УДК 547.458.88

МЕТАЛЛОКОМПЛЕКСЫ ФАРМАКОФОРСОДЕРЖАЩИХ ПЕКТИНОВ С ИОНАМИ *d*-ЭЛЕМЕНТОВ (Cu²⁺, Co²⁺, Mn²⁺)

© 2020 г. Р. Х. Мударисова^{*a*}, А. Ф. Сагитова^{*b*,*}, О. С. Куковинец^{*b*}, С. В. Колесов^{*a*}

^а Уфимский институт химии Уфимского исследовательского центра Российской академии наук, Уфа, 450054 Россия ^b Башкирский государственный университет, ул. Мингажева 100, Уфа, 450014 Россия *e-mail: alinusic93@mail.ru

> Поступило в Редакцию 4 октября 2019 г. После доработки 4 октября 2019 г. Принято к печати 12 октября 2019 г.

Спектральными методами изучено комплексообразование яблочного пектина, модифицированного органическими фармакофорами (никотиновая, салициловая, 5-аминосалициловая, антраниловая кислоты), с ионами Cu²⁺, Co²⁺, Mn²⁺ в водных растворах. Установлены состав и ряды устойчивости металлокомплексов, которые соответствуют эмпирическому ряду Ирвинга–Уильямса. Рассчитаны стандартные термодинамические характеристики (ΔH° , ΔG° , ΔS°) процесса комплексообразования. Методами ЯМР ¹³С и ИК спектроскопии показано, что взаимодействие фармакофорсодержащих пектинов с ионами *d*-металлов (Cu²⁺, Co²⁺, Mn²⁺) осуществляется за счет карбонильных и гидроксильных групп модифицированных полимерных матриц. Определены вязкостные и термические характеристики металлокомплексов.

Ключевые слова: комплексообразование, яблочный пектин, фармакофор, соли биогенных металлов, константа устойчивости

DOI: 10.31857/S0044460X20040162

Важным источником новых фармацевтических субстанций и лекарств являются природные соединения, их производные и синтетические аналоги, на основе которых, по разным оценкам, создается большое количество фармакологически активных веществ. Среди этих соединений обращает на себя внимание природный полисахарид пектин, повышенный интерес к которому связан с его хорошо известным лечебно-профилактическим, диетическим и защитным действием [1-4]. Путем комплексообразования пектина ионами металлов (биогенными микроэлементами) можно получить наноструктурные надмолекулярные системы металлокомплексов пектина, обладающих рядом ценных физико-химических свойств [5–10]. В последнее время перспективным представляется исследование полимерных металлокомплексов, включающих низкомолекулярные органические лиганды. Очень часто в процессе комплексообразования дополнительные лиганды значительно повышают функциональную активность полимерного лиганда, что отражается на перераспределении электронной плотности, увеличении реакционной способности, формировании новых структурных образований, а также биологической активности металлокомплексов [11–13]. Изучение особенностей реакции образования систем металл–пектин– биологически активное низкомолекулярное соединение, т. е. определение констант устойчивости, структуры и состава комплексов, исследование механизма их образования, а также влияние природы металла, полимерного и низкомолекулярного лигандов на процессы формирования комплексов представляет как теоретический, так и практический интерес.

Ранее нами были установлены закономерности взаимодействия яблочного пектина, модифицированного органическими фармакофорами, с катионами Cu(II) и Co(II) [12, 14]. В качестве органической низкомолекулярной компоненты

Рис. 1. Зависимость оптической плотности водных растворов комплексов фармакофорсодержащий пектин-M(II) от pH. $c_{\text{пектина}} = 1.0 \times 10^{-3}$ моль/л, $c_{\text{Me(II)}} = 1.0 \times 10^{-3}$ моль/л, l = 1.0 см, t = 25°С. $l - \text{пектин-HL}^{1-}$ Сu²⁺, $2 - \text{пектин-HL}^{1-}$ Со²⁺, $3 - \text{пектин-HL}^{1-}$ Мп²⁺, $4 - \text{пектин-HL}^{2-}$ Сu²⁺, $5 - \text{пектин-HL}^{2-}$ Со²⁺, $6 - \text{пектин-HL}^{2-}$ Мп²⁺.

использованы никотиновая (HL¹), салициловая (HL²), 5-аминосалициловая (HL³) и антраниловая (HL⁴) кислоты, обладающие фармакологической активностью [15]. В целях расширения числа биогенных металлов, включаемых в процессы комплексообразования, в настоящей работе изучено взаимодействие фармакофорсодержащего пектина с катионами марганца(II) и проведен сравнительный анализ влияния природы биогенного металла Mn(II), Co(II) и Cu(II) и полимерного лиганда на эффективность их взаимодействия.

Спектры поглощения смесей соли металла(II) и фармакофорсодержащего пектина имеют различия как в УФ, так и в видимой областях спектра в зависимости от pH среды (табл. 1, рис. 1). При ком-

Таблица 1. Физико-химические характеристики свободного и фармакофорсодержащего пектина с ионами Mn^{2+} , Co^{2+} и Cu^{2+}

	УΦ		[m]		УΦ		[m]
Образец	спектр,	v, см ⁻¹	['[],	Образец	спектр,	v, см ⁻¹	
	λ, нм		ДЛ/Т		λ, нм		ДЛ/Т
Пектин	-	3314 (OH), 1740	2.59	Пектин-HL ² -Cu ²⁺	232, 299,	3185 (OH), 1610	0.55
		(C=O), 1149–			726	(COO ⁻), 1139–1013	
		1024 (C–O)				(CO)	
Пектин-Со ²⁺	514	3200 (OH), 1602	1.2	Пектин-HL ² -Mn ²⁺	236, 303	3293 (OH), 1595	0.82
		(COO ⁻), 1144–				(COO ⁻), 1143–1018	
		1018 (C–O)				(C-O)	
Пектин-Си ²⁺	805	3307 (OH), 1609	1.02	Пектин–HL ⁴	240, 317	3304 (OH), 1750	1.15
		(COO ⁻), 1143–				(C=O), 1155–1015	
		1019 (C–O)				(C-O)	
Пектин-Мп ²⁺	228	3312 (OH), 1602	1.81	Пектин-HL ⁴ -Co ²⁺	243, 320,	3233 (OH), 1614	0.24
		(COO ⁻), 1145–			517	(COO ⁻), 1152–1037	
		1019 (C–O)				(C-O)	
Пектин–HL ³	226, 307	3305 (OH), 1740	0.83	Пектин-HL ⁴ -Cu ²⁺	331, 786	3276 (OH), 1606	0.30
		(C=O), 1140–				(COO ⁻), 1109–1018	
		1014 (C–O)				(CO)	
Пектин-HL ³ -Co ²⁺	226,	3287 (OH), 1602	0.42	Пектин-HL ⁴ -Mn ²⁺	216, 324	3290 (OH), 1590	0.36
	306, 516	(COO ⁻), 1144–				(COO ⁻), 1153–1016	
		1017 (С–О)				(CO)	
Пектин-HL ³ -Cu ²⁺	220,	3275 (OH), 1606	0.40	Пектин–HL ¹	212, 265	3351 (OH), 1718	0.81
	310, 788	(COO ⁻), 1140–				(C=O), 1140–1070	
		1014 (C–O)				(CO)	
Пектин-HL ³ -Mn ²⁺	228, 309	3291 (OH), 1602	0.53	Пектин-HL ¹ -Co ²⁺	214, 267,	3337 (OH), 1604	0.65
		(COO ⁻), 1145–			526	(COO ⁻), 1152–1018	
		1017 (С–О)				(CO)	
Пектин–HL ²	234, 301	3287 (OH), 1744	0.92	Пектин-HL ¹ -Cu ²⁺	265, 787	3200 (OH), 1612	0.71
		(C=O), 1139–				(COO ⁻), 1142–1017	
		1017 (С–О)				(C-O)	
Пектин– HL ² –Co ²⁺	237,	3219 (OH), 1605	0.71	Пектин–HL ¹ –Mn ²⁺	214, 268	3330 (OH), 1606	0.69
	305, 512	(COO ⁻), 1146–				(COO ⁻), 1151–1018	
		1005 (C–O)				(CO)	

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 90 № 4 2020

···· ••· • · · · · · · · · · · · · · ·	T.L.	· · · · · · · · ·	· F · · · · ·			,			
	Найдено, %				Вычислено, %				
Соединение	С	Н	N	M ²⁺	С	Н	N	M ²⁺	
Пектин–HL ⁴ –Mn ²⁺	42.74	4.74	3.35	6.23	44.11	5.14	3.43	6.74	
Пектин–HL ³ –Mn ²⁺	40.83	4.65	3.24	6.14	42.46	5.18	3.30	6.48	
Пектин–HL ² –Mn ²⁺	42.84	4.61	_	6.28	44.0	4.88	_	6.72	
Пектин–HL ³ –Mn ²⁺	41.22	4.56	3.01	6.35	42.65	4.82	3.55	6.98	
Пектин–Мп ²⁺	34.49	4.66	_	9.47	35.43	5.16	_	10.15	
Пектин–HL ⁴ –Co ²⁺	44.64	3.32	3.52	7.57	43.13	3.85	3.59	7.49	
Пектин–HL ³ –Co ²⁺	42.50	3.54	2.44	7.12	41.32	3.93	2.67	7.25	
Пектин–HL ² –Co ²⁺	44.70	3.79	_	7.73	43.02	3.58	_	7.55	
Пектин–HL ¹ –Co ²⁺	42.95	4.76	3.44	7.77	41.50	3.46	3.72	7.85	
Пектин–Со ²⁺	33.73	4.94	_	13.01	33.26	3.16	_	11.68	
Пектин–HL ⁴ –Cu ²⁺	43.29	4.89	3.25	7.64	43.66	5.09	3.39	7.70	
Пектин–HL ³ –Cu ²⁺	42.44	4.97	3.12	7.53	42.04	5.13	3.27	7.41	
Пектин–HL ² –Cu ²⁺	43.21	4.17	_	7.71	43.55	4.84	_	7.68	
Пектин–HL ¹ –Cu ²⁺	41.90	4.56	3.18	7.85	42.2	4.77	3.51	7.97	
Пектин–Си ²⁺	33.68	5.19	-	11.08	34.9	5.08	-	11.50	

Таблица 2. Элементный состав комплексов фармакофорсодержащего пектина с ионами Mn²⁺, Co²⁺ и Cu²⁺

плексообразовании в кислой среде катионы металла и катионы водорода конкурируют за донорные центры лиганда. Формирование максимума светопоглощения и возрастание оптической плотности происходит постепенно с понижением кислотности растворов. Комплексообразование начинается в кислой среде и продолжается до pH = 6–8 в зависимости от природы исходных компонентов (рис. 1). Таким образом, при взаимодействии фармакофорсодержащего пектина с ионами металлов(II) образуются комплексные соединения, что подтверждается смещением λ_{max} в УФ спектрах и увеличением интенсивности полос поглощения в сопоставлении с наблюдаемым для компонентов системы (табл. 1).

Элементный состав металлокомплексов фармакофорсодержащих пектинов представлен в табл. 2.

Для получения более полной информации о структуре полученных металлокомплексов, изучены спектры ЯМР ¹³С на примере систем пектин–HL²–Co²⁺ и пектин–HL¹–Mn²⁺. При взаимодействии пектина, содержащего салициловую кислоту, с ионами Co²⁺ в спектре ЯМР ¹³С наблюдаются сдвиги сигналов атомов углерода C¹, C⁴ и C⁶ ароматического фрагмента полисахаридной матрицы в слабое поле на 0.08, 0.09 и 0.03 м. д. соответственно и сдвиг сигнала углерода C⁵ на 0.24 м. д. Сигналы всех ядер углерода ¹³С углеводного фрагмента сдвигаются в сильное поле на 0.02– 0.08 м. д. Уменьшение интенсивности и наиболее сильный сдвиг в слабое поле на 0.45 м. д. наблюдается у сигнала атома углерода С⁸, принадлежащего карбоксильной группе модифицированного пектина. При взаимодействии пектина, содержащего никотиновую кислоту, с катионами Mn²⁺ в спектре ЯМР ¹³С наблюдается смещение всех сигналов ядер углерода ¹³С углеводного фрагмента фармакофорсодержащего пектина в сильное поле на 0.02-0.07 м. д. Кроме того, в спектре вместо сигнала свободного карбоксилат-аниона при 168.58 м. д. появляется сигнал при 160.80 м. д., соответствующий координированному с ионом металла карбоксилат-аниону. Это однозначно свидетельствует о том, что в связывании участвуют карбоксильные группы лиганда.

С помощью метода ИК спектроскопии выявлены спектральные области, в которых наиболее заметно наблюдались различия в характере и интенсивности полос поглощения фармакофорсодержащего пектина по сравнению с его металлокомплексами (табл. 1). Первая область изменений относится к полосам поглощения валентных колебаний гидроксильных групп, ассоциированных водородной связью (3400–3200 см⁻¹). Значительный сдвиг полос поглощения в низкочастотную область в присутствии катионов металлов (10–150 см⁻¹) свидетельствует о разрыве или ослаблении водородных связей в результате координации катионов металлов к гидроксильным группам

Рис. 2. Кривая насыщения смеси пектин–антраниловая кислота с хлоридом марганца(II) при 25°С. $c_{\text{пектин-HL}4} = 1.0 \times 10^{-4} \text{ моль/л}, c_{\text{Mn(II)}} = 1.0 \times 10^{-4} \text{ моль/л}, \lambda = 324 \text{ нм}, l = 1.0 \text{ см}, растворитель – вода.$

фармакофорсодержащего пектина. Во второй области ИК спектров наблюдается исчезновение полос поглощения карбоксильных групп при 1740-1700 см⁻¹ и появление характерной полосы поглощения для карбоксианиона при 1590–1610 см⁻¹. В третьей из наблюдаемых областей в ИК спектрах металлокомплексов происходит изменение полос поглощения валентных колебаний С-О пиранозного цикла (1200-1000 см⁻¹). Наблюдается высокочастотный сдвиг, обусловленный образованием связи ионов указанных металлов с кислородным атомом пиранозного цикла. Известно, что кислородные атомы гидроксигрупп углеводов в области нейтрального и щелочного рН способны связывать металлы с образованием прочных хелатных комплексов [16]. Таким образом, данные ЯМР ¹³С и ИК спектроскопии свидетельствуют о координационном взаимодействии свободного и фармакофорсодержащего пектина с катионами M²⁺ не только за счет СООН-групп, но и посредством ОНгрупп полимерной матрицы.

Анализ изменения поглощения, наблюдаемого при добавлении неорганической соли к раствору фармакофорсодержащего пектина в различных концентрациях, позволил рассчитать состав и величину константы устойчивости продуктов взаимодействия методами мольных отношений и изомолярных серий [17]. Графическая зависимость (рис. 2, 3) показывает присутствие в растворе комплексов фармакофорсодержащего пектина с ионами металла(II) состава 2:1, т. е. при образовании комплекса на два элементарных звена фар-

Рис. 3. Зависимость изменения оптической плотности (ΔA) от состава изомолярного раствора для смеси пектин–никотиновая кислота–Cu(II) при 25°С. $c_{\text{пектин-HL}1} = 1.0 \times 10^{-3}$ моль/л, $c_{\text{Cu(II})} = 1.0 \times 10^{-3}$ моль/л, $\lambda = 787$ нм, l = 1.0 см, растворитель – вода.

макофорсодержащего пектина приходится одна молекула соли металла. Для всех исследуемых металлокомплексов рассчитаны константы устойчивости и термодинамические характеристики процесса, представленные в табл. 3.

Металлокомплексы фармакофорсодержащих пектинов по устойчивости можно расположить в следующие последовательности:

$$\label{eq:hermite} \begin{split} & \mathsf{пектин-HL}^1-\mathsf{Cu}^{2+} > \mathsf{пектин-HL}^4-\mathsf{Cu}^{2+} > \\ & \mathsf{пектин-HL}^3-\mathsf{Cu}^{2+} > \mathsf{пектин-HL}^2-\mathsf{Cu}^{2+} > \mathsf{пектин-HL}^3-\mathsf{Co}^{2+} > \\ & \mathsf{пектин-HL}^3-\mathsf{Co}^{2+} > \mathsf{пектин-HL}^1-\mathsf{Co}^{2+} > \\ & \mathsf{пектин-HL}^2-\mathsf{Co}^{2+} > \mathsf{пектин-HL}^4-\mathsf{Co}^{2+} > \mathsf{пектин-HL}^2-\mathsf{Co}^{2+} > \\ & \mathsf{пектин-HL}^3-\mathsf{Mn}^{2+} > \mathsf{пектин-HL}^3-\mathsf{Mn}^{2+} > \\ & \mathsf{пектин-HL}^4-\mathsf{Mn}^{2+} > \mathsf{пектин-HL}^2-\mathsf{Mn}^{2+} > \mathsf{пектин-Mn}^{2+}. \end{split}$$

Модификация пектина фармакофорами увеличивает устойчивость образующихся металлокомплексов меди(II) в 16-166 раз в зависимости от структуры модифицирующего агента, кобальта(II)в 23-93 раза, марганца(II) - в 3-50 раз. Наиболее устойчивыми являются комплексы пектин-HL¹–M²⁺, где модифицирующим пектин агентом выступает никотиновая кислота. Известно, что фармакофор, содержащий гетероатом, приводит к структурированию полимерной матрицы пектин-HL¹ [18], что, возможно, и способствует существенному повышению устойчивости металлосодержащего комплекса на его основе. Наиболее прочными пектинатами состава ML₂ являются пектинаты Cu²⁺, наименее – Mn²⁺. Низкая устойчивость пектинатов Mn²⁺ согласуется с данными литературы [16] для продуктов взаимодействия Mn²⁺

Комплекс	lgβ _κ	ΔH° , кДж/моль	$\Delta S^{\circ}, \ Дж/(моль \cdot K)$	ΔG° , кДж/моль	
Пектин–Си ²⁺	2.8	-9.1±0.1	35.6±0.2	-19.8 ± 0.1	
Пектин–HL ³ –Cu ²⁺	4.7	-4.0±0.2	87.0±0.1	-30.2 ± 0.1	
Пектин–HL ² –Cu ²⁺	4.0	-16.2±0.1	35.3±0.1	-26.8 ± 0.1	
Пектин– HL^4 – Cu^{2+}	4.9	-15.3±0.2	50.2±0.1	-30.4 ± 0.1	
Пектин– HL^1 – Cu^{2+}	5.0	-21.5±0.1	34.5±0.1	-31.9 ± 0.1	
Пектин–Со ²⁺	2.7	-9.1±0.1	26.3±0.1	-17.1±0.1	
Пектин–HL ³ –Co ²⁺	4.8	-10.8±0.1	75.0±0.1	-33.4 ± 0.1	
Пектин–HL ² –Co ²⁺	4.4	-22.9±0.2	10.5±0.1	-26.0 ± 0.1	
Пектин–HL ⁴ –Co ²⁺	4.2	-25.2±0.2	6.7±0.1	-27.8 ± 0.1	
Пектин–HL ¹ –Co ²⁺	4.7	-10.3±0.1	46.0±0.1	-27.2±0.1	
Пектин–Мn ²⁺	2.6	-7.6±0.1	25.9±0.2	-15.4 ± 0.1	
Пектин–HL ³ –Mn ²⁺	3.7	-22.2 ± 0.2	7.2±0.1	-24.4 ± 0.2	
Пектин– HL^2 – Mn^{2+}	3.1	-13.8±0.1	35.2±0.2	-24.4 ± 0.2	
Пектин– HL^4 – Mn^{2+}	3.2	-13.5±0.1	16.9±0.1	-18.6 ± 0.1	
Пектин-HL ¹ -Mn ²⁺	4.3	-8.2±0.1	84.9±0.2	-33.8 ± 0.2	

Таблица 3. Термодинамические характеристики комплексообразования свободного и фармакофорсодержащего пектина с ионами Mn²⁺. Co²⁺ и Cu²⁺

с полиолами, к числу которых относятся углеводы. Как следует из данных, представленных в табл. 3, величины констант устойчивости металлокомплексов соотносятся между собой таким образом, что в большинстве случаев могут быть расположены в последовательности, соответствующей ряду Ирвинга–Уильямса [19].

Корреляция между величинами ΔS° и ΔH° при взаимодействии фармакофорсодержащего пектина с катионами биогенных металлов представляет собой линейную зависимость изменения энтальпии от изменения энтропии при комплексообразовании. На ней имеется только одна область для всех исследуемых систем с отрицательными значениями ΔH° и положительными значениями ΔS° , т. е. процессы комплексообразования являются энтальпийно-энтропийно благоприятными ($\Delta H^{\circ} <$ 0, $\Delta S^{\circ} > 0$) и протекают самопроизвольно ($\Delta G^{\circ} <$ 0). Энтальпия в реакции образования металлокомплексов складывается, в основном, из вкладов процессов разрыва связей центрального иона с молекулами воды, вытеснения некоторого количества молекул воды из гидратных оболочек лиганда и образования связей между центральным ионом и лигандом [20]. Экзотермичность комплексообразования указывает на то, что образование связей между центральным ионом и лигандом – энтальпийно выгодный процесс, величина ΔH° которого компенсирует затраты тепла, связанные с дегидратацией центрального атома и лиганда. Таким образом, взаимодействие сопровождается частичным разрушением сольватных оболочек реагентов, в результате чего большое количество воды высвобождается в объем растворителя, т. е. дегидратация вносит определяющий вклад в термодинамику комплексообразования. Опираясь на информацию о структуре формирующихся комплексов, полученную из данных ИК, ЯМР ¹³С спектроскопии, и термодинамические характеристики, комплексообразования можно предположить одинаковый механизм комплексообразования ионов *d*-элементов (Cu^{2+} , Co^{2+} , Mn^{2+}) с фармакофорсодержащими пектинами, содержащими в своем составе амино-, гидрокси- и карбоксильные группы, который приводит к образованию хелатных структур.

Термическая стабильность фармакофоров является важнейшей характеристикой, определяющей условия хранения лекарственных веществ. Данные термического анализа образцов на примере системы фармакофорсодержащий пектин–Cu²⁺ представлены в табл. 4. Видно, что комплексы пектин–Cu²⁺ и фармакофорсодержащий пектин–Cu²⁺ характеризуются заметно более высокой термической стабильностью по сравнению с исходным свободным и фармакофорсодержащим пектином: температуры начала снижения массы ($T_{\rm H}$) для металлокомплексов близки и находятся в интервале от 50 до 58°C, т. е. выше по сравнению со значени-

Образец	Температурные интервалы разложения продуктов, °С		Потеря массы, %			T _{max} , °C		
	1	2	Δm_1	Δm_2	Δm_{300}	1	2	
Пектин	37–133	134–300	6.7	44.5	51.2	72	238	
Пектин—HL ²	32-134	135-300	3.2	67.0	70.2	65	201	
Пектин—HL ¹	32-133	139–300	4.5	66.5	71.0	89	227	
Пектин—HL ⁴	36-128	114-300	3.0	46.5	49.5	66	191	
Пектин—HL ³	33-130	131-300	7.8	31.7	39.5	58	239	
Пектин — Cu^{2+}	50-177	178–233	7.7	34.7	42.4	94	262, 284	
Пектин—HL ² –Cu ²⁺	55-147	148-223	7.4	4.8,	19.6	115	195, 295	
		224-300		7.4				
Пектин—HL ¹ Cu ²⁺	58-172	173-300	4.7	19.4	24.1	83	296	
Пектин—HL ⁴ –Cu ²⁺	50-182	183-300	6.6	25.2	31.8	91	272	
Пектин—HL ³ –Cu ²⁺	57-180	181-300	6.1	15.8	21.9	87	290	

Таблица 4. Термические свойства пектина и его комплексов с ионами Cu²⁺

ями Т_н для образцов, не содержащих металл. Количество низкомолекулярных продуктов, удаляемых из металлокомплексов на первой стадии процесса Δm_1 , в интервале температур от 50 до 182°C составляет 4.7-7.7%, т. е. сопоставимо со значением, полученным для фармакофорсодержащего пектина. Следует отметить существенное снижение параметра Δm_2 , характеризующего разложение продуктов на второй стадии, наблюдаемое для металлокомплексов по сравнению с исходными фармакофорсодержащими пектинами. Как следствие, общее снижение массы продуктов при 300°С для металлокомплексов на 17.6-60.6% меньше по сравнению с образцами, не содержащими медь. Причем наибольшей термической устойчивостью характеризуются медные комплексы пектина, содержащие салициловую, 5-аминосалициловую и никотиновую кислоты ($\Delta m_{300} = 19.6, 21.9, 24.1\%$ соответственно), тогда как образец пектин-Cu²⁺ имеет заметно более низкую термическую стабильность ($\Delta m_{300} = 42.4\%$). Значение максимумов на кривых ДТГ (T_{max}), которые характеризуют наибольшую скорость разложения продуктов, на второй стадии для образцов фармакофорсодержащий пектин–Си²⁺ на 51–81°С выше, чем для образцов, не содержащих медь, т. е. процесс разложения медьсодержащих продуктов смещен в область более высоких температур. Анализ полученных результатов показывает, что металлокомплексы фармакофорсодержащего пектина по сравнению с исходными полимерными матрицами характеризуются большей термостабильностью, что обусловлено более прочной связью ионов металлов с молекулами воды и с карбоксильными группами фармакофорсодержащего пектина для разрушения которых требуется более высокая температура.

Обнаружено, что характеристическая вязкость растворов пектиновых металлокомплексов ниже, чем исходного и модифицированных пектинов (табл. 1). Связывание ионов металла с полисахаридной матрицей уменьшает электростатическое отталкивание заряженных СОО--групп модифицированного полианиона и, следовательно, размеры макромолекулярного клубка. Наибольшее снижение характеристической вязкости наблюдается для системы пектин– HL^4 в присутствии ионов Co^{2+} , а наименьшее – для пектина в присутствии ионов Mn^{2+} . Таким образом, обнаруженные изменения вязкостных свойств комплексов могут быть связаны с заметными структурными преобразованиями макроцепей фармакофорсодержащего пектина в металлокомплексах.

Таким образом, спектрофотометрическими методами изучено взаимодействие фармакофорсодержащего яблочного пектина с катионами некоторых биогенных металлов (Cu²⁺, Co²⁺, Mn²⁺) и определен состав образующихся металлокомплексов M²⁺:фармакофорсодержащий пектин = 1:2. Обнаружено, что модификация пектина фармакофорами увеличивает устойчивость металлокомплексов в 3–166 раз в зависимости от природы компонентов системы. Показано, что константы устойчивости металлокомплексов уменьшаются в ряду Cu²⁺ > Co²⁺ > Mn²⁺ и соответствуют эмпирическому ряду Ирвинга–Уильямса, что позволяет прогнозировать устойчивость металлокомплексов при модифицировании структур лигандов. Установлено, что при взаимодействии фармакофорсодержащих пектинов с катионами биогенных металлов образуются энтальпийно-энтропийно стабилизированные металлокомплексные соединения. Введение в фармакофорсодержащий пектин неорганической компоненты во всех случаях приводит к снижению характеристической вязкости образцов, что обусловлено структурными преобразованиями макроцепей биополимера в металлокомплексах. Метод термического анализа выявил термостабильные свойства металлокомплексов фармакофорсодержащего пектина.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В экспериментах использовали яблочный пектин товарной марки Unipectine XPP 240 с молекулярной массой 21000 Да и степенью этерифицирования 66%; MnCl₂·4H₂O, CuSO₄·5H₂O и CoCl₂·6H₂O марки XЧ; никотиновую, салициловую, 5-аминосалициловую и антраниловую кислоты марки ЧДА. Синтез и идентификация фармакофорсодержащих пектинов описаны в работе [18].

Спектры ЯМР ¹³С растворов образцов в D₂O регистрировали на спектрометре Bruker Avance III 500 MHz. ИК спектры образцов регистрировали на спектрометре Shimadzu IR Prestige-21 (400-4000 см⁻¹, вазелиновое масло). Электронные спектры поглощения водных растворов соединений определяли в кварцевых кюветах толщиной 1 см относительно воды на спектрофотометре Specord М-40 в области 220-900 нм. Показатель рН среды растворов контролировали на рН-метре АНИОН 4100. Основная абсолютная погрешность pH составляла ±0.01. Необходимое значение pH среды раствора создавали добавлением растворов HCl, H₂SO₄ и NaOH. Характеристическую вязкость водных растворов образцов измеряли при 30±1°C в вискозиметре Уббелоде с висячим уровнем [21]. Для изучения термического разложения образцов использован метод совмещенного термического (термогравиметрия-дифференциальная анализа сканирующая калориметрия). Измерения проводили на приборе синхронного термического анализа ТГА-ДСК Mettler Toledo в среде воздуха при скорости нагревания 5 К/мин в интервале температур от 25 до 300°С.

Состав образующихся соединений при взаимодействии пектина и/или фармакофорсодержащего пектина с катионами металлов(II) определяли спектрофотометрическими методами изомолярных серий и мольных отношений [17]. Суммарная концентрация компонентов в изомолярной серии составляла 1.0×10^{-3} моль/л. В сериях растворов с постоянной концентрацией катиона металла(II), равной 1.0×10^{-3} моль/л, концентрацию пектина и/ или фармакофорсодержащего пектина изменяли от 0.25×10^{-4} до 1×10^{-2} моль/л. Постоянство ионной силы поддерживали 0.1 М. раствором NaCl или Na₂SO₄.

Общая методика получения металлосодержащего комплекса. К раствору пектина и/или фармакофорсодержащего пектина объемом 20 мл прибавляли при 50°С и перемешивании в течение 1.0–1.5 ч 0.1 М. раствор NaOH в дистиллированной воде в количестве 0.1 г щелочи на 0.2 г пектина и/или фармакофорсодержащего пектина, затем добавляли раствор соли двухвалентного металла с концентрацией 0.01 моль/л. Через 30 мин целевой продукт осаждали ацетоном, центрифугировали, промывали этиловым спиртом, затем диэтиловым эфиром и сушили при 40–50°С в вакууме [22]. Все синтезированные вещества анализировали на медь, кобальт и марганец [23, 24], азот, углерод и водород на анализаторе марки EUKO EA-3000.

ФОНДОВАЯ ПОДДЕРЖКА

Работа выполнена в рамках программы фундаментальных научных исследований государственных академий на 2019–2021 годы (госзадание № АААА-А17-117011910026-3) с использованием оборудования Центра коллективного пользования «Химия» Уфимского института химии Уфимского федерального исследовательского центра РАН.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Марков П.А., Попов С.В., Никитина И.Р., Оводова Р.Г., Оводов Ю.С. // Химия растительного сырья. 2010. № 1. С. 21; Markov P.A., Popov S.V., Nikitina I.R., Ovodova R.G., Ovodov Y.S. // Russ. J. Bioorg. Chem. 2011. Vol. 37.P. 817. doi 10.1134/S1068162011070132
- 2. Донченко Л.В., Фирсов Г.Г. Пектин: основные свойства, производство и применение. М.: ДеЛи, 2007. 276 с.

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 90 № 4 2020

- Sriamornsak P. // Univ. Int. J. 2003. Vol. 3. N 1–2. P. 206.
- Sharma R., Ahuja M. // Carbohydr. Polym. 2011. Vol. 85. P. 658. doi 10.1016/j.carbpol.2011.03.034
- Tomihiro M., Akira N., Kiyoshi E. // British J. Nutr. 2011. Vol. 106. P. 73. doi 10.1017/S0007114510005842
- Minzanova S.T., Mironov V.F., Vyshtakalyuk A.B., Tsepaeva O.V., Mironova L.G., Mindubaev A.Z., Nizameev I.R., Kholin K.V., Milyukov V.A. // Carbohydr. Polym. 2015. Vol. 134. P. 524. doi 10.1016/j. carbpol.2015.07.034
- Максудова Ш.Д., Милушева Р.Ю., Холмуминов А.А., Рашидова С.Ш. // ХПС. 2010. № 5. С. 576; Maksudova Sh.D., Milusheva R.Yu., Kholmuminov A.A., Rashidova S.Sh. // Chem. Nat. Compd. 2010. Vol. 46. N 5. P. 677. doi 10.1007/s10600-010-9714-2
- Минзанова С.Т., Миронов В.Ф., Миронова Л.Г., Немтарев А.В., Выштакалюк А.Б., Холин К.В., Низамеева Г.Р., Милюков В.А. // Изв. АН. Сер. хим. 2019. Т. 68. № 1. С. 48; Minzanova S.T., Mironov V.F., Mironova L.G., Nemtarev A.V., Vyshtakalyuk A.B., Kholin K.V., Nizameeva G.R., Milyukov V.A. // Russ. Chem. Bull. 2019. Vol. 68. N 1. P. 48. doi 10.1007/ s11172-019-2414-6
- Miyada T., Nakajima A., Ebihara K. // British J. Nutr. 2011. Vol. 106. P. 73. doi 10.1017/S0007114510005842
- Dutta R.K. Sahu S. // Eur. J. Pharm. Biopharm. 2012.
 Vol. 82. N 1. P. 58. doi 10.1016/J.ejpb.2012.05.007
- Феофанова М.А., Францева Ю.В., Журавлев Е.В., Рясенский С.С., Баранова Н.В. // ЖФХ. 2013. Т. 87.
 № 8. С. 1432; Feofanova M.A., Frantseva Y.V., Zhuravleva Yu.V., Zhuravlev E.V, Ryasensky S.S., Baranova N.V. // Russ. J. Phys. Chem. 2013. Vol. 87. N 8 P. 1417. doi 10.1134/S0036024413080116
- Куковинец О.С., Мударисова Р.Х., Сагитова А.Ф., Абдуллин М.И. // ЖОХ. 2017. Т. 87. № 4. С. 645; Kukovinets O.S., Mudarisova R.Kh., Sagitova A.F, Abdullin M.I. // Russ. J. Gen. Chem. 2017. Vol. 87. N 4. P. 778. doi 10.1134/S1070363217040181
- Сибикина О.В., Иозеп А.А., Москвин А.В. // Хим.фарм. ж. 2009. Т. 43. № 6. С. 35; Sibikina O.V.,

Iozep A.A., Moskvin A.V. // Pharm. Chem. J. 2009. Vol. 43. N 6. P. 341. doi 10.1007/s11094-009-0292-1

- Сагитова А.Ф., Мударисова Р.Х., Куковинец О.С. // ЖОХ. 2019. Т. 89. № 7. С. 1079; Sagitova A.F., Mudarisova R.Kh., Kukovinets O.S. // Russ. J. Gen. Chem. 2017. Vol. 89. N 7. P. 1433. doi 10.1134/ S1070363219070132
- Машковский М.Д. Лекарственные средства. М.: Медицина, 1984. Т. 2. 405 с.
- Алексеев Ю.Е., Гарновский А.Д., Жданов Ю.А. // Усп. хим. 1998. Т. 67. № 8. С. 723; Alekseev Yu.E., Garnovskii A.D., Zhdanov Yu.A. // Russ. Chem. Rev. 1998. Vol. 67. N 8. Р. 649. doi 10.1070/ RC1998v067n08ABEH000343
- Булатов М.И., Калинкин И.П. Практическое руководство по фотометрическим методам анализа. Л.: Химия, 1986. 432 с.
- Куковинец О.С., Мударисова Р.Х., Володина В.П., Тарасова А.В., Мокина А.З., Абдуллин М.И. // ХПС. 2014. № 1. С. 48; Kukovinets O.S., Mudarisova R.K., Volodina V.P., Tarasova A.V., Mokina A.Z., Abdullin M.I. // Chem. Nat. Compd. 2014. Vol. 50. N 1. P. 50. doi 10.1007/s10600-014-0864-5
- Умланд Ф., Янсен А., Тириг Д., Вюнш Г. Комплексные соединения в аналитической химии. Теория и практика применения. М.: Мир, 1975. 531 с.
- 20. Эндрюс Л., Кифер Р. Молекулярные комплексы в органической химии. М.: Мир, 1967. 206 с.
- Рафиков С.Р., Будтов В.П., Монаков Ю.Б. Введение в физикохимию растворов полимеров. М.: Наука, 1978. 328 с.
- Миронов В.Ф., Карасева А.Н., Цепаева О.В., Выштакалюк А.Б., Минзанова С.Т., Морозов В.И., Карлин В.В., Юнусов Э.Р., Миндубаев А.З. // Химия и компьютерное моделирование. Казань. 2003. С. 45.
- Золотов Ю.А. Основы аналитической химии. Практическое руководство. М.: ВШ, 2001. 463 с.
- 24. *Korenman I.M.* New titrometric metohds. M.: Chemistry, 1983. 173 p.

МУДАРИСОВА и др.

Metal Complexes of Pharmacophore-Containing Pectin with *d*-Elements Ions (Cu²⁺, Co²⁺, Mn²⁺)

R. Kh. Mudarisova^a, A. F. Sagitova^{b,*}, O. S. Kukovinets^b, and S. V. Kolesov^a

^a Ufa Institute of Chemistry, Ufa Federal Research Center of the Russian Academy of Sciences, Ufa, 450054 Russia ^b Bashkir State University, Ufa, 450078 Russia *e-mail: alinusic93@mail.ru

Received October 4, 2019; revised October 4, 2019; accepted October 12, 2019

Spectral methods were used to study the complexation of apple pectin modified with organic pharmacophores (nicotinic, salicylic, 5-aminosalicylic, anthranilic acids) with Cu²⁺, Co²⁺, Mn²⁺ ions in aqueous solutions. The composition and stability series of metal complexes, which correspond to the empirical Irving–Williams series, are established. The standard thermodynamic characteristics (ΔH° , ΔG° , ΔS°) of the complexation process are calculated. It was shown by ¹³C and IR NMR that the interaction of pharmacophore-containing pectins with *d*-metal ions (Cu²⁺, Co²⁺, Mn²⁺) is carried out due to the carbonyl and hydroxyl groups of the modified polymer matrices. The viscous and thermal characteristics of metal complexes are determined.

Keywords: complexation, apple pectin, pharmacophore, biogenic metal salts, stability constant