УДК 541.49:546.562:546.723:546.742:548.736:547.574

СИНТЕЗ, СТРОЕНИЕ И БИОЛОГИЧЕСКАЯ АКТИВНОСТЬ КООРДИНАЦИОННЫХ СОЕДИНЕНИЙ МЕДИ, НИКЕЛЯ, КОБАЛЬТА И ЖЕЛЕЗА С ЭТИЛ-*N*'-(2-ГИДРОКСИБЕНЗИЛИДЕН)-*N*-(ПРОП-2-ЕН-1-ИЛ)КАРБАМОГИДРАЗОНОТИОАТОМ

© 2020 г. А. П. Гуля^{*a*}, И. С. Усатая^{*a*}, В. О. Граур^{*a*,*}, Ю. М. Чумаков^{*b,c*}, П. А. Петренко^{*b*}, Г. Г. Бэлан^{*d*}, О. С. Бурдунюк^{*d,e*}, В. И. Цапков^{*a*}, В. Ф. Рудик^{*f*}

^а Молдавский государственный университет, ул. Матеевича 60, Кишинев, 2009 Республика Молдова ^b Институт прикладной физики, Кишинев, 2001 Республика Молдова

^с Технический университет г. Гебзе, Гебзе, 41400 Турция

^d Государственный университет медицины и фармации имени Н. Тестемицану, Кишинев, 2001 Республика Молдова

^е Национальное агентство общественного здоровья, Кишинев, 2028 Республика Молдова

^fИнститут микробиологии и биотехнологии Академии наук Республики Молдова, Кишинев, 2028 Республика Молдова

*e-mail: vgraur@gmail.com

Поступило в Редакцию 26 сентября 2019 г. После доработки 26 сентября 2019 г. Принято к печати 3 октября 2019 г.

Взаимодействием *N*-(проп-2-ен-1-ил)гидразинкарботиоамида с иодэтаном и 2-гидроксибензальдегидом образуется гидроиодид этил-*N*⁻(2-гидроксибензилиден)-*N*-(проп-2-ен-1-ил)карбамогидразонотиоата (HL·HI). При взаимодействии лиганда HL или гидроиодида HL·HI с солями меди, никеля, кобальта и железа получены координационные соединения Cu(L)X·nH₂O [X = Cl⁻, Br⁻, NO₃⁻; n = 0, 1], Ni(L)₂·HI·CH₃OH, Co(L)₂X [X = I⁻, NO₃⁻] и Fe(L)₂NO₃. Строение комплексов установлено методом PCA. В интервале концентраций 30–500 мкг/мл комплексы проявляют селективную противомикробную и противогрибковую активность в отношении серии стандартных микроорганизмов и грибов. Комплексы никеля и железа селективно ингибируют рост и размножение раковых клеток, практически не оказывая негативного влияния на пролиферацию нормальных клеток.

Ключевые слова: координационные соединения, карбамогидразонотиоаты, противомикробная активность, противораковая активность

DOI: 10.31857/S0044460X20040125

Производные тиосемикарбазидов могут использоваться для синтеза лекарственных препаратов [1–4]. Карбамогидразонотиоаты проявляют различные способы координации к ионам металлов и обладают противомикробной, противогрибковой, противораковой и другими видами биологической активности [5–12]. В связи с этим представляются перспективными синтез и изучение свойств карбамогидразонотиоатов и их координационных соединений. Нами получены координационные соединения меди, никеля, кобальта и железа с этил-*N*-(2-гидроксибензилиден)-*N*-(проп-2-ен-1-ил)карбамогидразонотиоатом (HL), установлены их состав, строение, исследованы физико-химические и биологические свойства.

Этил-*N*'-(2-гидроксибензилиден)-*N*-(проп-2-ен-1-ил)карбамогидразонотиоат получен взаимодействием *N*-(проп-2-ен-1-ил)гидразинкарботиоамида с иодэтаном в метаноле с последующим введе-

нием в реакционную смесь 2-гидроксибензальдегида в молярном соотношении 1:1.

Методом спектроскопии ЯМР установлено строение соединения HL. Все сигналы в спектре удвоены [13]. Это указывает на присутствие таутомерных форм **A** и **Б** карбамогидразонотиоата в растворе. Соотношение интегральных интенсивностей сигналов форм **A** и **Б** равно 1:0.4. Присутствие таутомерных форм может быть вызвано *син/анти*-изомерией двойной связи $C=N^1$ и *цис/транс*-изомерией двойной связи $C=N^4$ (схема 1) [5, 14].

При взаимодействии горячих (50-55°С) этанольных растворов солей меди, кобальта и железа с карбамогидразонотиоатом HL в мольном соотношении 1:1 с солями меди и 1:2 с солями кобальта и железа получены мелкокристаллические соединения 1-3, 6, 7, для которых на основании данных элементного анализа (табл. 1) предложен состав $Cu(L)X \cdot nH_2O$ (1-3) [X = Cl⁻ (1), $Br^{-}(2)$, $NO_{3}^{-}(3)$; n = 0-1], $Me(L)_{2}NO_{3}$ [Me = Co^{3+} (6), Fe³⁺ (7)]. Координационные соединения 4, 5 получены при взаимодействии HL HI с ацетатами никеля и кобальта в метанольном растворе в мольном соотношении 2:1. Согласно данным элементного анализа, их состав соответствует формулам $Ni(L)_2 \cdot HI \cdot CH_3OH$ (4) и $Co(L)_2I$ (5). Координационные соединения 1-7 нерастворимы в диэтиловом эфире, мало растворимы в воде, лучше – в спиртах, хорошо растворимы в ДМФА, ДМСО.

При перекристаллизации комплексов 3, 7 из этанола и комплекса 4 из метанола получены монокристаллы, структура которых была установлена методом рентгеноструктурного анализа (табл. 2, рис. 1-3). В кристаллической структуре координационного соединения 4 во внешней сфере находятся иодид-ион и молекула метанола, а во внешней сфере комплекса 7 – нитрат-ион. В каждом комплексе атом металла координирует карбамогидразонотиоат HL с образованием 5- и 6-членных металлоциклов. В комплексах 3, 4 и 7 пяти- и шестичленные хелатные циклы лежат практически в одной плоскости, двугранные углы между ними не превышают 8.5°, а углы между плоскостями шестичленных металлоциклов и бензольных колец салицилиденовых фрагментов не превышают 5.8°. В координационном соединении величина 3 двугранного угла между пятичленным металлоциклом и фрагментом $S^1C^5C^6 2.9^\circ$, а двугранного угла между шестичленным металлоциклом и фрагментом $C^2C^3C^4 - 70.86^\circ$, тогда как для комплексов 4 и 7 аналогичные углы в молекулах обоих лигандов составляют 23.5 (88.26), 80.08 (85.91) и 77.78 (87.29), 65.4 (68.07)° соответственно.

Vourrowo	Выход,	$\mu_{3\phi}^{a}$	æ, ^a	Найдено, %			Формала	Вычислено, %		
комплекс	%	М. Б.	$Oм^{-1} \cdot cM^2 \cdot моль^{-1}$	Мб	N	S	Формула	Мб	N	S
1	82	1.75	103	17.45	11.47	8.81	C ₁₃ H ₁₆ ClCuN ₃ OS	17.59	11.63	8.87
2	79	1.78	108	15.61	10.27	7.79	C ₁₃ H ₁₆ BrCuN ₃ OS	15.66	10.35	7.90
3	81	1.83	112	15.58	13.71	7.81	C ₁₃ H ₁₈ CuN ₄ O ₅ S	15.65	13.80	7.90
4	76	2.85	85	7.78	11.17	8.45	C ₂₇ H ₃₇ IN ₆ NiO ₃ S ₂	7.90	11.31	8.63
5	84	В	90	8.20	11.72	8.96	C ₂₆ H ₃₂ CoIN ₆ O ₂ S ₂	8.29	11.83	9.03
6	86	В	86	9.02	15.11	9.79	C ₂₆ H ₃₂ CoN ₇ O ₅ S ₂	9.13	15.19	9.93
7	75	5.93	105	8.59	15.19	9.87	$C_{26}H_{32}FeN_7O_5S_2$	8.69	15.26	9.98

Таблица 1. Физико-химические характеристики координационных соединений 1-7

^а При 294 К. ^б М – металл. ^в Диамагнитен.

ГУЛЯ и др.

Паралотр	Значение					
Параметр	3	4	7			
Химическая формула	C ₁₃ H ₁₈ CuN ₄ O ₅ S	C _{26.89} H ₃₂ IN ₆ NiO _{2.89} S ₂	C ₂₆ H ₃₂ FeN ₇ O ₅ S ₂			
M	405.91	735.30	642.56			
Сингония	Триклинная	Моноклинная	Моноклинная			
Пространственная группа	<i>P</i> -1	C2/c	P21/c			
Ζ	2	8	4			
<i>a</i> , Å	7.4464(9)	18.3136(8)	8.2137(8)			
b, Å	9.9324(7)	18.9679(10)	16.1962(7)			
<i>c</i> , Å	12.1455(9)	20.1004(8)	22.5614(11)			
α, град	92.397(6)	90	90			
β, град	101.133(8)	99.982(5)	94.714(5)			
ү, град	105.318(8)	90	90			
<i>V</i> , Å ³	845.98(13)	6876.6(6)	2991.2(3)			
$d_{\rm Bb14}, r/cm^3$	1.594	1.420	1.427			
λ, Å	0.71073	0.71073	0.71073			
μ, см ⁻¹	1.445	1.618	0.692			
Т, К	293(2)	293(2)	293(2)			
Размеры образца, мм	0.40×0.22×0.04	0.50×0.35×0.20	0.36×0.181×0.003			
Пределы h, k, l	$-8 \le h \le 8$	$-22 \le h \le 22$	$-6 \le h \le 9$			
	$-8 \le k \le 11$	$-22 \le k \le 17$	$-19 \le k \le 12$			
	$-14 \le l \le 13$	$-24 \le l \le 14$	$-26 \le l \le 19$			
Число отражений измеренных/независимых	4510	11301	10057			
	[R(int) = 0.0217]/2974	[R(int) = 0.0238]/6321	[R(int) = 0.0829]/5233			
Число параметров	226	390	378			
R_1/wR_2 по N_1	0.0542/0.0989	0.0828/0.1460	0.1993/0.1167			
R_1/wR_2 по N_2	0.0413/0.0916	0.0510/0.1286	0.0780/0.0889			
S	1.034	0.986	0.897			
Δr	0.687/-0.381	0.525/-0.277	0.391/-0.495			

Таблица 2. Кристаллографические характеристики, данные эксперимента и уточнение структуры соединений 3, 4, 7

Координационные связи атома меди в комплексе 3 образуют тетрагональную пирамиду. В основании пирамиды находятся атомы O¹, N¹, N³ органического лиганда и атом кислорода О^{1W} молекулы воды (табл. 3). Смещения указанных донорных атомов от средней плоскости основания пирамиды равны -0.019, -0.02, 0.021 и 0.018 Å соответственно. Отклонение атома меди от основания пирамиды составляет 0.116 Å в сторону атома кислорода О^{1N} нитратной группы, занимающего аксиальную позицию с расстоянием Cu¹-O^{1N} 2.457(3) Å. В кристалле комплекса 3 нитратные группы объединяют комплексы в центросимметричные димеры посредством водородных связей N²-H···O^{1N}, С⁵-Н…О^{2N} и С⁷-Н…О^{3N}. Димеры связаны между собой водородными связями О^{1W}-Н…О^{3N} в цепи. образующие слои, параллельные плоскости (001), внутри которых они связаны водородными связями O^{1W}–H···O¹, C⁵–H···O^{1N} (табл. 4, рис. 4). В слоях наблюдается π – π -стекинг-взаимодействие между 5- и 6-членными металлоциклами. Расстояние между центроидами соответствующих циклов равно 3.861 Å, угол β = 26.1°.

Координационные многогранники атомов никеля и железа в комплексах 4 и 7 представляют собой искаженные октаэдры (рис. 2, 3). Октаэдрические объемы указанных атомов равны 11.435 и 10.918 Å³ соответственно. В кристалле комплекса 4 между молекулами осуществляется лишь ван-дер-ваальсово взаимодействие (рис. 5), тогда как в кристаллической структуре комплекса 7 нитратные групны за счет водородных связей объединяют молекулы в цепи вдоль оси *с*. Такие цепи связаны между собой водородными связями C^{5A} –H···O^{1N} (табл. 4, рис. 6). В комплексе 7 возникает π – π -стекинг-вза-имодействие между бензольными кольцами, на-

Рис. 1. Общий вид молекулы комплекса 3 в кристалле.

ходящимися в разных цепях. Расстояние между центроидами соответствующих циклов составляет 3.777 Å, угол $\beta = 27.4^{\circ}$. В комплексах **3**, **4** и **7** образуются внутримолекулярные водородные связи C–H···S.

Для установления состава и строения остальных комплексов были использованы методы элементного анализа, молярной электропроводности, магнетохимии и ИК спектроскопии. На основании данных, полученных при определении молярной электропроводности (α) в метаноле, установлено, что комплексы 1–7 – бинарные электролиты (α = 85–112 Ом⁻¹·см²·моль⁻¹).

Магнетохимическое исследование комплексов 1-7 при комнатной температуре (294 К) показало (табл. 1), что кобальтовые комплексы 5 и 6 диамагнитны. Это указывает на степень окисления атомов кобальта +3 в псевдооктаэдрическом лигандном окружении. Для соединений меди величины эффективных магнитных моментов соответствуют одному неспаренному электрону. Эти экспериментальные данные дают основание предположить для них мономерное строение. Комплекс никеля обладает октаэдричеким строением с эффективным магнитным моментом $\mu_{ab} = 2.85$ М. Б., характерным для двух неспаренных электронов. Комплекс железа парамагнитен, его значение $\mu_{ab} =$ 5.93 М. Б. соответствует высокоспиновому состоянию атома металла, в то время как атом кобальта в комплексе находится в низкоспиновом состоянии.

Рис. 2. Общий вид молекулы комплекса 4 в кристалле (атомы водородов опущены).

Полученные данные указывают на среднюю силу поля лиганда.

С целью определения способа координации карбамогидразонотиоата HL к центральным атомам металлов проведен сравнительный анализ ИК спектров комплексов 1–7 и лиганда. В ИК спектрах присутствуют полосы поглощения в областях 3400–3100, 1660–1580, 700–600 см⁻¹, которые характеризуют валентные колебания координированных молекул карбамогидразонотиоата HL. В области 3400–3100 см⁻¹ ИК спектров всех комплексов исчезает полоса поглощения $v(O-H_{\phi enon})$, что указывает на депротонирование фенольной OH-группы в молекулах лиганда. Такой же вы-

Рис. 3. Общий вид молекулы комплекса 7 в кристалле (атомы водородов опущены).

<i>c</i>	d, Å					
Связь	3	4	7			
$Cu^{1}[Ni^{1}]{Fe^{1}}-O^{1}$	1.893(3)	2.083(2)	1.923(4)			
$Ni^{1}{Fe^{1}}-O^{1A}$		2.090(2)	1.905(4)			
$Cu^{1}[Ni^{1}]{Fe^{1}}-N^{1}$	1.959(3)	2.076(3)	2.109(5)			
$Ni^1{Fe^1}-N^{1A}$		2.082(3)	2.119(4)			
$Cu^{1}[Ni^{1}]{Fe^{1}}-N^{3}$	1.941(3)	2.025(3)	2.120(4)			
$Ni^1{Fe^1}-N^{3A}$		2.018(3)	2.116(4)			
Cu ¹ –O ^{1N}	2.457(3)					
Cu^1-O^{1W}	1.975(3)					
$S^{1}-C^{1}$	1.744(4)	1.788(4)	1.754(6)			
$S^{1}-C^{5}$	1.807(4)	1.802(8)	1.828(8)			
O ¹ -C ¹³	1.325(5)	1.346(4)	1.309(6)			
N ¹ -C ¹	1.289(5)	1.266(5)	1.286(6)			
$N^{2}-C^{1}$	1.363(5)	1.364(5)	1.358(7)			
$N^{2}-N^{3}$	1.389(4)	1.378(4)	1.377(6)			
N ³ -C ⁷	1.285(5)	1.278(4)	1.307(6)			
$C^{2}-C^{3}$	1.503(8)	1.520(7)	1.497(7)			
$C^{3}-C^{4}$	1.221(8)	1.284(10)	1.284(10)			
$C^{5}-C^{6}$	1.514(6)	1.472(12)	1.465(9)			
$C^{7}-C^{8}$	1.435(5)	1.437(5)	1.429(7)			
Угол		ω, град				
$O^{1}Cu^{1}[Ni^{1}]{Fe^{1}}N^{3}$	92.29(12)	85.75(11)	83.67(18)			
$N^{3A}Ni^{1}Fe^{1}$ }O ¹		96.70(11)	104.65(17)			
$O^1Cu^1[Ni^1]{Fe^1}N^1$	171.56(12)	163.15(11)	155.64(18)			
$N^{1A}Ni^1{Fe^1}O^1$		91.77(11)	90.31(18)			
$N^{3A}Ni^{1}{Fe^{1}}O^{1A}$		86.01(11)	84.13(18)			
$N^{3}Cu^{1}[Ni^{1}]{Fe^{1}}N^{1}$	81.14(13)	79.41(12)	73.80(19)			
$N^{3A}Ni^1{Fe^1}N^1$		98.73(12)	97.41(19)			
$N^1Ni^1{Fe^1}N^{1A}$		97.74(13)	86.05(18)			
$N^3Ni^1{Fe^1}O^{1A}$		98.59(11)	98.39(17)			
N^1Ni^1 {Fe ¹ }O ^{1A}		89.44(12)	95.05(18)			
$N^{3A}Ni^1{Fe^1}N^3$		174.99(13)	171.00(19)			
$N^{3}Ni^{1}{Fe^{1}}N^{1A}$		96.49(12)	103.26(18)			
$N^{3A}Ni^{1}{Fe^{1}}N^{1A}$		79.10(13)	73.66(18)			
$N^{1A}Ni^{1}{Fe^{1}}O^{1A}$		164.27(11)	157.71(18)			
$O^1Ni^1{Fe^1}O^{1A}$		84.91(10)	97.32(17)			
$O^1Cu^1O^{1W}$	91.60(13)					
$N^{3}Cu^{1}O^{1W}$	170.95(14)					
$N^1Cu^1O^{1W}$	94.16(13)					
$O^1Cu^1[Ni^1]O^{1N}$	94.68(12)					
$N^{3}Cu^{1}[Ni^{1}]O^{1N}$	80.91(12)					
$N^1Cu^1[Ni^1]O^{1N}$	89.55(12)					
$O^{1W}Cu^1O^{1N}$	106.91(14)					

Таблица 3. Некоторые межатомные расстояния и валентные углы в молекулах комплексов 3, 4, 7

Рис. 4. Общий вид димера (а), цепи (б) и фрагмента упаковки (в) молекул в кристалле комплекса 3.

вод можно сделать по положению полосы v(C-O), которая в спектре соединения HL наблюдается в диапазоне 1230–1250 см⁻¹, а в спектрах комплексов смещается на 40–50 см⁻¹ в низкочастотную область. Существенное изменение претерпевает полоса в области 3000–3400 см⁻¹, относящаяся к валентным колебаниям $v(N^4-H)$ в молекуле соединения HL. В спектрах комплексных соединений полоса сдвигается в высокочастотную область на 50–70 см⁻¹. Кроме того, в спектрах комплексов

происходит смещение полосы v(C=N) в низкочастотную область на 20–30 см⁻¹. Все это указывает на координацию соединения HL к атомам металла депротонированным фенольным атомом кислорода, азометиновым и тиокарбамидным атомами азота. На такую координацию карбамогидразонотиоата HL указывает и то, что в ИК спектрах всех комплексов появляется ряд новых полос в области 530–405 см⁻¹, обусловленных колебаниями v(M-N) и v(M-O) (M – металл). В ИК спектре сое-

		Расстояние, Å		Угол DHA,		
Связь D–Н…А	D–H	D–Н Н А D А град		град	Координаты атома А	
	-	3			·	
O^{1W} – H^{1WA} ···· O^{1}	0.86	1.83	2.6886	174	1-x, 1-y, -z	
N^2 – H^2 ···· O^{1N}	0.86	2.17	2.8752	139	2-x, 2-y, -z	
O^{1W} – H^{1WB} ···· O^{3N}	0.72	2.11	2.7186	143	-1+x, y, z	
C^2 – H^{2A} ···· S^1	0.97	2.55	2.9778	107	<i>x</i> , <i>y</i> , <i>z</i>	
$C^{5}-H^{5A}O^{2N}$	0.97	2.52	3.2026	127	x, 1+y, z	
C ⁵ –H ^{5B} …O ^{1N}	0.97	2.48	3.2692	139	2-x, 2-y, -z	
C^7 – H^7 ···· O^{3N}	0.93	2.47	3.3217	153	2-x, 2-y, -z	
		4			•	
C^{2A} – H^{2AA} ···· S^{1A}	0.97	2.54	3.0016	109	x, y, z	
$C^2-H^{2B}\cdots S^1$	0.97	2.57	3.1022	115	<i>x</i> , <i>y</i> , <i>z</i>	
		7				
N^2 – H^2 ···· O^{3N}	0.86	2.09	2.9163	162	1-x, -1/2+y, 1/2-z	
N^{2A} - H^{2A} ····O ^{1N}	0.86	2.38	2.8483	115	1-x, 1-y, -z	
C^{2A} – H^{2AB} ···· S^{1A}	0.97	2.61	2.9880	103	<i>x</i> , <i>y</i> , <i>z</i>	
$C^2-H^{2B}\cdots S^1$	0.97	2.57	2.9557	104	<i>x</i> , <i>y</i> , <i>z</i>	
C^{5A} – H^{5AA} … O^{1N}	0.97	2.55	3.4892	162	<i>x</i> , <i>y</i> , <i>z</i>	
C^{5A} - H^{5AB} ···· N^{2A}	0.97	2.60	2.9726	103	<i>x</i> , <i>y</i> , <i>z</i>	
C^{5A} – H^{5AB} ···· O^{1N}	0.97	2.58	3.4848	155	1-x, 1-y, -z	
C ⁵ –H ^{5A} O ^{3N}	0.97	2.47	3.2257	134	1-x, -1/2+y, 1/2-z	
C^7 – H^7 ···· O^{3N}	0.93	2.54	3.3447	134	1-x, -1/2+y, 1/2-z	
C^{7A} – H^{7A} … O^{2N}	0.93	2.56	3.430	155	1-x, 1-y, -z	

Таблица 4. Геометрические параметры водородных связей в комплексах 3, 4, 7

динения HL полоса поглощения v(C=S) отсутствует, поскольку атом серы алкилирован иодэтаном, и появляется новая полоса поглощения при 682 см⁻¹, соответствующая колебаниям v(C–S) [12]. Эта полоса не смещается при комплексообразовании, следовательно, атом серы не участвует в координации с ионом металла.

Полученные физико-химические данные позволяют представить распределение химических связей [B(1, 2) и $\Gamma(5, 6)$] в комплексах (схема 2).

Комплексы биометаллов с метил-*N*-(2-гидроксибензилиден)-*N*-(проп-2-ен-1-ил)карбамогидразонотиоатом избирательно подавляют рост и размножение некоторых видов раковых клеток и некоторых видов микроорганизмов [12]. В связи с этим in vitro изучена противомикробная и противогрибковая активность координационных соединений 1–7 по отношению к серии стандартных штаммов грамположительных (Staphylococcus aureus), грамотрицательных бактерий (Escherichia coli и Klebsiella pneumonae) и представителя дрожжеподобных грибов Candida albicans. Полученные экспериментальные данные приведены в табл. 5, из которой видно, что все исходные соли меди, никеля, кобальта, железа и карбамогидразонотиоат HL не проявляют противомикробной активности в отношении вышеуказанных микроорганизмов. Комплексы 1, 3-7 проявляют селективную как бактериостатическую, так и бактерицидную активность в диапазоне концентраций 30-500 мкг/мл в отношении микробов и 30-60 мкг/мл в отношении Candida albicans. На минимальную подавляющую (МПК) и минимальную бактерицидную (МБК) концентрации комплексов 1, 3-7 основное влияние оказывает природа центрального атома.

Рис. 5. Фрагмент упаковки молекул в кристалле комплекса 4.

Наиболее активен в отношении грамположительных микроорганизмов комплекс 7, а в отношении грамотрицательных микроорганизмов – комплекс 4. Близость значений МПК и МБК для многих соединений указывает на бактерицидный характер их действия.

Изучение антипролиферативной активности комплексов 1–7 в отношении клеток рака шейки матки HeLa, поджелудочной железы BxPC-3, мышечной ткани RD показало, что, как и комплексы 3d-металлов с метил-*N*-(2-гидроксибензилиден)-*N*-(проп-2-ен-1-ил)карбамогидразонотиоатом [12], соединения 1–7 проявляют противораковую активность в интервале концентраций 0.1– 100 мкмоль/л. В табл. 6 представлены концентрации полумаксимального ингибирования (IC₅₀), яв-

Рис. 6. Фрагмент упаковки молекул в кристалле комплекса 7.

Схема 2.

 $X = Cl, Br (B); NO_3, I (\Gamma).$

ляющегося показателем эффективности ингибирущего действия исследуемых веществ в отношении упомянутых клеток. Экспериментальные данные указывают на то, что комплекс 7 проявляет более высокую противораковую активность в отношении клеток HeLa и BxPC-3 по сравнению с противораковым препаратом доксорубицином, применяемым в медицинской практике.

Для определения селективности антипролиферативного действия карбамогидразонотиоата НL и комплексов 1-7 определена их ингибирующая активность в отношении модельной линии нормальных клеток млекопитающих MDCK.

ний 1, 3–7 по отношению к тест-микробам (мкг/мл)	Таблица 5. Минимальные подавляющие (МПК) и бактерицидные (МБК) концентрации коор	динационных соедине-
	ний 1, 3–7 по отношению к тест-микробам (мкг/мл)	

Соелинение	Staphylococcus aureus, ATCC 25923		Escherichia coli, ATCC 25922		Klebsiella pneumonae		Candida albicans ATCC 90028	
Соединение	МПК	МБК	МПК	МБК	МПК	МБК	МПК	МБК
Исходные соли ^а	>1000	>1000	>1000	>1000	>1000	>1000	>1000	>1000
HL	>1000	>1000	>1000	>1000	>1000	>1000	>1000	>1000
1	30	60	500	500	500	500	60	60
3	30	60	500	500	500	500	60	60
4	30	60	120	120	120	120	30	30
5	30	60	500	500	500	500	60	60
6	30	60	500	500	500	500	30	30
7	30	30	500	500	250	500	30	30

^a CuCl₂·2H₂O, CuBr₂, Cu(NO₃)₂·3H₂O, Ni(CH₃COO)₂·4H₂O, Co(CH₃COO)₂·4H₂O, Co(NO₃)₂·6H₂O, Fe(NO₃)₃·6H₂O.

Таблица 6. Полумаксимальное ингибирование роста клеток HeLa, BxPC-3, RD	и MDCK соединениями 1–7
---	-------------------------

Соединение	IC ₅₀ , мкмол/л ^а			Coorresponse	IC ₅₀ , мкмол/л ^а				
	HeLa	BxPC-3	RD	MDCK	Соединение	HeLa	BxPC-3	RD	MDCK
HL	>100	88	>100	>100	5	>100	19	37	29
1	14	>100	13	12	6	>100	>100	>100	>100
2	37	22	12	33	7	2.2	1.3	>100	>100
3	13	1.1	5.5	1.6	Доксорубицин	10	3.7	16	7.1
4	83	69	57	>100					

^а Стандартная ошибка среднего (SEM) < ±4%. Значения IC₅₀ были вычислены с использованием статистического программного обеспечения.

Как видно из данных табл. 6, комплекс 7, обладая высокой противораковой активностью в отношении клеток HeLa и BxPC-3, практически не оказывает негативного влияния на рост и размножение нормальных клеток MDCK.

Полученные экспериментальные данные указывают на перспективность дальнейшего поиска противомикробных, противогрибковых и противораковых веществ среди координационных соединений биометаллов с биолигандами на основе арбамогидразонотиоатов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для выполнения РСА комплексов 3, 4 и 7 использовали дифрактометр Oxford Diffraction [15]. Структуры решены прямыми методами и уточнены МНК в анизотропном приближении для неводородных атомов по программам SHELX-97 [16]. Атомы водорода включены в уточнение в геометрически рассчитанных позициях, а их температурные факторы U_н приняты в 1.2 раза большими, чем у связанных с ними атомов углерода, азота и кислорода. Уточнение положения молекул CH₃OH и НІ в комплексе 4 проведено с учетом их разупорядочения. Основные параметры эксперимента, решение и уточнение структур приведены в табл. 2, некоторые межатомные расстояния, валентные углы и водородные связи – в табл. 3, 4. Координаты базисных атомов исследованных структур депонированы в Кембрилжский банк данных (CCDC 1944047-1944049).

Анализ геометрических параметров исследованных соединений выполняли с помощью программы Platon [17], наблюдаемые π - π -стекинг-взаимодействия между циклами оценивали согласно критерию, предложенному в данной программе (CgI···CgJ < 6.0 Å, β < 60.0°, где β – угол между вектором CgICgJ и нормалью к ароматическому циклу CgI). Геометрические расчеты и рисунки выполнены с помощью программы Мегсигу [18], для представления упаковок структур оставлены только те атомы водорода, которые участвуют в водородных связях.

Сопротивление растворов комплексов 1–7 в метаноле (20°С, c = 0.001 моль/л) измеряли с помощью реохордного моста Р-38. ИК спектры регистрировали на спектрофотометре Bruker ALPHA (4000–400 см⁻¹). Эффективные магнитные моменты соединений 1–7 определяли методом Гуи. Расчет молярной магнитной восприимчивости с поправкой на диамагнетизм проводили исходя из теоретических значений магнитной восприимчивости органических соединений.

Противомикробную, противогрибковую и противораковую активности изучали по стандартным методикам [19].

Этил-*N*'-(2-гидроксибензилиден)-*N*-(проп-2-ен-1-ил)карбамогидразонотиоат (HL). К метанольному раствору 1.31 г (10 ммоль) N-(проп-2-ен-1-ил)гидразинкарботиоамида добавляли 1.71 г (11 ммоль) иодэтана. Полученный раствор перемешивали 7 ч при постоянном нагревании до 60°С, затем добавляли 1.22 г (10 ммоль) 2-гидроксибензальдегида. Раствор перемешивали при нагревании 30 мин. Полученный гидроиодид карбамогидразонотиоата нейтрализовали карбонатом натрия до слабощелочной среды (pH = 7-8). Затем проводили жидкостную экстракцию хлороформом. Полученное желтое вещество сушили на воздухе. Форма А. Спектр ЯМР ¹Н (CDCl₃), б, м. д.: 1.38 т (3H, CH₃, J = 7.3 Гц), 2.90 к (2H, SCH₂, J = 7.3 Гц), 4.09 т (2H, CH₂N, J = 5.6 Гц), 4.49 уш. с (1H, NH), 5.24 м (2H, CH₂=C), 5.98 м (1H_{Allyl}), 6.88 т (1H, CH_{Ar}, J = 7.5 Гц), 6.99 д (1H, CH_{Ar}, J = 7.5 Гц), 7.25 т (1Н, CH_{Ar}, J = 7.5 Гц), 7.26 д (1Н, CH_{Ar} , J = 7.5 Гц), 8.40 с (1H, CH=N), 11.85 уш. с (1H, OH). Спектр ЯМР ¹³С (CDCl₃), δ_C, м. д.: 14.56 (CH₃), 17.26 (CH₂=), 24.75 (SCH₂), 45.94 (CH₂N); 116.59, 118.88, 119.07, 130.75, 130.80 (C_{Ar}), 133.89 (CH_{Allvl}), 158.77 (CS), 160.54 (С_{Аг}). Форма Б. Спектр ЯМР ¹Н (CDCl₂), б, м. д.: 1.38 т (3Н, CH₃, J = 7.3 Гц), 3.11 к (2H, SCH₂, J = 7.3 Гц), 3.92 т (2H, CH₂N, J = 5.8 Гц), 5.23 м (2H, CH₂=C), 5.65 уш. с (1H, NH), 5.87 м (1H, CH_{Allvl}), 6.91 т (1H, CH_{Ar}, $J = 7.4 \Gamma$ ц), 6.97 д (1H, CH_{Ar}, $J = 7.4 \Gamma$ ц), 7.24 т (1H, СН_{Аг}, *J* = 7.4 Гц), 7.29 д (1Н, СН_{Аг}, *J* = 7.4 Гц), 8.43 с (1H, CH=N), 11.41 уш. с (1H, OH). Спектр ЯМР ¹³C (CDCl₃), δ_C, м. д.: 14.52 (CH₃), 24.79 (SCH₂), 45.80 (CH₂N), 116.32 (C_{Ar}), 116.81 (CH₂=), 118.79, 119.50, 131.14, 131.23 (C_{Ar}); 134.07 (CH_{Allvl}), 156.84 (CH=N), 158.50 (CS). 161.32 (C_{Ar}).

Хлоро[2-({[(этилсульфанил)(проп-2-ен-1-иламино)метилиден]гидразинилиден}метил)фенолято]медь (1). К этанольному раствору 10 ммоль этил-*N*-(2-гидроксибензилиден)-*N*-(проп-2-ен-1-ил)карбамогидразонотиоата при

непрерывном перемешивании и нагревании (50–55°С) прибавляли 10 ммоль дигидрата хлорида меди(II). После охлаждения до комнатной температуры реакционной смеси наблюдалось образование мелкокристаллического осадка, который отфильтровывали на стеклянном фильтре, промывали небольшим количеством спирта, эфира и сушили на воздухе до постоянной массы.

Аналогично, используя в качестве исходных веществ бромид меди(II) и гидраты нитратов меди(II), кобальта(II) и железа(III), взятые в мольном отношении 1:1 и 1:2, синтезировали соединения 2, 3, 6, 7.

Иодид бис[2-({[(этилсульфанил)(проп-2-ен-1-иламино)метилиден]-гидразинилиден}метил)фенолято]кобальта(III) (5). К метанольному раствору 20 ммоль гидроиодида этил-*N*-(2-гидроксибензилиден)-*N*-(проп-2-ен-1-ил)карбамогидразонотиоата при непрерывном перемешивании и нагревании (50–55°С) прибавляли 10 ммоль тетрагидрата ацетата кобальта(II). После охлаждения до комнатной температуры реакционной смеси наблюдалось образование мелкокристаллического осадка, который отфильтровывали на стеклянном фильтре, промывали небольшим количеством спирта, эфира и сушили на воздухе до постоянной массы.

Аналогично, используя в качестве исходных веществ тетрагидрат ацетата никеля(II) и HL·HI, взятые в мольном отношении 1:2, синтезировали комплекс **4**.

Авторы выражают благодарность О.С. Гарбуз за помощь при проведении биологических испытаний синтезированных веществ.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Beraldo H., Gambino D. // Mini Rev. Med. Chem. 2004. Vol. 4. N 1. P. 31. doi 10.2174/1389557043487484
- Saryan L.A., Ankel E., Krishnamurti C., Petering D.H., Elford, H. // J. Med. Chem. 1979. Vol. 22. N 10. P. 1218. doi 10.1021/jm00196a013
- Pahontu E., Fala V., Gulea A., Poirier D., Tapcov V., Rosu, T. // Molecules. 2013. Vol. 18. N 8. P. 8812. doi 10.3390/molecules18088812

- Turk S.R., Shipman C., Drach J.C. // J. Gen. Virology. 1986. Vol. 67. N 8. P. 1625. doi 10.1099/0022-1317-67-8-1625
- Yamazaki C. // Canad. J. Chem. 1975. Vol. 53. N. 4. P. 610. doi 10.1139/v75-085
- Ботошанский М.М., Боурош П.Н., Ревенко М.Д., , Коржа И.Д., Симонов Ю.А., Панфилие Т. // ЖСХ. 2009. Т. 50. № 1. С. 188; Botoshanskii M., Bourosh P.N., Revenko M.D., Korzha I.D., Simonov Y.A., Panfilie T. // J. Struct. Chem. 2009. Vol. 50. N 1. P. 181. doi 10.1007/s10947-009-0026-y
- Leovac V.M., Češljević V.I., Vojinović-Ješić L.S., Divjaković V., Jovanović L.S., Szécsényi K.M., Rodić M.V. // Polyhedron. 2009. Vol. 28. N 16. P. 3570. doi 10.1016/j.poly.2009.07.045
- Rodić M.V., Leovac V.M., Jovanović L.S., Vojinović-Ješić L.S., Divjaković V., Češljević V.I. // Polyhedron. 2012. Vol. 46. N 1. P. 124. doi 10.1016/j. poly.2012.08.011
- Petrovic D.M., Petrovic A.F., Leovac V.M., Lukic S.R. // J. Thermal Analysis. 1994. Vol. 41. N 5. P. 1165. doi 10.1007/bf02547205
- Malik M., Phillips D. // Austral. J. Chem. 1974. Vol. 27. N 5. P. 1133. doi 10.1071/ch9741133
- Takjoo R., Mague J. T., Akbari A., Ahmadi M. // J. Coord. Chem. 2013. Vol. 66. N 22. P. 3915. doi 10.1080/00958972.2013.856420
- Pahontu E., Usataia I., Graur V., Chumakov Yu., Petrenko P., Gudumac V., Gulea A. // Appl. Organometal. Chem. 2018. Vol. 32. N 12. P. e4544. doi 10.1002/aoc.4544
- Türkkan B., Sarıboğa B., Sarıboğa N. // Transition Metal Chem. 2011. Vol. 36. N 6. P. 679. doi 10.1007/ s11243-011-9518-7
- Şahin M., Bal-Demirci T., Pozan-Soylu G., Ülküseven B. // Inorg. Chim. Acta. 2009. Vol. 362. N 7. P. 2407. doi 10.1016/j.ica.2008.10.036
- CrysAlisPro, Version 1.171.33.52 (release 06-11-2009 CrysAlis171.NET). Oxford Diffraction Ltd.
- Sheldrick G.M. // Acta Crystallogr. (A). 2007. Vol. 64. N 1. P. 112. doi 10.1107/s0108767307043930
- Spek A.L. // J. Appl. Crystallogr. 2003. Vol. 36. N 1. P. 7. doi 10.1107/s0021889802022112
- Macrae C.F., Edgington P.R., McCabe P., Pidcock E., Shields G.P., Taylor R., Van De Streek J. // J. Appl. Crystallogr. Vol. 39. N 3. P. 453. doi 10.1107/ s002188980600731x
- Gulea A., Poirier D., Roy J., Stavila V., Bulimestru I., Tapcov V., Popovschi L. // J. Enzyme Inhibition Med. Chem. 2008. Vol. 23. N 6. P. 806. doi 10.1080/ 14756360701743002

ГУЛЯ и др.

Synthesis, Structure and Biological Activity of Coordination Compounds of Copper, Nickel, Cobalt and Iron with Ethyl N'-(2-Hydroxybenzylidene)-N-prop-2-en-1-ylcarbamohydrazonothioate

A. P. Gulea^{*a*}, I. S. Usataia^{*a*}, V. O. Graur^{*a*,*}, Yu. M. Chumakov^{*b,c*}, P. A. Petrenko^{*b*}, G. G. Balan^{*d*}, O. S. Burduniuc^{*d,e*}, V. I. Tsapkov^{*a*}, and V. F. Rudic^{*f*}

^a State University of Moldova, Chisinau, 2009 Moldova
^b Institute of Applied Physics, Chisinau, 2001 Moldova
^c Gebze Institute of Technology, Cayirova, Kocaeli, 41400 Turkey
^d State University of Medicine and Pharmacy "Nicolae Testemitanu", Chisinau, 2001 Moldova
^e National Agency of Public Health, Chisinau, 2028 Moldova
^f Institute of Microbiology and Biotechnology of Academy of Sciences of Moldova, Chisinau, 2028 Moldova
*e-mail: vgraur@gmail.com

Received September 26, 2019; revised September 26, 2019; accepted October 3, 2019

N-(Prop-2-en-1-yl)hydrazonocarbothioamide reacts with iodoethane in methanol with further addition of 2-hydroxybenzaldehyde to form hydroiodide of carbamohydrazonothioate (HL·HI). The coordination compounds were obtained by interaction of HL or HL·HI with copper, nickel, cobalt and iron salts CuLX·nH₂O [X = Cl⁻, Br⁻, NO₃⁻; n = 0-1], Ni(L)₂·HI·CH₃OH, Co(L)₂X [X = I⁻, NO₃⁻] and Fe(L)₂NO₃. The structures of three complexes were established by single crystal X-ray analysis. The synthesized complexes exhibit selective antimicrobial and antifungal activity against a series of standard microorganisms and fungi in the concentration range of 30–500 µg/mL. In addition, nickel and iron complexes selectively inhibit the growth and proliferation of cancer cells and do not adversely affect normal cells.

Keywords: coordination compounds, carbamohydrazonothioates, antimicrobial activity, anticancer activity