</sup>,  ${}^{2}J_{CP} = 8.6 \ {\rm Fu}$ ), 149.2 д (С<sup>7</sup>,  ${}^{2}J_{CP} = 7.6 \ {\rm Fu}$ ). Спектр ЯМР <sup>31</sup>Р (CDCl<sub>3</sub>),  $\delta_{\rm P}$ , м. д.: 31.33, 31.39. Масс-спектр, *m/z*: 1484.7 [*M*]<sup>+</sup>. Найдено, %: С 39.91; Н 4.98. С<sub>49</sub>H<sub>72</sub>I<sub>4</sub>O<sub>12</sub>P<sub>4</sub>. Вычислено, %: С 39.64; Н 4.89.

2,2',7,7'-Тетра-(3-бром-2,2-диметилпропоксибензилфосфонато)-1,1-динафтилметан (15). Выход 81%, темно-вишневое масло,  $R_{\rm f}$  0.79 (бензол:диоксан = 5:2). ИК спектр, v, см<sup>-1</sup>: 1247.2 (P=O), 1203.2 (Р=О), 1028.7 (Р-О), 1014.2 (Р-О). Спектр ЯМР <sup>1</sup>Н (CDC1<sub>3</sub>), б, м. д.: 0.80 с [12H, C(CH<sub>3</sub>)<sub>2</sub>], 0.82 c [12H, C(CH<sub>3</sub>)<sub>2</sub>], 3.14 ym. c (16H, PCH<sub>2</sub>, CH<sub>2</sub>Br), 3.75 уш. м (8Н, CH<sub>2</sub>O), 4.63 с (2Н, CH<sub>2</sub>), 7.21 уш. с (26H, Ph, H<sup>3</sup>), 7.62 м (4H, H<sup>4,6</sup>), 7.72 м (4H, H<sup>5,8</sup>). Спектр ЯМР <sup>13</sup>С (CDCl<sub>3</sub>), δ<sub>C</sub>, м. д.: 22.7 (С<u>С</u>H<sub>3</sub>), 24.0 (СH<sub>2</sub>), 33.4 д (РСH<sub>2</sub>,  ${}^{1}J_{PC} = 134.2$  Гц), 36.2 (<u>C</u>CH<sub>3</sub>, <sup>3</sup>J<sub>CP</sub> = 5.8 Гц), 41.8 (CH<sub>2</sub>Br), 71.6 д  $(OCH_2, {}^2J_{CP} = 6.7 \Gamma \mu), 72.3 (OCH_2), 114.4(C^8), 120.1$ (C<sup>6</sup>), 125.3 (C<sup>3</sup>), 127.3 (Ph), 128.5(C<sup>4</sup>), 128.8(C<sup>1</sup>), 128.9 (C<sup>5</sup>), 129.9 (Ph), 130.0 (Ph), 130.6 (Ph), 130.8 (C<sup>10</sup>), 134.1 (C<sup>9</sup>), 147.1 (C<sup>2</sup>), 149.2 д (C<sup>7</sup>,  ${}^{2}J_{CP} =$ 6.7 Гц). Спектр ЯМР <sup>31</sup>Р (CDCl<sub>3</sub>), б<sub>Р</sub>, м. д.: 24.91, 24.08. Масс-спектр, *m/z*: 1566.9 [*M*+Na]<sup>+</sup>. Найдено, %: C 53.40; H 4.98. C<sub>45</sub>H<sub>64</sub>Br<sub>4</sub>O<sub>12</sub>P<sub>4</sub>. Вычислено, %: C 53.64; H 5.22.

2,2',7,7'-Тетра-(3-бром-2,2-диметилпропоксиэтилацетатофосфонато)-1,1-динафтилметан (16). Выход 79%, темно-желтое масло, R<sub>f</sub> 0.49 (бензол:диоксан = 3:1). ИК спектр, v, см<sup>-1</sup>: 1732.9 (C=O), 1265.9 (P=O), 1200.8 (P=O), 1027.4 (P-O). Спектр ЯМР <sup>1</sup>Н (CDC1<sub>3</sub>), б, м. д.: 0.96 уш. с [24Н, С(CH<sub>3</sub>)<sub>2</sub>], 1.19 м (12H, OCH<sub>2</sub>CH<sub>3</sub>), 2.98 м (8H, PCH<sub>2</sub>), 3.24 уш. с (8H, CH<sub>2</sub>Br), 3.86 м (4H, CH<sub>2</sub>O), 3.98 м (4H, CH<sub>2</sub>O), 4.09 м (8H, O<u>CH</u><sub>2</sub>CH<sub>3</sub>), 4.90 с (2H, CH<sub>2</sub>), 7.33 м (2Н, Н<sup>3</sup>), 7.68-7.83 м (8Н, Н<sup>4-6,8</sup>). Спектр ЯМР <sup>13</sup>С (CDCl<sub>3</sub>), δ<sub>C</sub>, м. д.: 14.1 (OCH<sub>2</sub><u>C</u>H<sub>3</sub>), 14.2 (OCH<sub>2</sub><u>C</u>H<sub>3</sub>), 22.7 (C<u>C</u>H<sub>3</sub>), 22.8 (C<u>C</u>H<sub>3</sub>), 24.0 (CH<sub>2</sub>), 33.86 д (РСН<sub>2</sub>,  ${}^{1}J_{CP} = 136.1$  Гц), 34.14 д (РСН<sub>2</sub>,  ${}^{1}J_{CP} = 138.9 \ \Gamma \mu$ ), 36.2  $\mu$  (CCH<sub>3</sub>,  ${}^{3}J_{CP} = 6.7 \ \Gamma \mu$ ), 41.8 (CH<sub>2</sub>Br), 61.8 (O<u>C</u>H<sub>2</sub>CH<sub>3</sub>), 61.9 (O<u>C</u>H<sub>2</sub>CH<sub>3</sub>), 72.2 д (ОСН<sub>2</sub>, <sup>2</sup>*J*<sub>CP</sub> =6.7 Гц), 72.8 д (ОСН<sub>2</sub>, <sup>2</sup>*J*<sub>CP</sub> = 6.7 Γμ), 114.6 (C<sup>8</sup>), 120.2 (C<sup>6</sup>), 125.4 (C<sup>3</sup>), 128.4 (C<sup>4</sup>), 128.6 (C<sup>1</sup>), 129.2 (C<sup>5</sup>), 130.8 (C<sup>10</sup>), 134.0 (C<sup>9</sup>), 146.8 д (С<sup>2</sup>, <sup>2</sup>*J*<sub>PC</sub> = 6.7 Гц), 148.8 д (С<sup>7</sup>, <sup>2</sup>*J*<sub>PC</sub> = 6.7 Гц), 165.1 (C=O). Спектр ЯМР <sup>31</sup>Р (CDCl<sub>3</sub>), б<sub>р</sub>, м. д.: 17.12, 18.29. Масс-спектр, *m/z*: 1528.8 [*M*]<sup>+</sup>, 1550.9 [*M* + Na]<sup>+</sup>. Найдено, %: С 44.52; Н 5.30. С<sub>45</sub>H<sub>64</sub>Br<sub>4</sub>O<sub>12</sub>P<sub>4</sub>. Вычислено, %: С 44.78; Н 5.27.

Алкилирование 2,2'-ди-1,3,2-диоксафосфинанилдинафтилметана 3. а. Смесь 0.2 ммоль фосфодинафтилметана 3 и 1 ммоль алкилирующего реагента (MeI, EtI) в 2 мл 1,2-дихлорбензола выдерживали в микроволновом реакторе 30 мин при 100°С. Продукты реакции (17\* и 18; 19\* и 20) выделяли с помощью колоночной хроматографии. В качестве элюента использовали смесь бензол:диоксан = 5:1. После удаления растворителей остаток сушили в вакууме (1 мм рт. ст.) при 70–75°С.

б. Смесь 0.2 ммоль фосфодинафтилметана **3** и 2 ммоль алкилирующего реагента (MeI, EtI, BrCH<sub>2</sub>COOEt) в 2 мл 1,2-дихлорбензола выдерживали в микроволновом реакторе 30 мин при 100°С. Для выделения соединений **17**, **21** реакционные смеси охлаждали до комнатной температуры и медленно выливали в 50 мл охлажденного до 0°С гексана. Растворитель декантировали, остаток трижды промывали гексаном (5 мл) и сушили в вакууме (1 мм рт. ст.) при 70–75°С. Соединения **19**\* и **20** выделяли с помощью колоночной хроматографии, используя в качестве элюента смесь бензол:диоксан = 5:1. После удаления растворителей остаток сушили в вакууме (1 мм рт. ст.) при 70–75°С.

*в.* Смесь 0.2 ммоль фосфодинафтилметана **3** и 1 ммоль алкилирующего реагента (MeI, EtI) в 2 мл диоксана выдерживали 1 (MeI) или 3 ч (EtI) при 100°С в микроволновом реакторе. Для выделения соединений **17** реакционную смесь охлаждали до комнатной температуры и медленно выливали в 50 мл охлажденного до 0°С гексана. Растворитель декантировали, остаток трижды промывали гексаном (5 мл) и сушили в вакууме (1 мм рт. ст.) при 70–75°С.

**2,2'-Ди-(3-иодпропоксиметилфосфонато)-1,1динафтилметан (17\*)**. Выход 14% (метод *a*), бесцветное масло,  $R_f$  0.2. ИК спектр, v, см<sup>-1</sup>: 1242.5 (P=O), 1208.2 (P=O), 1181.9 (P–O), 1030.1 (P–O). Спектр ЯМР <sup>1</sup>H (CDCl<sub>3</sub>),  $\delta$ , м. д.: 1.31 д (6H, PCH<sub>3</sub>, <sup>2</sup>J<sub>PH</sub> = 17.9 Гц), 1.97 м (4H, CH<sub>2</sub>, <sup>3</sup>J<sub>HH</sub> = 2.1, <sup>3</sup>J<sub>HH</sub> = 6.4 Гц), 3.07 м (4H, CH<sub>2</sub>I, <sup>2</sup>J<sub>HH</sub> = 1.9, <sup>3</sup>J<sub>HH</sub> = 6.9 Гц), 3.91 м (2H, CH<sub>2</sub>O, <sup>3</sup>J<sub>PH</sub> = 10.1, <sup>3</sup>J<sub>HH</sub> = 6.4 Гц), 4.02 м (2H, CH<sub>2</sub>O, <sup>3</sup>J<sub>PH</sub> = 10.6, <sup>3</sup>J<sub>HH</sub> = 5.9 Гц), 4.92 с (2H, CH<sub>2</sub>), 7.40 м (4H, H<sup>6,7</sup>, <sup>3</sup>J<sub>HH</sub> = 9.1, <sup>3</sup>J<sub>HH</sub> = 7.8 Гц), 7.69 м (4H, H<sup>3,4</sup>, <sup>3</sup>J<sub>HH</sub> = 8.7 Гц), 7.79 д (2H, H<sup>5</sup>, <sup>3</sup>J<sub>HH</sub> = 9.2 Гц), 8.10 д (2H, H<sup>8</sup>, <sup>3</sup>J<sub>HH</sub> = 7.4 Гц). Спектр ЯМР <sup>13</sup>С (CDCl<sub>3</sub>),  $\delta_{\rm C}$ , м. д.: 1.2 (CH<sub>2</sub>I), 11.5 д (PCH<sub>3</sub>, <sup>1</sup>J<sub>CP</sub> = 144.7 Гц), 24.2 (CH<sub>2</sub>), 33.8 д (CH<sub>2</sub>, <sup>3</sup>J<sub>CP</sub> = 6.7 Гц), 65.9 д (CH<sub>2</sub>O, <sup>2</sup>J<sub>CP</sub> = 6.7 Гц),

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 90 № 3 2020

120.2 (С<sup>3</sup>), 124.3 (С<sup>8</sup>), 125.1 (С<sup>7</sup>), 125.8 д (С<sup>1</sup>,  ${}^{2}J_{CP} = 6.7 \Gamma$ ц), 126.9 (С<sup>6</sup>), 128.6 (С<sup>4</sup>), 128.8 (С<sup>5</sup>), 131.4 (С<sup>10</sup>), 133.3 (С<sup>9</sup>), 146.3 д (С<sup>2</sup>,  ${}^{2}J_{CP} = 8.6 \Gamma$ ц). Спектр ЯМР <sup>31</sup>Р (CDCl<sub>3</sub>):  $\delta_{\rm P}$  29.33 м. д. Масс-спектр, *m/z*: 792 [*M*]<sup>+</sup>. Найдено, %: С 43.83; Н 4.18. С<sub>29</sub>H<sub>32</sub>I<sub>2</sub>O<sub>6</sub>P<sub>2</sub>. Вычислено, %: С 43.96; Н 4.07.

2,2'-Ди-(3-иодпропоксиметилфосфонато)-1,1динафтилметан (смесь изомеров) (17). Выход 70% (метод б), 87% (метод в), бесцветное масло,  $R_{\rm f}$ 0.2, 0.18. ИК спектр, v, см<sup>-1</sup>: 1242.6 (Р=О), 1207.4 (Р=О), 1182.7 (Р-О), 1028.5 (Р-О). Спектр ЯМР <sup>1</sup>Н (CDCl<sub>3</sub>), б, м. д.: 1.30 д (3Н, РСН<sub>3</sub>, <sup>1</sup>*J*<sub>PH</sub> = 17.4 Гц), 1.35 д (3H, PCH<sub>3</sub>, <sup>1</sup>*J*<sub>PH</sub> = 17.8 Гц), 1.95 м (4H, CH<sub>2</sub>,  ${}^{3}J_{\text{HH}} = 2.7, \, {}^{3}J_{\text{HH}} = 6.4 \, \Gamma \text{II}$ ), 3.05 m (2H, CH<sub>2</sub>I,  ${}^{2}J_{\text{HH}} =$ 1.9,  ${}^{3}J_{\text{HH}} = 5.1$  Гц), 3.07 м (2H, CH<sub>2</sub>I,  ${}^{2}J_{\text{HH}} = 2.3$ ,  ${}^{3}J_{\text{HH}} = 5.0 \,\Gamma_{\text{H}}$ , 3.91 м (2H, CH<sub>2</sub>O,  ${}^{3}J_{\text{PH}} = 10.1$ ,  ${}^{3}J_{\text{HH}} =$ 5.9 Гц), 4.02 м (2H, CH<sub>2</sub>O,  ${}^{3}J_{PH} = 9.2$ ,  ${}^{3}J_{HH} = 6.0$  Гц), 4.92 c (2H, CH<sub>2</sub>), 7.40 m (4H, H<sup>6,7</sup>,  ${}^{3}J_{HH} = 6.9$ ,  ${}^{3}J_{HH} =$ 7.8 Гц), 7.69 д (2H, H<sup>3</sup>, <sup>3</sup>*J*<sub>HH</sub> = 8.7 Гц), 7.78 м (2H,  $H^{4,5}$ ,  ${}^{3}J_{HH} = 6.4$ ,  ${}^{3}J_{HH} = 8.7 \Gamma \mu$ ),  $8.10 \mu$  (2H,  $H^{8}$ ,  ${}^{3}J_{HH} =$ 7.8 Гц). Спектр ЯМР <sup>13</sup>С (CDCl<sub>3</sub>), б<sub>С</sub>, м. д.: 1.21 (CH<sub>2</sub>I), 1.24 (CH<sub>2</sub>I), 11.2 д (РСН<sub>3</sub>, <sup>1</sup>*J*<sub>CP</sub> = 144.7 Гц), 11.3 д (РСН<sub>3</sub>, <sup>1</sup>*J*<sub>СР</sub> = 144.7 Гц), 24.1 (СН<sub>2</sub>), 33.7 д (CH<sub>2</sub>, <sup>3</sup>*J*<sub>CP</sub> = 5.7 Гц), 33.8 д (CH<sub>2</sub>, <sup>3</sup>*J*<sub>CP</sub> = 5.7 Гц), 65.9 д (CH<sub>2</sub>O,  ${}^{2}J_{CP} = 6.7 \Gamma$ ц), 66.0 д (CH<sub>2</sub>O,  ${}^{2}J_{CP} = 6.7 \Gamma$ ц), 120.2 (C<sup>3</sup>), 124.3 (C<sup>8</sup>), 125.2 (C<sup>7</sup>), 125.8 (C<sup>1</sup>,  ${}^{3}J_{CP} =$ 6.7 Γμ), 126.9 (C<sup>6</sup>), 128.6 (C<sup>4</sup>), 128.8 (C<sup>5</sup>), 131.4 (С<sup>10</sup>), 133.3 (С<sup>9</sup>), 146.40 д (С<sup>2</sup>, <sup>2</sup>*J*<sub>CP</sub> = 8.6 Гц) 146.44 д (C<sup>2</sup>, <sup>2</sup>*J*<sub>CP</sub>=8.6Гц). Спектр ЯМР <sup>31</sup>Р (CDCl<sub>3</sub>), *б*<sub>P</sub>, м. д.: 29.41, 29.36. Масс-спектр, *m/z*: 792 [*M*]<sup>+</sup>. Найдено, %: C 43.85; H 4.16. C<sub>29</sub>H<sub>32</sub>I<sub>2</sub>O<sub>6</sub>P<sub>2</sub>. Вычислено, %: C 43.96; H 4.07.

2,2'-Ди-(3-иодпропоксиэтилфосфонато)-1,1динафтилметан (19\*). Выход 19% (метод *a*), 38% (метод  $\delta$ ), бесцветное масло,  $R_{\rm f}$  0.36. ИК спектр, v, см<sup>-1</sup>: 1264.6 (Р=О), 1210.4 (Р=О), 1182.7 (Р–О), 1060.2 (Р-О). Спектр ЯМР <sup>1</sup>Н (CDCl<sub>3</sub>), б, м. д.: 1.13 м (6H, PCH<sub>2</sub>C<u>H</u><sub>3</sub>,  ${}^{3}J_{PH} = 20.6$ ,  ${}^{3}J_{HH} = 7.8$  Гц), 1.75 м (4H, PC<u>H</u><sub>2</sub>CH<sub>3</sub>,  ${}^{2}J_{PH} = 18.3$ ,  ${}^{3}J_{HH} = 7.8$  Гц), 1.98 м (4H, CH<sub>2</sub>,  ${}^{3}J_{HH} = 8.3$ ,  ${}^{3}J_{HH} = 5.9$  Гц), 3.04 м (4H,  $CH_2I, {}^2J_{HH} = 6.8, {}^3J_{HH} = 7.4$  Гц), 3.95 м (2H, CH<sub>2</sub>O,  ${}^{3}J_{\rm HH} = 10.5, \, {}^{2}J_{\rm HH} = 6.4, \, {}^{3}J_{\rm PH} = 2.8$  Гц), 4.07 м (2H, CH<sub>2</sub>O,  ${}^{3}J_{\text{HH}} = 8.2$ ,  ${}^{2}J_{\text{HH}} = 6.4$ ,  ${}^{3}J_{\text{PH}} = 2.3 \ \Gamma_{\text{II}}$ ), 4.94 с (2H, CH<sub>2</sub>), 7.36 м (4H, H<sup>3,6</sup>,  ${}^{3}J_{HH} = 6.9$ ,  ${}^{3}J_{HH} =$ 9.6 Гц), 7.77 м (4H, H<sup>4,7</sup>,  ${}^{3}J_{\text{HH}} = 7.8, {}^{3}J_{\text{HH}} = 9.6$  Гц), 8.09 м (4H, H<sup>5,8</sup>,  ${}^{3}J_{HH} = 6.9$ ,  ${}^{3}J_{HH} = 9.4$  Гц). Спектр ЯМР <sup>13</sup>С (CDCl<sub>3</sub>), <sub>6</sub>С, м. д.: 1.1 (CH<sub>2</sub>I), 6.7 д  $(PCH_2CH_3, ^2J_{CP} = 7.8 \ \Gamma \mu), 19.2 \ \pi (PCH_2CH_3, ^1J_{CP} =$ 

142.8 Гц,), 23.9 (CH<sub>2</sub>), 34.0 д (CH<sub>2</sub>,  ${}^{3}J_{CP} = 5.8$  Гц), 66.14 д (CH<sub>2</sub>O,  ${}^{2}J_{CP} = 6.7$  Гц), 120.2 (C<sup>3</sup>), 124.3 (C<sup>8</sup>), 125.1 (C<sup>6</sup>), 125.84 д (C<sup>1</sup>,  ${}^{3}J_{CP} = 5.8$  Гц), 126.8 (C<sup>7</sup>), 128.6 (C<sup>4</sup>), 128.7 (C<sup>5</sup>), 131.4 (C<sup>10</sup>), 133.4 (C<sup>9</sup>), 146.3 д (C<sup>2</sup>,  ${}^{2}J_{CP} = 9.6$  Гц). Спектр ЯМР <sup>31</sup>P (CDCl<sub>3</sub>):  $\delta_{P}$ 32.52 м. д. Масс-спектр, *m/z*: 820 [*M*]<sup>+</sup>. Найдено, %: С 45.53; H 4.38. C<sub>31</sub>H<sub>36</sub>I<sub>2</sub>O<sub>6</sub>P<sub>2</sub>. Вычислено, %: C 45.39; H 4.42.

2,2'-Ди-(3-иодпропоксиэтилацетатофосфонато)-1,1-динафтилметан (смесь изомеров) (21). Выход 75% (метод  $\delta$ ), бесцветное масло, *R*<sub>f</sub> 0.36, 0.32. ИК спектр, v, см<sup>-1</sup>: 1731.7 (С=О), 1261.9 (Р=О), 1203.1 (Р=О), 1112.5 (Р-О). Спектр ЯМР  $^{1}$ H (CDCl<sub>3</sub>),  $\delta$ , м. д.: 1.17т (3H, OCH<sub>2</sub>CH<sub>3</sub>,  $^{3}J_{HH}$  = 6.9 Гц), 1.18 т (3H, OCH<sub>2</sub>C<u>H</u><sub>3</sub>,  ${}^{3}J_{HH} = 6.2$  Гц), 2.06 уш. с (4H, CH<sub>2</sub>), 2.90 м (4H, PCH<sub>2</sub>,  ${}^{2}J_{HH} = 10.8$ ,  ${}^{2}J_{PH} =$ 15.6 Гц), 3.33 м (4H, OC<u>H</u><sub>2</sub>CH<sub>3</sub>,  ${}^{3}J_{\text{HH}} = 6.2$  Гц), 4.08 м (6H, CH<sub>2</sub>O, CH<sub>2</sub>Br,  ${}^{3}J_{PH} = 12.4$ ,  ${}^{3}J_{HH} = 5.5$  Гц), 4.24 м (2H, CH<sub>2</sub>O,  ${}^{3}J_{\text{PH}} = 11.4$ ,  ${}^{3}J_{\text{HH}} = 5.9$  Гц), 4.95 с (2H, CH<sub>2</sub>), 7.38 м (4H, H<sup>3,6</sup>,  ${}^{3}J_{\rm HH}$  = 6.9 Гц), 7.74 м (6H,  $H^{4,5,7}$ ,  ${}^{3}J_{HH} = 8.2$ ,  ${}^{3}J_{HH} = 9.6$  Гц), 8.06 уш. д (2H, H<sup>8</sup>,  ${}^{3}J_{\text{HH}} = 8.1$  Гц). Спектр ЯМР  ${}^{13}$ С (CDCl<sub>3</sub>),  $\delta_{\text{C}}$ , м. д.: 14.1 (CH<sub>2</sub><u>C</u>H<sub>3</sub>), 23.8 (CH<sub>2</sub>), 28.8 (<u>C</u>H<sub>2</sub>CH<sub>3</sub>), 28.9 (<u>CH</u><sub>2</sub>CH<sub>3</sub>), 33.2 д (CH<sub>2</sub>,  ${}^{3}J_{CP} = 6.7$  Гц), 34.7 д (PCH<sub>2</sub>,  ${}^{1}J_{CP} = 138.0 \ \Gamma$ ц), 62.0 (CH<sub>2</sub>Br), 65.4 д (CH<sub>2</sub>O,  ${}^{2}J_{CP} =$ 6.7 Гц), 65.4 д (CH<sub>2</sub>O,  ${}^{2}J_{CP} = 5.8$  Гц), 120.1 (C<sup>3</sup>), 124.3 (С<sup>8</sup>), 125.3 (С<sup>6</sup>), 126.05 д (С<sup>1</sup>,  ${}^{3}J_{CP} = 4.8$  Гц), 126.9 (C<sup>7</sup>), 128.8 (C<sup>4</sup>), 128.8 (C<sup>5</sup>), 131.1 (C<sup>10</sup>), 133.3 (C<sup>9</sup>), 146.0 д (C<sup>2</sup>,  ${}^{2}J_{CP} = 8.6 \Gamma$ ц), 165.1 д (C=O,  ${}^{2}J_{CP} =$ 4.8 Гц), 165.2 д (С=О, <sup>3</sup>*J*<sub>CP</sub> = 4.8 Гц). Спектр ЯМР <sup>31</sup>Р (CDCl<sub>3</sub>), бр. м. д.: 18.62, 18.53. Масс-спектр, *m/z*: 843 [*M*]<sup>+</sup>, 865 [*M* + Na]<sup>+</sup>. Найдено, %: С 49.53; Н 4.38. С<sub>35</sub>Н<sub>40</sub>Вr<sub>2</sub>О<sub>10</sub>Р<sub>2</sub>. Вычислено, %: С 49.90; Н 4.79.

8-Метил-16*H*-динафто[2,1-*d*:1',2'-*g*][1,3,2]диоксафосфоцин-8-оксид (18). Выход 25% (метод *a*), белый порошок, т. пл. 188–190°С,  $R_{\rm f}$  0.45. ИК спектр, v, см<sup>-1</sup>: 1263.0 (P=O), 1210.8 (P=O), 1059.3 (P–O). Спектр ЯМР <sup>1</sup>H (CDCl<sub>3</sub>), δ, м. д.: 1.94 д (3H, PCH<sub>3</sub>, <sup>2</sup>J<sub>PH</sub> = 17.9 Гц), 4.92 д. д (2H, CH<sub>2</sub>, <sup>2</sup>J<sub>HH</sub> = 16.0 Гц), 7.21 д (2H, H<sup>3</sup>, <sup>3</sup>J<sub>HH</sub> = 8.7 Гц), 7.45 д. д (2H, H<sup>6/7</sup>, <sup>3</sup>J<sub>HH</sub> = 6.9, <sup>3</sup>J<sub>HH</sub> = 7.8 Гц), 7.55 д. д (2H, H<sup>6/7</sup>, <sup>3</sup>J<sub>HH</sub> = 7.8, <sup>3</sup>J<sub>HH</sub> = 6.9 Гц), 7.55 д (2H, H<sup>4</sup>, <sup>3</sup>J<sub>HH</sub> = 8.7 Гц), 7.4 д (2H, H<sup>5</sup>, <sup>3</sup>J<sub>HH</sub> = 8.3 Гц), 8.25 д (2H, H<sup>8</sup>, <sup>3</sup>J<sub>HH</sub> = 8.2 Гц). Спектр ЯМР <sup>13</sup>С (CDCl<sub>3</sub>),  $\delta_{\rm C}$ , м. д.: 12.7 д (PCH<sub>3</sub>, <sup>1</sup>J<sub>CP</sub> = 146.6 Гц), 24.3 (CH<sub>2</sub>), 120.4 д (C<sup>3</sup>, <sup>3</sup>J<sub>CP</sub> = 4.8 Гц), 123.6 (C<sup>8</sup>), 124.3 д (C<sup>1</sup>, <sup>3</sup>J<sub>CP</sub> = 4.8 Гц), 125.4 (C<sup>6/7</sup>), 127.5 (C<sup>6/7</sup>), 129.1 (C<sup>4</sup>), 129.2 (С<sup>5</sup>), 131.9 (С<sup>10</sup>), 132.9 (С<sup>9</sup>), 148.50 д (С<sup>2</sup>, <sup>2</sup>*J*<sub>CP</sub> = 10.6 Гц). Спектр ЯМР <sup>31</sup>Р (CDCl<sub>3</sub>): δ<sub>P</sub> 26.89 м. д. Масс-спектр, *m/z*: 363 [*M*]<sup>+</sup>. Найдено, %: С 73.73; Н 4.98. С<sub>22</sub>H<sub>17</sub>O<sub>3</sub>P. Вычислено, %: С 73.33; Н 4.76.

8-Этил-16Н-динафто[2,1-d:1',2'-g][1,3,2]диоксафосфоцин-8-оксид (20). Выход 19% (метод a), 13% (метод б), 45% (метод в), белый порошок, т. пл. 183–185°С, R<sub>f</sub> 0.49. ИК спектр, v, см<sup>-1</sup>: 1264.6 (P=O), 1211.2 (P=O), 1161.3 (P-O), 1059.8 (P–O). Спектр ЯМР <sup>1</sup>Н (CDCl<sub>3</sub>), δ, м. д.: 1.45 м (6Н, РСН<sub>2</sub><u>СН</u><sub>3</sub>, <sup>3</sup>*J*<sub>HH</sub> = 7.8, <sup>2</sup>*J*<sub>PH</sub> = 21.5 Гц), 2.21 м (4H, <u>СН</u><sub>2</sub>СН<sub>3</sub>,  ${}^{3}J_{\text{HH}} = 7.8$ ,  ${}^{2}J_{\text{PH}} = 18.8$  Гц), 5.02 д. д (2Н, CH<sub>2</sub>,  ${}^{3}J_{\text{HH}} = 16.0 \,\Gamma\text{ц}$ ), 7.20 д (2H, H<sup>3</sup>,  ${}^{3}J_{\text{HH}} = 8.7 \,\Gamma\text{ц}$ ), 7.45 д. д (2H, H<sup>6/7</sup>,  ${}^{3}J_{\text{HH}} = 7.3$ ,  ${}^{3}J_{\text{HH}} = 7.3$  Гц), 7.55 д. д (2H, H<sup>6/7</sup>,  ${}^{3}J_{\text{HH}} = 7.3$ ,  ${}^{3}J_{\text{HH}} = 6.9$  Гц), 7.75 д (2H, H<sup>4</sup>,  ${}^{3}J_{HH} = 9.2$  Гц), 7.84 д (2H, H<sup>5</sup>,  ${}^{3}J_{HH} = 7.8$  Гц), 8.26 д (2H, H<sup>8</sup>,  ${}^{3}J_{HH} = 8.7$  Гц). Спектр ЯМР  ${}^{13}C$ (CDCl<sub>3</sub>), δ<sub>C</sub>, м. д.: 6.6 д (РСН<sub>2</sub><u>СН</u><sub>3</sub>, <sup>2</sup>*J*<sub>CP</sub> = 7.7 Гц), 19.9 д (Р<u>СН</u><sub>2</sub>CH<sub>3</sub>, <sup>1</sup>*J*<sub>CP</sub> = 142.8 Гц), 24.3 (CH<sub>2</sub>), 120.3 д (C<sup>3</sup>,  ${}^{3}J_{CP}$  = 4.8 Гц), 123.6 (C<sup>8</sup>), 124.3 д (C<sup>1</sup>,  ${}^{3}J_{CP}$  = 4.8 Γμ), 125.3 (C<sup>6/7</sup>), 127.4 (C<sup>6/7</sup>), 129.0 (C<sup>4</sup>), 129.2 (C<sup>5</sup>), 131.8 (C<sup>10</sup>), 132.9 (C<sup>9</sup>), 148.7  $\mu$  (C<sup>2</sup>,  ${}^{2}J_{CP}$  = 11.5 Гц). Спектр ЯМР <sup>31</sup>Р (CDCl<sub>3</sub>): б<sub>Р</sub> 29.68 м. д. Масс-спектр, *m/z*: 375 [*M*]<sup>+</sup>. Найдено, %: С 73.75; Н 4.98. С<sub>22</sub>Н<sub>17</sub>О<sub>3</sub>Р. Вычислено, %: С 73.79; Н 5.12.

Фосфоциклизация 2,2'-ди-(3-иодпропоксиметилфосфонато)-1,1-динафтилметана 17. Раствор 0.34 ммоль фосфодинафтилметана 17 в 2 мл 1,2-дихлорбензола выдерживали в микроволновом реакторе 2 ч при 100°С, затем реакционную смесь охлаждали до комнатной температуры и разделяли с помощью колоночной хроматографии. В качестве элюента использовали смесь бензол:диоксан = 5:1. После удаления растворителя соединение 18 сушили в вакууме (1 мм рт. ст.) при 70–75°С. Выход 64%, белый порошок, т. пл. 188–190°С,  $R_f$  0.45. Спектр ЯМР <sup>31</sup>Р (CDCl<sub>3</sub>):  $\delta_P$  26.89 м. д.

**2,2',7,7'-Тетра-(3-иодпропоксиметилфосфонато)-1,1-динафтилметан (22).** Смесь 0.121 ммоль фосфодинафтилметана **4** и 2.43 ммоль иодистого метила в 2 мл диоксана выдерживали в микроволновом реакторе при 85°С 1.5 ч, затем реакционную смесь частично упаривали и медленно выливали в 20 мл охлажденного до 0°С гексана. Гексан декантировали, масляный слой промывали холодным гексаном (3×5 мл) и сушили в вакууме (1 мм рт. ст.) при 70–75°С. Выход 74%, масло, *R*<sub>f</sub> 0.28, 0.46 (бензол:диоксан = 3:2). ИК спектр, v, см<sup>-1</sup>:

1255.9 (Р=О), 1207.6 (Р=О), 1037.7 (Р-О). Спектр ЯМР <sup>1</sup>H (CDCl<sub>3</sub>), δ, м. д.: 1.39 д (3H, PCH<sub>3</sub>, <sup>2</sup>J<sub>PH</sub> = 17.9 Гц), 1.45 д (3H, PCH<sub>3</sub>, <sup>2</sup>J<sub>PH</sub> = 17.4 Гц), 1.47 д  $(3H, PCH_3, {}^2J_{PH} = 17.4 \Gamma \mu), 1.50 д (3H, PCH_3, {}^2J_{PH} =$ 17.4 Гц), 1.99 уш. м (8Н, СН<sub>2</sub>), 3.05 м (4Н, СН<sub>2</sub>I,  ${}^{3}J_{\text{HH}} = 5.9 \,\Gamma\text{u}$ ), 3.11 м (4H, CH<sub>2</sub>I,  ${}^{3}J_{\text{HH}} = 5.5 \,\Gamma\text{u}$ ), 3.90 уш. м (2H, CH<sub>2</sub>O), 4.06 уш. м (4H, CH<sub>2</sub>O), 4.31 уш. м  $(2H, CH_2O), 4.84 c (2H, CH_2), 7.27 g (2H, H^3, {}^{3}J_{HH} =$ 8.7  $\Gamma$ ц), 7.61 д (2H, H<sup>4</sup>, <sup>3</sup>*J*<sub>HH</sub> = 8.7  $\Gamma$ ц), 7.68 д (2H, H<sup>6</sup>,  ${}^{3}J_{\text{HH}} = 7.4$  Гц), 7.76 уш. д (4H, H ${}^{5,8}$ ,  ${}^{3}J_{\text{HH}} = 8.7$  Гц). Спектр ЯМР <sup>13</sup>С (CDCl<sub>3</sub>), б<sub>С</sub>, м. д.: 1.3 (CH<sub>2</sub>I), 1.4 (CH<sub>2</sub>I), 11.1 д (РСН<sub>3</sub>, <sup>1</sup>*J*<sub>CP</sub> = 142.8 Гц), 11.2 д (РСН<sub>3</sub>, <sup>1</sup>*J*<sub>CP</sub> = 143.8 Гц), 11.3 д (РСН<sub>3</sub>, <sup>1</sup>*J*<sub>CP</sub> = 144.7 Гц), 11.4 д (PCH<sub>3</sub>, <sup>1</sup>*J*<sub>CP</sub> = 143.8 Гц), 24.2 (CH<sub>2</sub>), 33.8 (CH<sub>2</sub>), 33.9 (CH<sub>2</sub>), 65.7 д (CH<sub>2</sub>O, <sup>2</sup>*J*<sub>CP</sub> = 5.8 Гц), 66.2 д (OCH<sub>2</sub>,  $^{2}J_{CP} = 5.8 \ \Gamma \mu$ , 114.3 (C<sup>8</sup>), 119.8 (C<sup>6</sup>), 120.0 (C<sup>3</sup>), 125.1 (C<sup>1</sup>), 128.6 (C<sup>4</sup>), 129.1 (C<sup>5</sup>), 130.9 (C<sup>10</sup>), 134.1 (С<sup>9</sup>), 147.2 д (С<sup>2</sup>, <sup>2</sup>*J*<sub>CP</sub> = 7.7 Гц), 149.1 д (С<sup>7</sup>, <sup>2</sup>*J*<sub>CP</sub> = 8.6 Гц). Спектр ЯМР <sup>31</sup>Р (CDCl<sub>3</sub>), б<sub>Р</sub>, м. д.: 29.57, 29.49, 29.41, 29.30 м. д. Масс-спектр, m/z: 1316 [*M*]<sup>+</sup>. Найдено, %: С 33.91; Н 3.98. С<sub>37</sub>Н<sub>48</sub>І<sub>4</sub>О<sub>12</sub>Р<sub>4</sub>. Вычислено, %: С 33.76; Н 3.68.

2,2'-Ди-(2-метил-N,N'-диметил-1,3,2диазафосфинанил)динафтилметандииодид (23). а. К раствору 0.09 ммоль фосфодинафтилметана 5 в 1 мл растворителя (CHCl<sub>3</sub>, 1,2-дихлорбензол, С<sub>6</sub>Н<sub>6</sub>) добавляли 0.9 ммоль иодистого метила и выдерживали полученную смесь при 20-25°С 8 (CHCl<sub>2</sub>) или 15 сут (1,2-дихлорбензол, С<sub>6</sub>H<sub>6</sub>). Осадок отфильтровывали и промывали растворителем. Остаток сушили в вакууме (1 мм рт. ст.) при 75°С. Выход 82% (СНСІ<sub>3</sub>), 57%, (1,2-дихлорбензол), 94% (С<sub>6</sub>Н<sub>6</sub>), белый порошок, т. пл 160-162°С. Спектр ЯМР <sup>1</sup>Н (ДМСО-*d*<sub>6</sub>), δ, м. д.: 1.64 уш. м (2H, CH<sub>2</sub>), 1.86 уш. м (2H, CH<sub>2</sub>), 2.35 д (6H, PCH<sub>3</sub>,  ${}^{2}J_{\rm PH} = 16.9 \,\Gamma \mu$ ), 2.78 g (12H, NCH<sub>3</sub>,  ${}^{3}J_{\rm PH} = 11.0 \,\Gamma \mu$ ), 3.14 уш. м (4H, NCH<sub>2</sub>), 3.25 уш. м (4H, NCH<sub>2</sub>), 4.97 с (2H, CH<sub>2</sub>), 7.31 д (2H, H<sup>3</sup>,  ${}^{3}J_{HH} = 9.2$  Гц), 7.44 м  $(4H, H^{6,7}, {}^{3}J_{HH} = 9.2, {}^{3}J_{HH} = 6.4 \Gamma ц), 7.95 м (4H, H^{4,5},$  ${}^{3}J_{\text{HH}} = 9.2, {}^{3}J_{\text{HH}} = 6.4 \,\Gamma \mu$ , 8.04 д (2H, H<sup>8</sup>,  $J = 9.6 \,\Gamma \mu$ ). Спектр ЯМР <sup>13</sup>С (ДМСО-*d*<sub>6</sub>),  $\delta_{\rm C}$ , м. д.: 9.9 д (РСН<sub>3</sub>,  ${}^{1}J_{\text{CP}} = 127.5 \, \Gamma$ ц), 23.7 (CH<sub>2</sub>), 24.6 д (CH<sub>2</sub>,  ${}^{2}J_{\text{CP}} = 5.8$ Γμ), 35.4  $\mu$  (NCH<sub>3</sub>, <sup>2</sup> $J_{CP}$  = 5.7 Γμ), 49.7 (NCH<sub>2</sub>), 118.8 д (C<sup>3</sup>,  ${}^{3}J_{CP} = 3.8 \Gamma$ ц), 124.8 (C<sup>8</sup>), 126.5 (C<sup>6/7</sup>), 126.9  $(C^1, {}^{3}J_{CP} = 5.8 \Gamma_{II}), 127.9 (C^{6/7}), 129.4 (C^5), 130.3$ (C<sup>4</sup>), 131.8 (C<sup>10</sup>), 133.1 (C<sup>9</sup>), 144.80  $\mu$  (C<sup>2</sup>, <sup>2</sup>*J*<sub>CP</sub> = 11.5 Гц). Спектр ЯМР <sup>31</sup>Р (ДМСО-*d*<sub>6</sub>): δ<sub>Р</sub> 50.38 м. д. Масс-спектр, *m/z*: 717 [*M* – I]<sup>+</sup>. Найдено, %: С

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 90 № 3 2020

46.92; Н 5.27; N 6.59. С<sub>33</sub>Н<sub>44</sub>О<sub>2</sub>Р<sub>2</sub>N<sub>4</sub>I<sub>2</sub>. Вычислено, %: С 46.93; Н 5.25; N 6.63.

б. К раствору 0.094 ммоль фосфодинафтилметана **5** в 1 мл растворителя (CHCl<sub>3</sub>, 1,2-дихлорбензол) добавляли 1.97 ммоль иодистого метила и выдерживали полученную смесь при 50–55°С 30 ч. Осадок отфильтровывали и промывали растворителем. Остаток сушили в вакууме (1 мм рт. ст.) при 75°С. Выход 80% (CHCl<sub>3</sub>), 55% (1,2-дихлорбензол).

2,2',7,7'-Тетра-(2-метил-N,N'-диметил-1,3,2диазафосфинанил)динафтилметантетраиодид (24). К раствору 0.086 ммоль фосфодинафтилметана 6 в 1 мл растворителя (CHCl<sub>3</sub>, C<sub>6</sub>H<sub>6</sub>) добавляли 1.72 ммоль иодистого метила. Реакционную смесь перемешивали в течение 8 (CHCl<sub>3</sub>) или 15 сут (C<sub>6</sub>H<sub>6</sub>) при 20-25°С. Осадок отфильтровывали и сушили в вакууме (1 мм рт. ст.) при 75°С. Выход 60% (CHCl<sub>3</sub>), 85% (C<sub>6</sub>H<sub>6</sub>), белый порошок, т. пл. 215–217°С. Спектр ЯМР <sup>1</sup>Н (ДМСО-*d*<sub>6</sub>), δ, м. д.: 1.71 уш. м (4Н, СН<sub>2</sub>), 1.86 уш. м (4Н, СН<sub>2</sub>), 2.23 д (6H, PCH<sub>3</sub>, <sup>2</sup>*J*<sub>PH</sub> = 22.0 Гц), 2.29 д (6H, PCH<sub>3</sub>,  ${}^{2}J_{\rm PH} = 21.9$  Гц), 2.30 д (6H, PCH<sub>3</sub>,  ${}^{2}J_{\rm PH} = 22.3$  Гц), 2.35 д (6H, PCH<sub>3</sub>,  ${}^{2}J_{PH}$  = 22.2 Гц), 2.45 д (6H, NCH<sub>3</sub>,  ${}^{3}J_{\rm PH} = 10.5 \ \Gamma \mu$ ), 2.46 д (6H, NCH<sub>3</sub>,  ${}^{3}J_{\rm PH} = 11.0 \ \Gamma \mu$ ), 2.65 уш. м (8H, NCH<sub>2</sub>), 2.75 уш. м. (8H, NCH<sub>2</sub>), 2.87 уш. м (8Н, NCH<sub>2</sub>), 3.06 уш. м (8Н, NCH<sub>2</sub>), 4.78 с (2H, CH<sub>2</sub>), 7.35 уш. м (2H, H<sup>6</sup>,  ${}^{3}J_{HH} = 8.7$  Гц), 7.77 уш. м (2Н, Н<sup>3</sup>, <sup>3</sup>J<sub>HH</sub> = 8.2 Гц), 8.13 уш. м (4Н,  $H^{4,5}$ ,  ${}^{3}J_{HH} = 8.6$  Гц), 8.24 уш. с (2H, H<sup>8</sup>). Спектр ЯМР <sup>13</sup>С (ДМСО-*d*<sub>6</sub>), δ<sub>C</sub>, м. д.: 9.2 д (РСН<sub>3</sub>, <sup>1</sup>*J*<sub>CP</sub> = 139.8 Гц), 10.9 д (РСН<sub>3</sub>, <sup>1</sup>*J*<sub>СР</sub> = 138.9 Гц), 22.8 (CH<sub>2</sub>), 24.5 (CH<sub>2</sub>), 24.6 (CH<sub>2</sub>), 33.1 (NCH<sub>3</sub>), 35.6 (NCH<sub>2</sub>), 45.9 (NCH<sub>3</sub>), 49.3 (NCH<sub>2</sub>), 52.9 (NCH<sub>2</sub>), 115.7 (C<sup>3</sup>), 119.2 (C<sup>8</sup>), 120.8 (C<sup>6</sup>), 126.3 (C<sup>1</sup>), 128.8  $(C^4)$ , 129.2  $(C^5)$ , 130.0  $(C^{10})$ , 133.9  $(C^9)$ , 147.1  $(C^2)$ , 147.7 (С<sup>7</sup>). Спектр ЯМР <sup>31</sup>Р (ДМСО-*d*<sub>6</sub>), б<sub>Р</sub>, м. д.: 51.48, 51.62, 52.29, 52.47. Масс-спектр, *m/z*: 1423 [M]+. Найдено, %: С 38.10; Н 5.15; N 7.92. С<sub>45</sub>H<sub>72</sub>O<sub>4</sub>P<sub>4</sub>N<sub>8</sub>I<sub>4</sub>. Вычислено, %: С 38.05; Н 5.11; N 7.89.

### ФОНДОВАЯ ПОДДЕРЖКА

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект 18-03-00347а).

#### КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

#### СПИСОК ЛИТЕРАТУРЫ

- Pinalli R., Pedrini A., Dalcanale E. // Chem. Soc. Rev. 2018. Vol. 47. P. 7006. doi 10.1039/C8CS00271A
- Jie K., Zhou Y., Yao Y., Huang F. // Chem. Soc. Rev. 2015. Vol. 44. P. 3568. doi 10.1039/C4CS00390J
- Raynal M., Ballester P., Vidal-Ferrana A., van Leeuwen P. W. N. M. // Chem. Soc. Rev. 2014. Vol. 43. P. 1734. doi 10.1039/C3CS60037H
- Deraedt C., Astruc D. // Coord. Chem. Rev. 2016.
  Vol. 324. P. 106. doi doi 10.1016/j.ccr.2016.07.007
- Gokel G.W., Negin S. // Adv. Drug Del. Rev. 2012.
  Vol. 64. P. 784. doi 10.1016/j.addr.2012.01.011
- Leoncini A., Huskens J., Verboom W. // Chem. Soc. Rev. 2017. Vol. 46. P. 7229. doi 10.1039/C7CS00574A
- Burilov V.A., Mironova D.A., Ibragimova R.R., Solovieva S.E., Konig B., Antipin I.S. // RSC Adv. 2015. Vol. 5. P. 101177. doi 10.1039/C5RA18294H
- Hooley R.J., Rebek J., Jr. // Chemistry&Biology. 2009.
  Vol. 16. P. 255. doi 10.1016/j.chembiol.2008.09.015
- Sémeril D., Matt D. // Coord. Chem. Rev. 2014. Vol. 279. P. 58. doi 10.1016/j.ccr.2014.06.019
- Cherenok S., Kalchenko V. // Top Heterocycl. Chem. 2009. Vol. 20. P. 229. doi 10.1007/7081\_2008\_12
- Nifantiev E.E., Maslennikova V.I., Merkulov R.V. // Acc. Chem. Res. 2005. Vol. 38. P. 108. doi 10.1021/ ar0401810
- Антипин И.С., Казакова Э.Х., Хабихер В.Д., Коновалов А.И. // Усп. хим. 1998. Т. 67. № 11. С. 995; Antipin I.S., Kazakova E.Kh., Habicher W.D., Konovalov A.I. // Russ. Chem. Rev. 1998. Vol. 67. N. 11. P. 905. doi 10.1070/RC1998v067n11ABEH000472
- Bhatacharya A.K., Thyagarman G. // Chem. Rev. 1981.
  Vol. 81. P. 415. doi 10.1021/cr00044a004
- Babu B.H., Prasad G.S., Raju C.N., Raoe M.V.B. // Curr. Org. Synth. 2017. Vol. 14. N 6. P. 883. doi 10.2174/157 0179414666161230144455
- Maier L. // Syn. React. Inorg. Metal-Org. Chem. 1976.
  Vol. 6. N 2. P. 133. doi 10.1080/00945717608057350

- Sing G. // J. Org. Chem. 1979. Vol. 44. P. 1060. doi 10.1021/jo01321a007
- Denmark S.E., Kim J.-H. // J. Org. Chem. 1995. Vol. 60. P. 7535. doi 10.1021/jo00128a028
- Denmark S.E., Chien-Tien Chen // J. Org. Chem. 1994.
  Vol. 59. P. 2922. doi 10.1021/jo00090a004
- Afarinkia K., Binch H.M., De Pascale. E. // Synlett. 2000. Vol. 12. P. 1769. doi 10.1055/s-2000-8695
- Afarinkia K., De Pascale E. // Synlett. 2002. Vol. 6. P. 990. doi 10.1055/s-2002-31895
- Shipov A.E., Genkina G.K., Petrovskii P.V., Lyssenko K.A., Mastryukova T.A. // Phosphorus, Sulfur, Silicon, Relat. Elem. 2008. Vol. 183. P. 646. doi 10.1080/10426500701795910
- Shipov A.E., Genkina, G.K., Petrovskii P.V., Goryunov E.I., Makarov M.V. // Phosphorus, Sulfur, Silicon, Relat. Elem. 2011. Vol. 186. P. 945. doi 10.1080/10426507.2010.520281
- Serkova O.S., Glushko V.V., Egorova M.A., Maslennikova V.I. // Tetrahedron Lett. 2018. Vol. 59. P. 2586. doi 10.1016/j.tetlet.2018.05.062
- Maslennikova V.I., Sotova T. Yu., Vasyanina L.K., Lyssenko K.A., Antipin M.Yu., Adamson S.O., Dementyev A.I., Habicher W.D., Nifantyev E.E. // Tetrahedron. 2007. Vol. 63. P. 4162. doi 10.1016/j.tet.2007.02.095
- Баталова Т.А., Расадкина Е.Н., Васянина Л.К., Бельский В.К., Нифантьев Э.Е. // ЖОХ. 1997. Т. 67. С. 1497; Batalova T.A., Rasadkina E.N., Vasyanina L.K., Belsky V.K., Nifantyev E.E. // Russ. J. Gen. Chem. 1997. Vol. 67. P. 1406.
- 26. Kasthuraiah M., Ravi Sankar A.U., Kumar B.S., Reddy C.S., Raju C.N. // S. Afr. J. Chem. 2007. Vol. 60. P. 62.
- Wolff W. // Chem. Ber. 1893. Vol. 26. P. 85. doi 10.1002/ cber.18930260118
- Нифантьев Э.Е., Сорокина С.Ф., Борисенко А.А. // ЖОХ. 1985. Т. 55. С. 1665.
- Нифантьев Э.Е., Завалишина А.И., Сорокина С.Ф., Борисенко А.А., Смирнова Е.И., Курочкин В.В., Моисеева Л.И. // ЖОХ. 1979. Т. 49. С. 64.

# Alkylation of 1,3,2-Diheterophosphinanes Conjugated with Dinaphthylmethanes

### O. S. Serkova, V. V. Glushko, M. R. Guseinova, and V. I. Maslennikova\*

Institute of Biology and Chemistry, Moscow Pedagogical State University, Moscow, 129164 Russia \*e-mail: vi.maslennikova@mpgu.su

Received September 14, 2019; revised September 14, 2019; accepted September 18, 2019.

The alkylation reactions of 2,2'-di- and 2,2',7,7'-tetra-(1,3,2-diheterophosphinanyl)dinaphthylmethanes with alkyl (arylalkyl) halides and bromoethyl acetate were studied. The factors affecting the chemoselectivity of the reaction and the yield of final products were revealed.

**Keywords:** 1,3,2-diheterophosphinanes, phosphodinaphthylmethanes, alkylation, Michaelis–Arbuzov reaction, phosphonates, quasiphosphonium salts