УДК 547.724

СИНТЕЗ 4-(2-ФТОР-4-ГИДРОКСИФЕНИЛ)-1,2,3-ТИА- И -СЕЛЕНАДИАЗОЛОВ И ГЛИКОЗИДОВ НА ИХ ОСНОВЕ

© 2020 г. О. В. Степанова^a, Л. М. Певзнер^{a, *}, М. Л. Петров^a, Н. П. Степанова^b, Н. Б. Соколова^a, А. В. Степаков^c

^a Санкт-Петербургский государственный технологический институт (технический университет),
 Московский пр. 26, Санкт-Петербург, 190013 Россия
 ^b Северо-западный государственный медицинский университет имени И. И. Мечникова,
 Санкт-Петербург, 195067 Россия
 ^c Санкт-Петербургский государственный университет, Санкт-Петербург, 198504 Россия
 *e-mail: pevzner lm@list.ru

Поступило в Редакцию 31 января 2020 г. После доработки 31 января 2020 г. Принято к печати 6 февраля 2020 г.

На основе 2-фтор-4-метоксиацетофенона с помощью реакции Хурда—Мори синтезирован 2-фтор-4-гидроксифенил-1,2,3-тиадиазол, который в условиях межфазного катализа в системе вода—хлороформ подвергается гликозилированию 1-α-бром-2,3,4-три-*О*-ацетил-D-ксилопиранозой. 2-Фтор-4-гидрокси-1,2,3-селенадиазол может быть получен окислением семикарбазона 2-фтор-4-гидроксиацетофенона двуокисью селена в среде уксусной кислоты. Гликозилирование 2-фтор-4-гидрокси-1,2,3-селенадиазола с использованием 1-α-бром-2,3,4,6-тетра-*О*-ацетил-D-галактопиранозы приводит к образованию соответствующего гликозида. Разработан альтернативный путь синтеза 1-β-[3-фтор-4-(1,2,3-селенадиазол-4-ил)-фенил]-2,3,4-три-*О*-ацетил-D-ксилопиранозы, включающий первоначальное получение ксилозида 2-фтор-4-гидроксиацетофенона с последующим формированием в его составе селенадиазольного кольца.

Ключевые слова: реакция Хурда—Мори, 1,2,3-тиадиазол, 1,2,3-селенадиазол, гликозилирование, агликон, межфазный катализ

DOI: 10.31857/S0044460X20070112

1,2,3-Тиа- и -селенадиазолы обладают широким спектром биологической активности и представляют интерес как перспективный класс соединений для создания новых лекарственных средств и фунгицидов [1-3]. В то же время существенной проблемой, сдерживающей широкое применение этих веществ, является их невысокая биодоступность. С целью повышения биодоступности 4-фенил-1,2,3-тиа- и -селенадиазолов мы предложили ввести эти структурные фрагменты в состав агликона, что, вероятно, может обеспечить их доставку к органам-мишеням с помощью распространенных в живых организмах каналах транспорта углеводов и их производных [4]. В настоящей работе рассмотрен синтез ранее неизвестных 4-(2-фтор-4-гидроксифенил)-1,2,3-тиа- и -селенадиазолов и гликозидов на их основе.

Оценка возможной биологической активности с помощью программы PASS [5] показала, что О-ксилозиды и О-галактозиды, имеющие в своем составе остаток 4-(4-гидроксифенил)-1,2,3-тиаили -селенадиазола, могут, с вероятностью больше 0.7. проявлять ингибирующую активность в отношении глицерофосфорансферазы, влиять на проницаемость клеточных мембран, выступать антагонистами анафилатоксиновых рецепторов, а также оказывать антинеобластическое действие. При введении атома фтора в орто-положение к гетероциклическому фрагменту дополнительно возможно проявление ноотропной и вазопротекторной активности. Поэтому разработка методов синтеза подобных соединений является актуальной задачей.

В качестве исходного соединения был использован коммерчески доступный 2-фтор-4-меток-

Me O Me N
$$F$$
 NH2NHCOOEt P -TsOH, толуол OMe OMe P OMe

сиацетофенон **2**. Синтез 4-(2-фтор-4-метоксифенил)-1,2,3-тиадиазола **1** осуществляли в две стадии в соответствии с методикой [6] (схема 1).

На первой стадии при нагревании 2-фтор-4-метоксиацетофенона 2 с карбэтоксигидразином в присутствии п-толуолсульфокислоты в толуоле был получен карбэтоксигидразон 3 с выходом 31% (реакцию проводили при мольном соотношении ацетофенон:карбэтоксигидразин:кислота = 1:1.08:0.06). На основании данных спектроскопии ЯМР (CDCl₃) установлено, что соединение 3 существует в растворе как смесь спектрально различимых син- и анти-форм в соотношении 4:1 соответственно. Отнесение сигналов этих форм в спектрах ЯМР ¹Н и ¹³С проводили на основании литературных данных [7-9], в соответствии с которыми сигнал протонов метильной группы фрагмента –(CH₃)C=N анти-формы находится в более сильном поле. Изучение процесса плавления показало, что при 105°C кристаллы продукта оплывают и теряют форму, а затем вновь образуются. Повторное плавление наблюдается только при 109°C. Таким образом, спектральные и физико-химические данные показывают, что соединение 3 как в растворе, так и в кристаллическом состоянии существует в виде двух форм, но отнести наблюдаемые температуры плавления к той или иной форме без специальных исследований не представляется возможным.

Циклизацию соединения **3** в 1,2,3-тиадиазол **1** проводили при кипячении в хлористом тиониле (схема 1). Целевой продукт **1** был получен с выходом 85%. Образование тиадиазольного кольца подтверждается присутствием сигнала протона H^5 тиадиазольного цикла при 8.80 м. д. и сигналов ядер углерода при 130.86 (C^5 -тиадиазол, $^4J_{CF}$ = 4.5 Γ ц) и 156.42 м. д. (C^4 -тиадиазол, $^3J_{CF}$ = 3.4 Γ ц). Сигнал ядра фтора в этом соединении наблюдался

при —112. 46 м. д. Деметилирование фенилтиадиазола 1 проводили при нагревании в 40%-ной бромистоводородной кислоте (схема 2), после обработки реакционной смеси продукт 4 был выделен с выходом 64% в кристаллическом виде. В спектре ЯМР ¹Н фенола 4 наблюдается уширенный сигнал гидроксильного протона при 10.33 м. д. Тиадиазольное кольцо в условиях реакции не разрушалось.

Синтез гликозида 5 проводили по реакции Кеннигса-Кнорра в условиях межфазного катализа (система вода-хлороформ, межфазный катализатор – триэтилбензиламмоний бромистый), используя в качестве гликозилирующего агента 1-α-бром-2,3,4-три-О-ацетил-D-ксилопиранозу (схема 3) [4]. В результате реакции была по-1-β-О-[3-фтор-4-(1,2,3-тиадиазол-4-ил)лучена фенил]-2,3,4-три-О-ацетил-D-ксилопираноза 5 с выходом 35%. Как было показано ранее [4], аналогичный ксилозид, не содержащий атом фтора, получен с выходом 41%, т. е. наличие атома фтора в ароматическом кольце агликона не оказывает существенного влияния на выход конечного продукта. Строение соединения 5 подтверждено данными ЯМР ¹H, ¹³С и ¹⁹F. Химический сдвиг атома углерода C¹ ксилозидного остатка находится при 97.97 м. д., что указывает на β-конфигурацию полученного продукта [10]. Данные рентгеноструктурного анализа для аналогичного нефторированного ксилозида приведены в работе [4]. Также следует отметить, что в процессе хроматографической очистки и последующей кристаллизации ксилозида 5 имело место частичное разложение

Схема 2.

4

Схема 3.

Схема 4.

Схема 5.

тиадиазольного кольца с образованием элементарной серы (S_8).

4-(2-Фтор-4-гидроксифенил) селенадиазол 6 синтезировали из 2-фтор-4-гидроксиацетофенона 7, полученного по методу [12]. Реакцией кетона 7 с гидрохлоридом семикарбазида в присутствии ацетата натрия при нагревании в этаноле получен соответствующий семикарбазон 8 (схема 4). Целевой продукт был выделен с выходом 74% в виде индивидуального изомера.

Окисление семикарбазона **8** до селенадиазола **6** проводили с использованием двуокиси селена в среде уксусной кислоте при 60°С. Соединение **6** было получено с выходом 22%. Выделение продукта реакции осложнялось образованием большого количества коллоидного селена в ходе реакции. Формирование селенадиазольного кольца подтверждалось наличием сигнала протона при 9.79 м. д. (сателлиты с $^2J_{\rm HSe}=42.0~\Gamma$ ц) и сигналов атомов углерода при 131.86 (С⁵-тиадиазол, $^4J_{\rm CF}=4.7~\Gamma$ ц) и 156.38 м. д. (С⁴-тиадиазол, $^3J_{\rm CF}=3.7~\Gamma$ ц).

Согласно литературным данным [11], выход незамещенного 4-(4-гидроксифенил)селенадиазола составляет 57%. Вероятно, введение фтора в ароматическое кольцо снижает селективность процесса окисления.

Реакцию Кеннигса-Кнорра между гидроксифенилселенадиазолом 6 и 1-α-бром-2,3,4,6-тетра-О-ацетил-D-галактопиранозой проводили гликозилированию логично тиадиазола (схема 5). 1-β-О-[2-Фтор-4-(1,2,3-селенадиазол-4ил)фенил]-2,3,4-три-О-ацетил-D-галактопираноза 9 была выделена в виде красноватых кристаллов с выходом 25%. Строение галактозида 9 было подтверждено спектрами ЯМР ¹H, ¹³С и ¹⁹F. Сигнал атома углерода С1 галактозидного фрагмента находится при 99.24 м. д., что указывает на β-конфигурацию полученного продукта реакции [10]. Введение атома фтора в ароматическое кольцо незначительно снижает выход целевого гликозида 9 по сравнению с нефторированным аналогом (30%, [4]). Вместе с тем фторированный продукт оказы-

Схема 6.

Схема 7.

вается более чувствительным к действию света и быстро окрашивается в красный цвет за счет выделения коллоидного селена.

Обнаружив, что при окислении гидразона **8**, имеющего свободную гидроксильную группу, селенадиазол **6** образуется с низким выходом, мы попытались изменить последовательность стадий и вначале получить гликозид на основе кетона **7**, а затем уже в составе гликозида сформировать 1,2,3-селенадиазольное кольцо. В качестве углеводной компоненты была использована 1-α-бром-2,3,4-три-*О*-ацетил-D-ксилопираноза. Реакция Кеннигса–Кнорра между кетоном **7** и 1-α-бром-2,3,4-три-*О*-ацетил-D-ксилопиранозой приводит к образованию ксилозида **10** с выходом 31% (схема 6). На основании сигнала атома углерода С¹ ксилозидного фрагмента при 97.46 м. д. продукту **10** приписана β-конфигурация.

При взаимодействии гликозида **10** с гидрохлоридом семикарбазида в присутствии ацетата натрия в качестве основания в этаноле был получен гликозид семикарбазона **11** с выходом 65% (схема 7). Ксилозидный фрагмент в ходе реакции не затрагивался и сохранял β-конфигурацию.

Окисление ксилозида 11 двуокисью селена проводили при нагревании в среде уксусной кислоты в соответствии с методикой [4] (схема 8). Выход селенадиазола 12 составил 63%. Образование селенадиазольного цикла подтверждается наличием сигнала протона при 9.58 м. д. (сателлиты с

 $^2J_{\rm HSe}=42.0~\Gamma$ ц) и сигналов атомов углерода при 131.85 (С⁵, $^4J_{\rm CF}=4.1~\Gamma$ ц) и 155.90 м. д. (С⁴, $^3J_{\rm CF}=4.1~\Gamma$ ц). Сигнал атома фтора в соединении **12** находится при $-112.15~\rm M$. д.

Таким образом, окисление гликозилированного семикарбазона 11 протекает более селективно и с более высоким выходом, чем окисление соединения 8 с незащищенной гидроксильной группой. В то же время введение атома фтора в фенильное кольцо увеличивает выход соответствующего ксилозида селенадиазола по сравнению с незамещенным аналогом, где наблюдается образование смеси ксилозидов 4-(4-гидроксифенил)селенадиазола и 4-гидроксиацетофенона с выходами 34 и 12% соответственно [4].

Из полученных результатов видно, что введение атома фтора в фенильное кольцо агликона не вносит существенных изменений в методику синтеза и гликозилирования 4-(4-гидроксифенил)тиадиазола и незначительно влияет на выходы продуктов. Напротив, в случае синтеза производных

Схема 8.

$$11 \frac{\text{SeO}_2}{\text{AcOH}} O = 0$$

$$O =$$

селенадиазола селективность реакции фторированного семикарбазона с двуокисью селена сильно снижается при наличии в фенильном кольце незащищенной гидроксильной группы и может быть повышена в случае окисления фторированного β-арилксилозида.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹H, ¹³C, и ¹⁹F регистрировали на приборе Bruker AVANCE-400 (400.13, 376.7 и 100.16 МГц соответственно). Масс-спектры высокого разрешения снимали на масс-спектрометре Bruker MicrOTOF. Температуры плавления измеряли на приборе Boëtius.

Карбэтоксигидразон 2-фтор-4-метоксиацетофенона (3). Смесь 2.95 г (17.6 ммоль) 2-фтор-4метоксиацетофенона, 1.98 г (19.0 ммоль) карбэтоксигидразина, 0.17 г (1.0 ммоль) n-толуолсульфокислоты и 30 мл толуола кипятили 8 ч с ловушкой Дина-Старка. После прекращения выделения воды отгоняли толуол. Остаток затирали с водой, осадок отфильтровывали и перекристаллизовывали из этанола. Выход 2.00 г (31.0%), т. пл. 105°C, 109°С. *анти*-Изомер. Спектр ЯМР ¹Н (CDCl₃), δ , м. д.: 1.30 т (3H, CH₃-этил, $J_{\rm HH}$ = 7.2 Гц), 2.22 c (3H, CH₃C=N), 3.84 c (3H, CH₃O), 4.24 κ (2H, CH_2O -этил, $J_{HH} = 7.2 \Gamma \mu$), 6.61 д. д (1H, H^3_{Ar} , $J_{FH} =$ 13.2, $J_{\rm HH}$ = 2.4 Гц), 6.71 д. д (1H, ${\rm H}^5_{\rm Ar}$, $J_{\rm HH}$ = 8.8, $2.4\ \Gamma$ ц), $7.48\ д.\ д\ (1H,\ H^6_{Ar},\ J_{HH}=J_{FH}=8.8\ \Gamma$ ц), 7.87уш. с (1H, NH). Спектр ЯМР 13 С (CDCl₃), $\delta_{\rm C}$, м. д.: 14.46 (CH₃-этил), 15.85 (<u>C</u>H₃C=N), 55.65 (CH₃O), 62.02 (СН₂*O*-этил), 101.75 д (С 3 _{Ap} 2 *J*_{CF} = 25.9 Гц), 110.19 д (C_{Ar}^5 $^4J_{CF} = 2.7$ Гц), 119.50 д (C_{Ar}^1 $^2J_{CF} =$ 12.1 Γ ц), 130.11 д (C_{Ar}^6 , $^3J_{CF}$ = 4.8 Γ ц), 145.22 (C=N), 156.93 (C=O), 161.50 д (C_{Ar}^2 , $J_{CF} = 247.6 Гц),$ 161.65 д (C_{Ar}^4 , $^3J_{CF}$ =11.1 Гц). Спектр ЯМР 19 F $(CDCl_3)$: δ_F –111.99 м. д. *син-*Изомер. спектр ЯМР 1 Н (CDCl₃), δ , м. д.: 1.36 т (3H, CH₃-этил, J_{HH} = 7.2 Гц), 2.21 c (3H, CH₃C=N), 3.82 c (3H, CH₃O), 4.33 к (2H, CH₂O-этил, $J_{\rm HH}$ = 7.2 Γ ц), 6.61 д. д (H³_{Ar}, $J_{\rm FH}$ = 13.2, $J_{\rm HH}$ = 2.4 Гц), 6.71 д. д (${\rm H^5}_{\rm Ar}$, $J_{\rm HH}$ = 8.8, 2.4Γ ц), 7.61 д. д ($\mathrm{H^6}_{\mathrm{Ar}}$, $J_{\mathrm{HH}} = J_{\mathrm{FH}} = 8.8 \Gamma$ ц), 7.93 уш. с (1H, NH). Спектр ЯМР 13 С (CDCl₃), $\delta_{\rm C}$, м. д.: 14.59 (CH₃-этил), 15.91 (<u>C</u>H₃C=N), 55.70 (CH₃O), 62.06 $(CH_2O$ -этил), 101.95 д $(C_{Ar}^3)^2 J_{CF} = 26.1 \Gamma \mu$, 110.24 д (${\text{C}^5}_{\text{Ar}}$, ${}^4\!J_{\text{CF}}$ = 2.7 Гц), 119.50 д (${\text{C}^1}_{\text{Ar}}$, ${}^2\!J_{\text{CF}}$ = 12.1 Гц), 130.63 д (C_{Ar}^6 , $^3J_{CF} = 5.2 \Gamma ц$), 146.75 (C=N), 156.93 (C=O), 161.50 д (C^2_{Ap} , ${}^1J_{CF} = 247.6 \ \Gamma$ ц), 161.65 д $(C_{Ar}^4, {}^3J_{CF} = 11.1 \ \Gamma \text{ц})$. Спектр ЯМР 19 F (CDCl₃): δ_{F} –112. 67 м. л.

4-(2-Фтор-4-метоксифенил)-1,2,3-тиадиазол (1). Смесь 1.00 г (3.9 ммоль) карбэтоксигидразона 3 и 12 мл хлористого тионила кипятили 8 ч до прекращения выделения газа. Отгоняли избыток хлористого тионила, остаток затирали с водой. Образовавшиеся кристаллы отфильтровывали, сушили на воздухе и перекристаллизовывали из этанола. Выход 0.70 г (85%), т. пл. 130°C. Спектр ЯМР ¹H (CDCl₃), δ, м. д.: 3.90 с (3H, OCH₃), 6.79 д (1H, $\mathrm{H^3}_{\mathrm{Ar}}$, J_{FH} = 12.8 Гц), 6.90 д (1H, $\mathrm{H^5}_{\mathrm{Ar}}$, J_{HH} = 7.8 Гц), 8.43 д. д (1H, H_{Ar}^6 , J_{FH} = 8.4, J_{HH} = 7.8 Гц), $8.80 \,\mathrm{c}$ (1H, H⁵-тиадиазол). Спектр ЯМР $^{13}\mathrm{C}$ (CDCl₂), $\delta_{\rm C}$, м. д.: 55.77 (ОСН₃), 102.17 (С³_{Ar}, ² $J_{\rm CF}$ = 25.7 Гц), 110.76 д (C_{Ar}^5 , $^4J_{CF} = 2.3$ Гц), 111.64 д (C_{Ar}^1 , $^2J_{CF} =$ 12.3 Гц), 130.86 д (С⁵-тиадиазол, ${}^{4}J_{CF} = 4.5$ Гц), 131.77 д ($\mathrm{C^6_{Ar}}$ $^3J_{\mathrm{CF}}$ = 12.8 Гц), 156.42 д ($\mathrm{C^4}$ -тиадиазол, $J_{\text{CF}} = 3.4 \, \Gamma \text{ц}$), 160.56 (С², $^1J_{\text{CF}} = 247.7 \, \Gamma \text{ц}$), $161.61 (C^4, {}^3J_{CF} = 11.5 \Gamma \mu)$. Спектр ЯМР 19 F (CDCl₃): $\delta_{\rm E}$ –112. 46 м. д.

4-(2-Фтор-4-гидроксифенил)-1,2,3-тиадиазол **(4).** Смесь 5.4 г 4-(2-фтор-4-метоксифенил)-1,2,3-тиадиазола 1 и 30 мл 40%-ной бромистоводородной кислоты кипятили 48 ч при 122°С. После охлаждения реакционной смеси выделившийся осадок отфильтровывали и перекристаллизовывали из водного этанола. Выход 3.22 г (64%), т. пл. 125°С. Спектр ЯМР ¹Н (ДМСО-*d*₆), δ, м. д.: 6.80 д. д (1H, $\mathrm{H_{Ar}^3}$, $J_{\mathrm{FH}} = 26.4$, $J_{\mathrm{HH}} = 2.8$ Гц), 6.81 д. д (1H, $\mathrm{H}^{5}_{\mathrm{Ar}},\,J_{\mathrm{HH}}=8.8,\,2.8\,\,\Gamma\mathrm{II}),\,8.09\,\,\mathrm{д.}\,\,\mathrm{д}\,\,(1\mathrm{H},\,\mathrm{H}^{6}_{\mathrm{Ar}},\,J_{\mathrm{FH}}=$ $8.8, J_{\rm HH} = 8.8 \; \Gamma$ ц), 9.22 д (1H, H⁵-тиадиазол, $J_{\rm FH} =$ 2.4 Гц), 10.33 уш. с (1H, OH). Спектр ЯМР ¹³С (ДМСО- d_6), δ_C , м. д.: 103.73 д (C_{Ar}^3 , $^2J_{CF} = 24.0$ Гц), 109.99 д (C_{Ar}^{1} $^{2}J_{CF}$ = 12.5 Гц), 112.95 д (C_{Ar}^{5} $^{4}J_{CF}$ = 2.4 Гц), 131.09 д (С⁵-тиадиазол, ${}^{4}J_{CF} = 4.9$ Гц), 134.28 д (C_{AD}^6 $^3J_{CF}$ =10.3 Гц), 156.42 д (C_{AD}^4 -тиадиазол, ${}^3J_{\rm CF}$ = 3.4 Гц), 160.41 д (${\rm C^2}_{\rm Ar}$, ${}^1J_{\rm CF}$ = 246.7 Гц), 160.45 д (C_{Ar}^4 , $^3J_{CF} = 12.0$ Гц). Спектр ЯМР 19 F (ДМСО- d_6): δ_F –113.05 м. д.

1- β -O-[3- Φ тор-4-(1,2,3-тиадиазол-4-ил)фенил]-2,3,4-три-O-ацетил-D-ксилопираноза (5). К смеси 2.52 г (12.8 моль) 4-(2- ϕ тор-4-гидроксифенил)-1,2,3-тиадиазола 4, 2.38 г (7.0 ммоль) 1- α -бром-2,3,4-три-O-ацетил-D-ксилопиранозы, 1.5 г (5.5 ммоль) бромида бензилтриэтиламмония и 60 мл хлороформа прибавляли при перемешивании раствор 0.86 г (15.3 ммоль) гидроксида калия

в 25 мл воды. Полученную смесь кипятили при перемешивании 6 ч, затем охлаждали и отделяли водный слой. Органический слой промывали 0.6 н. $KOH (2 \times 25 \text{ мл})$, затем 25 мл воды и сушили хлористым кальцием. После удаления хлороформа остаток перекристаллиззовывали из этанола. Выход 1.11 г (35%), т. пл. 83°С. Спектр ЯМР ¹H (CDCl₂), δ. м. д.: 2.13 с (9H, CH₃CO), 3.64 д. д (1H, H⁵-ксилоза, J_{AB} = 12.0, J_{H} 5_H4 = 7.2 Гц), 4.28 д. д (1H, H⁵-ксилоза, $J_{AB} = 12.0, J_{H}5_{H}4 = 4.4 \Gamma II, 5.04 д. д. д (1H, H⁴-кси$ лоза, $J_{\text{H}^4\text{H}^5\text{A}} = 7.2$, $J_{\text{H}^4\text{H}^5\text{B}} = 4.4$, $J_{\text{H}^4\text{H}^3} = 7.2$ Гц), 5.21 д. д (1H, H²-ксилоза, $J_{H^2H^1} = 5.6$, $J_{H^2H^3} = 7.2 \Gamma_{\text{Ц}}$), 5.27 д. д (1H, H^3 -ксилоза, $J_{H^3H^2} = J_{H^3H^4} = 7.2 \Gamma_{II}$), 5.30 д (1H, H¹-ксилоза, $J_{\rm H}$ 1_H2 = 5.6 Гц), 6.92 д. д (1H, ${\rm H^2}_{\rm AP}$ $J_{\rm FH}$ = 12.4, $J_{\rm HH}$ = 1.8 Гц), 7.00 д. д (1H, ${\rm H^6}_{\rm AP}$ J_{HH} = 8.8, 1.8 Гц,), 8.45 д. д (1H, H⁵_{Ar}, J_{HH} = 8.8, J_{FH} = $8.8 \, \Gamma$ ц), $8.84 \, (1 H, \, H^5$ -тиадиазол). Спектр ЯМР 13 С $(CDCl_3)$, δ_C , м. д.: 20.73 $(\underline{CH_3CO})$, 20.77 $(\underline{CH_3CO})$, 20.81(<u>CH</u>₃CO), 61.81 (С⁵-ксилоза), 68.21 (С⁴-ксилоза), 69.65 (C^2 -ксилоза), 70.14 (C^3 -ксилоза), 97.98 (С¹-ксилоза), 105.07 д (С²-фенил, ${}^2J_{CF}$ = 25.8 Гц), 113.15 д (С⁶-фенил, ${}^4J_{\rm CF}$ = 2.9 Гц), 113.88 д $(C^4$ -фенил, ${}^2J_{CF} = 11.9 \Gamma \mu$), 131.02 д (C^5 -тиадиазол, $^{4}J_{\text{CF}} = 4.4 \, \Gamma$ ц), 132.52 д (С⁵-фенил, $^{3}J_{\text{CF}} = 13.0 \, \Gamma$ ц), 155.90 д (С⁴-тиадиазол, ${}^{3}J_{\text{CF}} = 3.7$ Гц), 158.61 д $(C^1$ -фенил, ${}^3J_{CF}$ = 11.4 Гц), 160.18 д $(C^3$ -фенил, ${}^1J_{CF}$ = 249.1 Гц), 169.35 (С=О), 169.83 (С=О). Спектр ЯМР 19 F (CDCl₃): $\delta_{\rm F}$ –111. 80 м. д.

Семикарбазон 2-фтор-4-гидроксиацетофенона (8). Смесь 2.80 г (18.2 ммоль) 2-фтор-4гидроксиацетофенона, 4.45 г (40.0 ммоль) солянокислого семикабазида, 3.57 г (43.5 ммоль) ацетата натрия и 22 мл этанола кипятили при 80°C 48 ч. После этого добавляли к реакционной массе 60 мл воды, отфильтровывали розовые кристаллы и сушили. Выход 2.92 г (76%), т. пл. 174°С. Спектр ЯМР 1 Н (ДМСО- d_{6}), δ , м. д.: 2.13 с (3H, <u>CH</u>₃CN, $J_{\rm FH}$ = 2.8 Гц), 6.35 уш. с (2H, NH₂-амид), 6.56 д. д (1H, H^3_{Ar} , $J_{FH} = 13.4$, $J_{HH} = 2.3$ Гц), 6.61 д. д (1H, $H_{Ar}^5 J_{HH} = 8.4, 2.3 \Gamma II), 7.50 д. д (1H, <math>H_{Ar}^6 J_{HH} = 8.4,$ J_{FH} = 9.2 Гц), 9.29 уш. с (1H, NH), 10.24 уш. с (1H, ОН). Спектр ЯМР ¹³С (ДМСО- d_6), δ_C , м. д.: 17.9 д $(\underline{\text{CH}}_3\text{CN}, {}^4J_{\text{CF}} = 5.7 \,\Gamma\text{ц}), \, 103.23 \,\,\text{д} \,\,(\text{C}^3\text{-фенил}, \, {}^2J_{\text{CF}} =$ 24.6 Гц), 112.15 д (C^5 -фенил, ${}^4J_{CF}$ = 2.2 Гц), 118.38 д $(C^1$ -фенил, ${}^2J_{CF}$ =11.3 Гц), 130.89 д (C^6 -фенил, ${}^3J_{CF}$ = 5.5 Γ ц), 142.88 д (C=N, ${}^{3}J_{CF}$ = 2.2 Γ ц), 157.75 (C=O), 159.99 д (С⁴-фенил, ${}^3J_{\rm CF}=2.0~\Gamma$ ц), 161.16 д (С²фенил, ${}^{1}J_{\text{CF}} = 255.4$ Гц). Спектр ЯМР 19 F (ДМСО- d_6): δ_F –113. 57 м. д.

4-(2-Фтор-4-гидроксифенил)-1,2,3-селенади**азол (6).** Смесь 2.84 г (13.5 ммоль) семикарбазона 2-фтор-4-ацетофенона, 1.8 г (16.2 ммоль) диоксида селена и 27 мл уксусной кислоты перемешивали 20 ч при 60°С. После этого реакционную массу разбавляли 80 мл воды и отфильтровывали выпавшие кристаллы. Полученный осадок растворяли в ацетоне, выдерживали 1 ч для коагуляции коллоидного селена и фильтровали через слой силикагеля. Отгоняли ацетон, остаток экстрагировали горячим гексаном. При испарении раствора образовывались кристаллы. Выход 0.73 г (22%), т. пл. 124°С. Спектр ЯМР ¹Н (ДМСО-*d*₆), δ , м. д.: 6.78 д. д (1H, H³-фенил, $J_{\text{FH}} = 13.2$, $J_{\text{HH}} = 2.4$ Гц), 6.81 д. д (1H, H⁵-фенил, $J_{\rm HH}=8.8,~2.4~$ Гц), 8.07~д. д (1H, H⁶-фенил, $J_{\text{FH}} = 8.8$, $J_{\text{HH}} = 8.8$ Гц), 9.79 д (1H, H⁵-тиадиазол, сателлит $J_{\rm HSe}$ = 42.0 Гц), 10.32 уш. с (1H, OH). Спектр ЯМР ¹³С (ДМСО- d_6), $\delta_{\rm C}$, м. д.: 103.77 д (C^3 -фенил, $^2J_{CF}$ = 24.2 Гц), 111.38 д (C^1 фенил, ${}^{2}J_{\text{CF}} = 12.3 \, \Gamma$ ц), 112.86 д (С⁵-фенил, ${}^{4}J_{\text{CF}} =$ 2.4 Гц), 131.86 д (С⁵-тиадиазол, ${}^4J_{\rm CF} = 4.7$ Гц), 141.66 д (С⁶-фенил, $^3J_{\rm CF}=9.8$ Гц), 156.38 д (С⁴тиадиазол, ${}^{3}J_{\text{CF}} = 3.7 \, \Gamma \text{ц}$), 159.97 (С⁴-фенил, ${}^{3}J_{\text{CF}} =$ 12.2 Гц), 160.47 д (С²-фенил, ${}^{1}J_{CF} = 246.0$ Гц). Спектр ЯМР ¹⁹F (ДМСО- d_6): δ_F –113.31 м. д.

1-β-*O*-[3-Фтор-4-(1,2,3-селенадиазол-4-ил)фенил]-2,3,4,6-тетра-О-ацетил-D-галактопираноза (9). К смеси 0.64 г (2.6 ммоль) 4-(2-фтор-4гидроксифенил)-1,2,3-селенадиазола 6, 0.54 г (1.3 ммоль) 1-α-бром-2,3,4,6-тетра-*O*-ацетил-Dгалактопиранозы, 0.28 г (1.0 ммоль) бромида бензилтриэтиламмония и 20 мл хлороформа прибавляли при перемешивании раствор 0.16 г (2.9 ммоль) гидроксида калия в 5 мл воды. Реакционную массу кипятили при перемешивании 8 ч, затем охлаждали и отделяли водный слой. Органический слой промывали 0.6 н. КОН (2×5 мл), 5 мл воды и сушили хлористым кальцием. После удаления хлороформа остаток перекристаллизовывали из этанола. Выход 0.19 г (25%), т. пл. 43°С. Спектр ЯМР ¹H (CDCl₃), δ, м. д.: 2.04 с (3H, CH₃CO), 2.11 уш. c (6H, CH₃CO), 2.21 c (3H, CH₃CO), 4.14–4.29 м (3H, H^5 -галактоза, H^6_{AB}), 5.15 д (1H, H^4 -галактоза, $J_{\rm H^4H^3}=7.8~\Gamma$ ц), 5.16 д. д (1H, H²-галактоза, $J_{\rm H^2H^3} = 10.2$, $J_{\rm H^2H^1} = 3.6$ Гц), 5.50 д (1H, H¹-галактоза, $J_{\rm H}{}^{1}{}_{\rm H}{}^{2}=3.6$ Гц), 6.94 д. д (${\rm H}^{3}{}_{\rm Ar}$, $J_{\rm FH}=12.4$, $J_{\rm HH}=$ 2.0 Гц), 6.98 д. д ($\mathrm{H^5}_{\mathrm{Ar}}$, $J_{\mathrm{HH}} = 8.4$, 2.0 Гц), 8.41 д. д (H_{Ar}^6 , $J_{FH} = J_{HH} = 8.4 \Gamma$ ц), 9.59 (1H, H_{-cene} диазол, сателлит $J_{HSe} = 42.4 \, \Gamma$ ц). Спектр ЯМР ¹³С

(CDCl₃), $\delta_{\rm C}$, м. д.: 20.58 (<u>CH</u>₃CO), 20.66 (<u>CH</u>₃CO), 20.75 (<u>CH</u>₃CO), 61.56 (С⁶-галактоза), 66.88 (С⁴-галактоза), 68.45 (С³-галактоза), 71.42 (С²-галактоза), 70.75 (С⁵-галактоза), 99.24 (С¹-галактоза), 105.28 д (С³-фенил, $^2J_{\rm CF}$ = 26.3 Гц), 113.27 д (С⁵-фенил, $^4J_{\rm CF}$ = 2.9 Гц), 115.34 (С¹-фенил, $^2J_{\rm CF}$ = 11.7 Гц), 131.85 д (С⁵-селенадиазол, $^4J_{\rm CF}$ = 4.1 Гц), 140.08 д (С⁶-фенил, $^3J_{\rm CF}$ = 12.7 Гц), 155.90 д (С⁴-селенадиазол, $^3J_{\rm CF}$ = 4.1 Гц), 157.81 д (С⁴-фенил, $^3J_{\rm CF}$ = 11.4 Гц), 160.17 д (С²-фенил, $^1J_{\rm CF}$ = 248.7 Гц), 169.38 (С=О), 170.11(С=О), 170.23(С=О), 170.43(С=О). Спектр ЯМР 19 F (CDCl₃): $\delta_{\rm F}$ –112. 13 м. д.

1-β-О-(3-Фтор-4-ацетилфенил)-2,3,4три-О-ацетил-D-ксилопираноза (10). К смеси 2.45 г (12.6 ммоль) 2-фтор-4-гидроксиацетофенона 7, 2.12 г (6.3 ммоль) 1-α-бром-2,3,4-три-О-ацетил-D-ксилопиранозы, 1.37 г (5.0 ммоль) бромида бензилтриэтиламмония и 50 мл хлороформа прибавляли при перемешивании раствор 0.8 г (13.9 ммоль) гидроксида калия в 18 мл воды. Реакционную массу кипятили при перемешивании 8 ч, затем охлаждали и отделяли водный слой. Органический слой промывали 0.6 н. КОН $(2 \times 20 \text{ мл}), 20 \text{ мл воды и сушили хлористым каль$ цием. После удаления хлороформа, остаток перекристаллизовывали из спирта. Выход 0.80 г (31%), т. пл. 113°С. Спектр ЯМР ¹Н (CDCl₃), δ , м. д.: 2.12 с (9H, <u>CH</u>₃CO), 2.62 с (3H, <u>CH</u>₃CO-фенил), 3.63 д. д (1H, H⁵-ксилоза, J_{AB} = 12.4, J_{H} 5_H4 = 6.8 Γ ц), 4.24 д. д (1H, H⁵-ксилоза, J_{AB} =12.4, J_{H} 5_H4 = 4.6 Γ ц), 5.01 д. д. д (1H, H⁴-ксилоза, $J_{H^4H^5A} = 6.8$, $J_{H^4H^5B} = 4.6$, $J_{\rm H}4_{\rm H}3 = 7.2$ Гц), 5.17 д. д (1H, H²-ксилоза, $J_{\rm H}2_{\rm H}1 =$ $5.4, J_{H^2H^3} = 7.2 \Gamma$ ц), 5.24 д. д (1H, H³-ксилоза, $J_{H^3H^2} =$ 7.2, $J_{\rm H}3_{\rm H}4$ = 7.2 Гц), 5.30 д (1H, H¹-ксилоза, $J_{\rm H}1_{\rm H}2$ = 5.4 Гц), 6.77 д. д (1H, $\mathrm{H^2}_{Ar}$, J_{FH} = 12.4, J_{HH} = 2.4 Гц), 6.85 д. д (1H, $\mathrm{H^6_{Ar}}$, J_{HH} = 8.8, J_{HH} = 2.4 Гц,), 7.90 д. д (1H, $\mathrm{H}^5_{\mathrm{Ar}}$, $J_{\mathrm{HH}} = 8.8$, $J_{\mathrm{FH}} = 8.8$ Гц). Спектр ЯМР ¹³С (CDCl₃), δ_C, м. д.: 20.73 (<u>CH</u>₃CO), 20.77 (CH₃CO), 20.81 (CH₃CO), 30.94 (CH₃CO-фенил), 61.72 (С⁵-ксилоза), 68.05 (С⁴-ксилоза), 69.37 $(C^2$ -ксилоза), 69.85 $(C^3$ -ксилоза), 97.46 $(C^1$ -ксилоза), 105.07 д (C^2 -фенил, $^2J_{CF} = 25.8$ Гц), 112.56 д $(C^6$ -фенил, ${}^4J_{CF} = 2.7 \Gamma \mu$), 120.47 д $(C^4$ -фенил, ${}^2J_{CF} =$ 12.9 Гц), 132.52 д (C^5 -фенил, $^3J_{CF}$ = 4.2 Гц), 158.01 д $(C^1$ -фенил, ${}^3J_{CF} = 11.4 \Gamma \mu$), 160.18 д $(C^3$ -фенил, ${}^1J_{CF} =$ 249.1 Гц), 169.29 (C=O), 169.75 (C=O), 169.81 (C=O), 194.43 д (С=O-кетон, ${}^4J_{CF}$ = 3.8 Гц). Спектр ЯМР 19 F (CDCl₃): δ_F –105.54 м. д.

 $1-\beta-O-{3-\Phi}$ тор-4-[1-(2-карбамоилгидразинилиден)этил|фенил}-2,3,4-три-О-ацетил-D-кси**лопираноза** (11). Смесь 1.11 г (2.7 ммоль) $1-\beta-O-(3-\phi тор-4-ацетил фенил)-2,3,4-три-O-аце$ тил-D-ксилопиранозы 10, 0.45 г (4.0 ммоль) гидрохлорида семикарбазида и 0.44 г (5.4 ммоль) ацетата натрия в 20 мл этанола кипятили при 80°С при перемешивании 11 ч. После этого реакционную массу выливали в 60 мл воды. При затирании наблюдалось образование осадка, который отфильтровывали и сушили на воздухе. Выход 0.82 г (65%), т. пл. 98°C. Спектр ЯМР ¹H (CDCl₃), δ, м. д.: 2.11 с (9H, <u>CH</u>₃CO), 2.24 с (3H, <u>CH</u>₃C=N), 3.59 д. д (1H, H⁵-ксилоза, $J_{AB} = 12.4$, $J_{H}5_{H}4 = 7.2 \Gamma \mu$), 4.24 д. д (1H, H⁵-ксилоза, $J_{\rm AB}$ = 12.4, $J_{\rm H}$ 5_H4 = 4.4 Γ ц), 5.02 д. д. д (1H, H⁴-ксилоза, $J_{\rm H}$ 4_H5A = 7.2, $J_{\rm H}$ 4_H5B = 4.4, $J_{\rm H^4H^3} = 7.2 \; \Gamma$ ц), 5.17 д. д (1H, H²-ксилоза, $J_{\rm H^2H^1} =$ 5.4, $J_{\rm H^2H^3} = 7.2 \Gamma_{\rm H}$), 5.22 д (1H, H¹-ксилоза, $J_{\rm H^1H^2} =$ 5.4Γ ц), 5.26 д. д (1H, H³-ксилоза, $J_{H^3H^2} = 7.2$, $J_{H^3H^4} =$ 7.2 Гц), 6.18 уш. с (2H, NH₂), 6.77 д. д (1H, H^2_{Ar} , $J_{\rm FH}$ = 12.4, $J_{\rm HH}$ = 1.6 Гц), 6.81 д. д (1H, ${
m H^6}_{
m Ar}$, $J_{
m HH}$ = $8.8, J_{\text{HH}} = 1.6 \,\Gamma\text{ц}, 7.47 \,\text{д.} \,\text{д} \,(1\text{H}, \text{H}^5_{\text{Ar}}, J_{\text{HH}} = 8.8, J_{\text{FH}} = 8.8,$ 8.8 Гц), 8.43 уш. с (1H, NH). Спектр ЯМР ¹³С (CDCl₃), $\delta_{\rm C}$, м. д.: 16.04 д (<u>CH</u>₃C=N, ${}^4J_{\rm CF}$ =5.7 Гц), 20.69 (CH₃CO), 20.74 (CH₃CO), 20.78 (CH₃CO), 61.78 (С⁵-ксилоза), 68.21 (С⁴-ксилоза), 69.68 $(C^2$ -ксилоза), 70.17 $(C^3$ -ксилоза), 97.46 $(C^1$ -ксилоза), 104.96 д (C^2 -фенил, $^2J_{CF} = 26.1$ Гц), 112.49 д $(C^6$ -фенил, ${}^4J_{CF} = 3.0 \Gamma \mu$), 121.84 д $(C^4$ -фенил, ${}^2J_{CF} =$ 11.6 Гц), 132.20 д (С⁵-фенил, ${}^{3}J_{CF} = 4.7$ Гц), 143.65 (C=N), 157.52 (СO-амид), 157.92 д (С 1 -фенил, $^3J_{CF}$ = 11.1 Γ ц), 160.06 д (С³-фенил, ${}^{1}J_{CF} = 249.9 \Gamma$ ц), 169.34 (C=O), 169.84 (C=O). Спектр ЯМР ¹⁹F $(CDCl_3)$: $\delta_E - 112.54$ м. д.

1-β-*O*-[3-Фтор-4-(1,2,3-селенадиазол-4-ил)-фенил]-2,3,4-три-*O*-ацетил-D-ксилопираноза (12). К раствору 0.59 г (1.3 ммоль) 1-β-*O*-{3-фтор-4-[1-(2-карбамоилгидразинилиден)этил]-фенил}-2,3,4-три-*O*-ацетил-*D*-ксилопиранозы 11 в 10 мл уксусной кислоты прибавляли при перемешивании 0.15 г (1.4 ммоль) двуокиси селена, и полученный раствор перемешивали 8 ч при 70°С. После этого реакционную смесь выливали в 50 мл воды, экстрагировали этилацетатом (2×10 мл), промывали экстракт 10 мл насыщенного раствора бикарбоната натрия, 10 мл воды и сушили сульфатом натрия. На следующий день отфильтровывали через слой силикагеля коагулировавший селен, отгоняли этилацетат, остаток затирали с гек-

саном, фильтровали и сушили на воздухе. Выход 0.33 г (63%), т. пл. 73°С. Спектр ЯМР ¹Н (CDCl₃), δ, м. д.: 2.10 c (3H, CH₃CO), 2.11 c (3H, CH₃CO), 2.12 с (3H, CH₃CO), 3.63 д. д (1H, H⁵-ксилоза, J_{AB} = $12.0, J_{\mathrm{H}^4\mathrm{H}^5} = 6.8\ \Gamma$ ц), $4.27\ \mathrm{д}$. д (1H, H 5 -ксилоза, $J_{\mathrm{AB}} =$ 12.0, $J_{\rm H}4_{\rm H}5 = 4.4$ Гц), 5.02 д. д. д (1H, H⁴-ксилоза, $J_{
m H}{}^4{}_{
m H}{}^5{}_{
m A}=$ 6.8, $J_{
m H}{}^4{}_{
m H}{}^5{}_{
m B}=$ 4.4, $J_{
m H}{}^4{}_{
m H}{}^3=$ 6.8 $\Gamma{}_{
m II}$), 5.16 д. д (1H, H²-ксилоза, $J_{\text{H}^2\text{H}^1} = 5.8$, $J_{\text{H}^2\text{H}^3} = 6.6$ Гц), 5.21 д (1H, H¹-ксилоза, $J_{\rm H^1H^2} = 5.8$ Гц), 5.26 д. д (1H, H^3 -ксилоза, $J_{\mathrm{H}^3\mathrm{H}^2}=6.6$, $J_{\mathrm{H}^3\mathrm{H}^4}=6.6$ Гц), 6.92 д. д (1H, $\mathrm{H^2_{AP}}$, J_{FH} = 12.4, J_{HH} = 1.2 Гц), 6.97 д. д (1H, $\mathrm{H}^{6}_{\mathrm{Ar}}, J_{\mathrm{HH}} = 8.8, J_{\mathrm{HH}} = 1.2 \, \Gamma \mathrm{II}, 9, 8.40 \, \mathrm{д}. \, \mathrm{д} \, (1 \mathrm{H}, \mathrm{H}^{5}_{\mathrm{Ar}}, J_{\mathrm{HH}})$ $= 8.8, J_{\text{FH}} = 8.8 \ \Gamma$ ц), 9.59 с (1H, H⁵-селенадиазол, сателлит $J_{HSe} = 42.0 \, \Gamma$ ц). Спектр ЯМР ¹³С (CDCl₃), $\delta_{\rm C}$, м. д.: 20.74 (<u>CH</u>₃CO), 20.77 (<u>CH</u>₃CO), 20.81 (CH_3CO) , 61.80 $(C^5$ -ксилоза), 68.22 $(C^4$ -ксилоза), 69.67 (C^2 -ксилоза), 70.17 (C^3 -ксилоза), 98.00(C¹-ксилоза), 105.16 д (С²-фенил, ${}^2J_{CF}$ =26.1 Гц), 113.11 д (С⁶-фенил, ${}^4J_{\rm CF}=2.8$ Гц), 115.11 д (С⁴фенил, ${}^{2}J_{\text{CF}} = 11.4 \, \Gamma$ ц), 131.85 д (С⁵- селенадиазол, ${}^{4}J_{\text{CF}}$ = 4.1 Гц), 139.99 д (С⁵-фенил, ${}^{3}J_{\text{CF}}$ = 12.8 Гц), 155.90 д (С⁴-селенадиазол, ${}^{3}J_{CF} = 4.1 \Gamma \mu$), 157.53 д $(C^1$ -фенил, ${}^3J_{CE} = 11.2 \Gamma \mu$), 160.20 д $(C^3$ -фенил, ${}^1J_{CE}$ = 249.9 Гц), 169.33 (C=O), 169.38 (C=O), 169.87 (C=O). Спектр ЯМР 19 F (CDCl₃): δ_F –112.15 м. д.

ФОНДОВАЯ ПОДДЕРЖКА

Работа выполнена в рамках базовой части государственного задания Министерства образования и науки России (№ 4.5554.2017/8.9) с использованием оборудования Инжинирингового центра Санкт-Петербургского государственного технологического института.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Minkkila A., Myllymaki M.J., Saario S.M., Castillo-Mendez J.A., Koskinen A.M.P., Fowler C.J., Leppanen J., Nevalainen T. // Eur. J. Med. Chem. 2009. Vol. 44. P. 2994. doi 10.10016/j.ejmech.2009.01.007
- Jadhav A.A., Dhavne V.P., Joshi P.G., Khanna P.K. // Cogent Chem. 2016. Vol. 2. P. 1144670. doi 10.1080/23312009.2016.1144670
- Zuo X., Mi N., Fan Z., Zheng Q., Zhang H., Wang H., Yang Z. // J. Agric. Food Chem. 2010. Vol. 58. P. 2577. doi 10.1021/jf902863
- 4. Певзнер Л.М., Петров М.Л., Эрхитуева Е.Б., Полукеев В.А., Степаков А.В. // ЖОХ. 2019. Т. 89. Вып. 7. С. 1038; Pevzner L.M., Petrov M.L., Erkhitueva E.B., Polukeev V.A., Stepakov A.V. // Russ. J. Gen. Chem. 2019. Vol. 89. N 7. P. 1398. doi 10.1134/S1070363219070089
- 5. Way2Drugcom©2011-2018.Version 2.0.
- Abramov M.A., Dehaen W., D'hooge B., Petrov M.L., Smeets S., Toppet S., Voets M. // Tetrahedron. 2000. Vol. 56. P. 3933. doi 10.1016/s0040-4020(00)00315-X
- 7. *Karabatsos G.R., Taller R.A.* // J. Am. Chem. Soc. 1963. Vol 85. N 22. P. 3624. doi 10.1021/ja00905a020
- Karabatsos G.R., Taller R.A., Vane F.M. // J. Am. Chem. Soc. 1963. Vol 85. N 15. P. 2327. doi 10.1021/ ja00898a033
- Karabatsos G.R., Vane F.M., Taller R.A., Hsi N. // J. Am. Chem. Soc. 1964. Vol 86. N 16. P. 3351. doi 10.1021/ ja00898a033
- An Investigation of the ¹³C NMR Spectroscopic Data of Monosaccharides and its Application to Structure Determination. 2016. 43 p.
- 11. *Chaplin A.* // J. Chem. Soc. Perkin 1. 1974. P. 30. doi 10.1039/P19740000030
- Kees K.L., Musser J.H., Chang J., Skowronek M., Lewis A.J. // J. Med. Chem. 1986. Vol. 29. P. 2329. doi 10.1021/jm0161a031

Synthesis of 4-(2-Fluoro-4-hydroxyphenyl)-1,2,3-thia(selena)-diazoles and Their Glycoside Derivatives

O. V. Stepanova^a, L. M. Pevzner^{a,*}, M. L. Petrov^a, N. P. Stepanova^b, N. B. Sokolova^a, and A. V. Stepakov^c

^a St. Petersburg State Institute of Technology (Technical University), St. Petersburg, 190013 Russia
 ^b I.I. Mechnikov North-Western State Medical University, St. Petersburg, 195067 Russia
 ^c St. Petersburg State University, St. Petersburg, 198504 Russia
 *e-mail: pevzner lm@list.ru

Received January 31, 2020; revised January 31, 2020; accepted February 6, 2020

The Hurd–Mori reaction involving 2-fluoro-4-methoxyacetophenone afforded 2-fluoro-4-hydroxyphenyl-1,2,3-thiadiazole, which was underwent glycosylation with 1- α -bromo-2,3,4-tri-O-acetyl-D-xylopyranose under the phase transfer catalysis in the water–chloroform system. 2-Fluoro-4-hydroxy-1,2,3-selenadiazole was obtained by oxidation of 2-fluoro-4-hydroxyacetophenone semicarbazone with selenium dioxide in acetic acid medium. Glycosylation of 2-fluoro-4-hydroxy-1,2,3-selenadiazole using 1- α -bromo-2,3,4,6-tetra-O-acetyl-D-galactopyranose led to the formation of the corresponding glycoside. An alternative route for the synthesis of 1- β -[3-fluoro-4-(1,2,3-selenadiazol-4-yl)phenyl]-2,3,4-tri-O-acetyl-D-xylopyranose includes the initial obtaining 2-fluoro-4-hydroxyacetophenone xyloside followed by the formation of selenadiazole ring.

Keywords: Hurd–Mori reaction, 1,2,3-thiadiazole, 1,2,3-selenadiazole, glycosylation, aglycone, phase transfer catalysis