КРАТКИЕ СООБЩЕНИЯ

УДК 547.46.052.2

СИНТЕЗ АМИНОФЕНИЛПОЛИКАРБОНИТРИЛОВ В РЕАКЦИИ МИХАЭЛЯ АРИЛИДЕНМАЛОНОНИТРИЛОВ

© 2020 г. М. А. Марьясов^{*a*,*}, В. В. Давыдова^{*a*}, О. Е. Насакин^{*a*}, С. А. Штейнгольц^{*b*}, О. А. Лодочникова^{*b*}

^а Чувашский государственный университет имени И. Н. Ульянова, Московский пр. 15, Чебоксары, 428015 Россия ^b Институт органической и физической химии имени А. Е. Арбузова Казанского научного центра Российской академии наук, Казань, 420088 Россия *e-mail: marsikprovisor@mail.ru

> Поступило в Редакцию 20 февраля 2020 г. После доработки 20 февраля 2020 г. Принято к печати 27 февраля 2020 г.

Взаимодействием арилиденмалононитрилов с малононитрилом, метилцианоацетатом и цианоацетамидом получены аминофенилди- и трикарбонитрилы. Установлено, что образование данных соединений происходит через стадию дегидроцианирования соответствующих аминогексенполикарбонитрилов.

Ключевые слова: арилиденмалононитрилы, малононитрил, аминофенилкарбонитрилы, 4-аминоциклогекс-4-ен-1,1,3,3,5-пентакарбонитрил, СК-2 ингибиторы

DOI: 10.31857/S0044460X20080193

Реакции циклоприсоединения широко применяются в органическом синтезе. Реакция Михаэля также может быть использована для получения циклических продуктов [1–3]. Ранее было показано, что в результате взаимодействия малононитрила и двух молекул арилиденмалононитрила в присутствии основания образуются 4-аминоциклогекс-4-ен-1,1,3,3,5-пентакарбонитрилы [4]. Аналогичные по структуре соединения были также получены взаимодействием малононитрила с левулиновым и янтарным альдегидами [5].

Известно, что аминофенилполицикарбонитрилы являются предшественниками ингибиторов или модуляторов активности протеинкиназы СК-2, которые используют для лечения опухолевых заболеваний, инфекций, дегенеративных процессов (болезней Альцгеймера и Паркинсона) [6]. Кроме того, ряд соединений с аминофенилкарбонитрильным фрагментом проявляет противовоспалительную [7, 8] и противомикробную активность [9].

С целью оптимизации методов синтеза такого типа поликарбонитрильных соединений нами были изучены реакции винилиденцианида 1а и арилиденмалононитрилов 16–д с малононитрилом 2a, цианоацетамидом 2б и метилцианоацетатом 2в (схема 1). Реакции проводили в этаноле в присутствии триэтиламина при нагревании (40–50°С) в течение 3–4 ч. В результате реакций были получены соответствующие аминофенилди- и трикарбонитрилы 4а–3 с выходами 55–84%.

В случае реакции винилиденцианида **1a** с малононитрилом **2a** изначально был выделен 4-аминоциклогекс-4-ен-1,1,3,3,5-пентакарбонитрил **3a**, который впоследствии легко окислялся до 2-аминобензо-1,3,5-трикарбонитрила **4a**. Это подтверждает тот факт, что и в случае арилиденмалононитрилов **16**–д, взаимодействие протекает через стадию образования аминоциклогексенкарбонитрилов с последующим дегидроцианированием.

Структура соединения **За** подтверждена данными рентгеноструктурного анализа (см. рисунок). Данные РСА, полученные нами при 150 К, в общем аналогичны таковым, полученным ранее при 293 К [10]. Шестичленный цикл молекулы нахо-

 $R^1 = H, R^2 = CN$ (4a); $R^1 = C_6H_5, R^2 = CN$ (46); $R^1 = 4$ -MeOC₆H₄, $R^2 = CN$ (4B); $R^1 = 4$ -HOC₆H₄, $R^2 = CN$ (4Γ); $R^1 = 4$ -NO₂C₆H₄, $R^2 = CONH_2$ (4Γ); $R^1 = C_6H_5, R^2 = CONH_2$ (4e); $R^1 = 4$ -(CH₃O)C₆H₄, $R^2 = CONH_2$ (4π); $R^1 = C_6H_5, R^2 = CONH_2$ (4ε); $R^1 = 4$ -(CH₃O)C₆H₄, $R^2 = CONH_2$ (4π); $R^1 = C_6H_5, R^2 = CONH_2$ (4ε); $R^1 = 4$ -(CH₃O)C₆H₄, $R^2 = CONH_2$ (4π); $R^1 = C_6H_5, R^2 = CONH_2$ (4ε); $R^1 = 4$ -(CH₃O)C₆H₄, $R^2 = CONH_2$ (4π); $R^1 = C_6H_5, R^2 = CONH_2$ (4ε); $R^1 = 4$ -(CH₃O)C₆H₄, $R^2 = CONH_2$ (4π); $R^1 = C_6H_5, R^2 = CONH_2$ (4ε); $R^1 = 4$ -(CH₃O)C₆H₄, $R^2 = CONH_2$ (4π); $R^1 = C_6H_5, R^2 = CONH_2$ (4π); $R^2 =$

дится в кристалле в конформации *шестичленный* конверт: атомы $C^2C^3C^4C^5C^6$ находятся в одной плоскости, атом C^1 выходит из этой плоскости. В кристалле наблюдаются водородные связи с участием атомов водорода аминогруппы и атомов азота цианогрупп.

Строение соединений **4**а–з установлено методами ЯМР ¹H, ¹³C, ИК спектроскопии и масс-спектрометрии. В ИК спектрах соединений **4**а–з присутствуют полосы поглощения NH₂-групп (3187–3557 см⁻¹), сопряженных цианогрупп (2189–2235 см⁻¹), связей С=О (1660–1783 см⁻¹), NH (1636 см⁻¹) и С=С (1518–1727 см⁻¹). В спектрах ЯМР ¹H сигналы протонов NH₂ проявляются при 3.45–5.54 и 7.39–8.04 м. д. (**4**д, **e**). Сигналы протонов фрагмента СООNH₂ регистрируются в области 7.71–8.29 м. д., СООСН₃ – 3.28 м. д., ОСН₃ – 3.82 м.д. Спектры ЯМР ¹³С характеризуются наличием сигналов атомов углерода цианогрупп в области 110.7–118.0 м. д. и сигналами групп С=О в области 162.1–165.2 м. д.

При взаимодействии арилиденмалононитрила **1в** с метилцианоацетатом **26** наблюдалось альтернативное течение реакции. Так, был получен 6-амино-4-(4-метоксифенил)-2-оксо-2*H*-пиран-3,5-дикарбонитрил **5** (схема 2).

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 90 № 8 2020

Строение соединения **5** так же установлено методами ЯМР ¹H, ¹³C, ИК спектроскопии, масс-спектрометрии.

Таким образом, разработан простой и удобный метод синтеза аминофенилполикарбонитрилов, потенциальных ингибиторов протеинкиназы СК-2.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Контроль за ходом реакции и чистотой синтезированных соединений осуществляли мето-

Общий вид молекулы соединения **За** в кристалле по данным PCA (CCDC 1978850).

дом тонкослойной хроматографии на пластинках Sorbfil (элюент – этилацетат, проявление в УФ свете, парами иода и термическим разложением). Температуры плавления определены на приборе Optimelt MPA100. ИК спектры зарегистрированы на Фурье-спектрометре ФСМ-1202 в тонком слое (суспензия в вазелиновом масле). Спектры ЯМР ¹H и ¹³С зарегистрированы на спектрометре Bruker DRX-500 (500 и 125 МГц соответственно) в ДМ-CO- d_6 , внутренний стандарт – ТМС. Масс-спектры записаны на приборе Bruker Ultraflex MALDI-TOF. Элементный анализ выполнен на CHN-анализаторе varioMicrocube.

Рентгеноструктурный анализ кристалла соединения За проведен на автоматическом дифрактометре Bruker Smart APEX II CCD [графитовый монохроматор, $\lambda(MoK_{\alpha}) = 0.71073$ Å, ω -сканирование, 150 К]. Структура расшифрована прямым методом и уточнена вначале в изотропном, затем в анизотропном приближении по программе SHELXL-2017/1 [11]. Проведен полуэмпирический учет поглощения с использованием программы SADABS. H(C) атомы водорода помещены в геометрически рассчитанные положения и включены в уточнение по модели наездника. H(N) атомы водорода выявлены из разностных рядов электронной плотности и уточнены изотропно. Все расчеты проведены с помощью программы WinGX [12].

Кристаллы соединения За бледно-желтые, призматические, моноклинные, $C_{11}H_6N_6, M=222.22, a=$ 14.204(5) Å, b = 6.5700(18) Å, c = 12.157(4) Å, $\beta =$ 115.104(18)°, V = 1027.4(5) Å³, $d_{выч} = 1.437$ г/см³, μ (Mo) = 0.096 мм⁻¹, Z = 4, пространственная группа $P2_1/c$. Интервал углов сканирования $3.17^\circ < \theta <$ 26.65°. Измерено 8457 отражений, из них 2234 независимых, 1693 из которых с $I \ge 2\sigma$. Окончательные значения факторов расходимости: R =0.0427 по наблюдаемым отражениям и $R_w = 0.1052$ (по всем рефлексам), параметр подгонки 1.013. Максимальный и минимальный пики остаточной электронной плотности равны 0.262 и $-0.197 e/Å^3$. Структура депонирована в Кембриджской базе кристаллоструктурных данных (ССDC 1978850).

4-Аминоциклогекс-4-ен-1,1,3,3,5-пентакарбонитрил (3а). К смеси 4 ммоль винилиденцианида **1а** и 2 ммоль малононитрила **2а** в 5 мл охлажденного диэтилового эфира добавляли 1 каплю разбавленного и охлажденного триэтиламина. Образовавшийся осадок сразу отфильтровывали и промывали 2 мл охлажденного диэтилового эфира. Осадок отфильтровывали и сушили. При хранении на воздухе желтеет и частично осмоляется. При перекристаллизации образуется соединение 4а. Выход 34%, т. пл. 110-111°С (ЕtOH). ИК спектр, v, см⁻¹: 3355 ш (NH), 2268, 2201 с (С≡N), 1647 ш (NH), 1623 ср (C=C). Спектр ЯМР ¹Н, б, м. д.: 3.63 с (2H, CH₂), 3.24 уш. с (1H, NH₂), 3.19 с (2H, CH₂), 3.14 уш. с (1H, NH₂). Спектр ЯМР¹³С, δ_C, м. д.: 143.9 (C⁴), 117.4 (C⁵CN), 113.6 (C³(CN)₂), 112.2 $(C^{1}(CN)_{2}), 69.8 (C^{5}), 34.4 (C^{2}), 32.0 (C^{6}), 31.1 (C^{3}),$ 28.2 (С¹). Масс-спектр, *m/z* (*I*_{отн}, %): 222 (1.3) [*M*]⁺. Найдено, %: С 58.52; Н 3.64; N 35.48. С₁₁Н₆N₆. Вычислено, %: С 59.46; Н 2.72; N 37.82.

Общая методика получения соединений 4а–з, 5. К суспензии 4 ммоль соответствующего нитрила 1а–д в 5–7 мл этанола добавляли 2 ммоль малононитрила 2а–в и 2–3 капли триэтиламина. Полученную смесь нагревали до 40–50°С и перемешивали при данной температуре в течение 3–4 ч. После охлаждения до комнатной температуры смесь подкисляли разбавленным раствором серной либо соляной кислоты. Осадок отфильтровывали, промывали 2 мл охлажденного этанола и сушили.

2-Аминобензол-1,3,5-трикарбонитрил (4а). Выход 55%, т. пл. 203–205°С (ЕtOH). ИК спектр, v, см⁻¹: 3346 ш (NH), 2204 с (С≡N), 1650 ш (NH), 1623 ср (С=С). Спектр ЯМР ¹Н, δ, м. д.: 7.67 с (2H, CH), 3.45 уш. с (2H, NH₂). Спектр ЯМР ¹³С, $\delta_{\rm C}$, м. д.: 155.1 (С²), 136.3 (С⁴, С⁶), 116.1 (С⁵<u>C</u>N), 115.3 (С¹<u>C</u>N, C³<u>C</u>N), 88.4 (С⁵), 85.1 (С¹, С³). Массспектр, *m/z* ($I_{\rm отн}$, %): 168 (100) [*M*]⁺. Найдено, %: С 63.95; H 2.12; N 34.05. С₉H₄N₄. Вычислено, %: С 64.28; H 2.40; N 33.32.

5'-Амино-[1,1':3',1''-терфенил]-2',4',6'-трикарбонитрил (46). Выход 62%, т. пл. 305–307°С (ЕtOH). ИК спектр, v, см⁻¹: 3300, 3212 ш (NH), 2213, 2192 с (С≡N), 1650 ш (NH), 1562 ср (С=С). Спектр ЯМР ¹H, δ, м. д.: 7.52 т (6H, CH, J_{HH} = 3.3 Гц), 7.44 д (2H, CH, J_{HH} = 2.2 Гц), 7.43–7.41 м (2H, CH), 5.54 уш. с (2H, NH₂). Спектр ЯМР ¹³С, δ_{C} , м. д.: 161.4 (С⁵), 157.8 (С¹, С³), 156.7 (С¹<u>С</u>^{1'}, С³<u>С</u>^{1''}), 135.0 (С^{3'}, С^{5'}, С^{3''}, С^{5''}), 130.2 (С^{2'}, С^{6'}, С^{2''}, С^{6''}), 128.7 (С^{4'}, С^{4''}), 128.3 (С²), 115.4 (С⁴<u>C</u>N, С⁶<u>C</u>N), 115.2 (С²<u>C</u>N), 85.9 (С⁴, C⁶). Масс-спектр, *m/z* ($I_{отн}$, %): 320 (0.5) [*M*]⁺, 321 (2.3) [*M* + H]⁺. Найдено, %:

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 90 № 8 2020

С 79.15; Н 3.02; N 16.35. С₂₁Н₁₂N_{4.} Вычислено, %: С 78.73; Н 3.78; N 17.49.

5'-Амино-4,4''-диметокси-[1,1':3',1''-терфенил]-2',4',6'-трикарбонитрил (4в). Выход 56%, т. пл. 284–285°С (ЕtOH). ИК спектр, v, см⁻¹: 3306, 3203 ш (NH), 2216, 2189 с (С=N), 1727, 1650 ш (NH), 1620 ср (С=С). Спектр ЯМР ¹Н, δ, м. д.: 7.41 д (4H, CH, J_{HH} = 8.5 Гц), 7.07 д (4H, CH, J_{HH} = 8.6 Гц), 5.41 уш. с (2H, NH₂), 3.82 с (6H, OCH₃). Спектр ЯМР ¹³С, δ_{C} , м. д.: 161.3 (С^{4'}, С^{4''}), 160.9 (С⁵), 157.1 (С¹, С³), 156.5 (С¹С^{1'}, С³С^{1''}), 130.2 (С^{2'}, С^{6'}, С^{2''}, С^{6''}), 126.7 (С^{3'}, С^{5'}, С^{3''}, С^{5''}), 115.4 (С⁴СN, С⁶СN), 114.0 (С²СN), 86.0 (С²), 81.4 (С⁴, С⁶), 55.4 ((ОСН₃)₂) . Масс-спектр, *m/z* ($I_{отн}$, %): 380 (1.0) [*M*]⁺, 381 (3.9) [*M* + H]⁺. Найдено, %: С 70.95; H 5.44; N 15.82. С₂₃Н₁₆N₄O₂. Вычислено, %: С 72.62; H 4.24; N 14.73.

5'-Амино-4,4''-дигидрокси-[1,1':3',1''-терфенил]-2',4',6'-трикарбонитрил (4г). Выход 59%, т. пл. 310–312°С (ЕtOH). ИК спектр, v, см⁻¹: 3352 ш (NH), 3152 сл (OH), 2216 с (С=N), 1641 (NH), 1605, 1565 ср (С=С). Спектр ЯМР ¹Н, δ, м. д.: 7.29 д (4H, CH, J_{HH} = 8.64 Гц), 6.87 д (4H, CH, J_{HH} = 8.64 Гц), 5.23 с (2H, OH). Спектр ЯМР ¹³С, $\delta_{\rm C}$, м. д.: 161.6 (С^{4'}, С^{4''}), 159.5 (С⁵), 157.0 (С¹, С³), 156.5 (С¹С^{1'}, С³С^{1''}), 130.4 (С^{2'}, С^{6'}, С^{2''}, С^{6''}), 125.0 (С^{3'}, С^{5'}, С^{3''}, С^{5''}), 115.5 (С⁴СN, С⁶СN), 115.4 (С²СN), 85.9 (С²), 81.3 (С⁴, С⁶). Масс-спектр, m/z ($I_{отн}$, %): 352 (0.5) [M]⁺, 353 (2.2) [M + H]⁺. Най-дено, %: С 72.03; Н 3.82; N 15.04. С₂₁H₁₂N₄O₂. Вычислено, %: С 71.58; Н 3.43; N 15.90.

5'-Амино-2',6'-дициано-4,4''-динитро-[1,1':3',1"-терфенил]-4'-карбоксамид (4д). Выход 71%, т. пл. 180–181°С (ЕtOH). ИК спектр, v, см⁻¹: 3440, 3342, 3220 ш (NH), 2223 с (C≡N), 1692 с (C=O), 1622 ш (NH), 1606, 1518 ср (C=C). Спектр ЯМР ¹Н, δ, м. д.: 8.37 д (2Н, CH, *J*_{HH} = 8.9 Гц), 8.29 с (2H, CONH₂), 8.11 д (2H, CH, $J_{\rm HH}$ = 8.9 Гц), 8.04 уш. с (1H, NH₂), 7.90 уш. с (1H, NH₂). Спектр ЯМР ¹³C, δ_C, м. д.: 162.1 (CONH₂), 148.8 (C⁵), 148.3 (C¹, C^{3}), 148.2 ($C^{1}C^{1'}$, $C^{3}C^{1''}$), 136.1 ($C^{4'}$, $C^{4''}$), 131.0 ($C^{2'}$. C^{6'}, C^{2"}, C^{6"}), 124.2 (C^{3'}, C^{5'}, C^{3"}, C^{5"}), 124.1 (C⁴), 115.8 ($C^{6}CN$), 115.7 ($C^{2}CN$), 110.7 (C^{2}), 90.7 (C^{6}). Масс-спектр, *m/z* (*I*_{отн}, %): 428 (2.7) [*M*]⁺, 429 (1.0) [*M* + H]⁺. Найдено, %: С 59.54; Н 3.92; N 17.18. С₂₁Н₁₂N₆O₅. Вычислено, %: С 58.88; Н 2.82; N 19.62.

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 90 № 8 2020

5'-Амино-2',6'-дициано-[1,1':3',1''-терфенил]-4'-карбоксамид (4е). Выход 84%, т. пл. 270–271°С (ЕtOH). ИК спектр, v, см⁻¹: 3452, 3339 ш (NH), 2213 с (С≡N), 1748 с (С=О), 1638 ш (NH), 1606 ср (С=С). Спектр ЯМР ¹Н, δ, м. д.: 7.76 уш. с (2H, CONH₂), 7.53 т (6H, CH, J_{HH} = 3.2 Гц), 7.49 д (2H, CH, J_{HH} = 2.4 Гц), 7.47–7.46 м (2H, CH), 7.39 уш. с (2H, NH₂). Спектр ЯМР ¹³С, $\delta_{\rm C}$, м. д.: 162.6 (CONH₂), 159.8 (С⁵), 156.7 (С¹, С³), 156.5 (С¹С^{1'}, C³С^{1''}), 134.7 (С^{3'}, C^{5'}, C^{3''}, C^{5''}), 130.3 (С^{2'}, C^{6'}, C^{2''}, C^{6''}), 128.7 (С^{4'}, С^{4''}), 128.0 (С⁴), 116.2 (С⁶СN), 115.4 (С²СN), 88.7 (С²), 74.8 (С⁶). Масс-спектр, *m/z* ($I_{\rm отн}$, %): 338 (1.2) [*M*]⁺, 339 (0.5 [*M* + H]⁺. Найдено, %: С 75.32; H 4.74; N 15.12. С₂₁H₁₄N₄O. Вычислено, %: С 74.54; H 4.17; N 16.56.

5'-Амино-2',6'-дициано-4,4''-диметокси-[1,1':3',1"-терфенил]-4'-карбоксамид (4ж). Выход 65%, т. пл. 180-181°С (ЕtOH). ИК спектр, v, см⁻¹: 3557, 3317, 3187 ш (NH), 2235, 2213 с (C≡N), 1783 сл (C=O), 1650 ш (NH), 1567 ср (C=C). Спектр ЯМР ¹Н, б, м. д.: 7.71 уш. с (2H, CONH₂), 7.44 д (4H, CH, J_{HH} = 8.3 Гц), 7.07 д (4H, CH, J_{HH} = 8.5 Гц), 3.82 с (6H, OCH₃), 3.58 уш. с (2H, NH₂). Спектр ЯМР ¹³С, $\delta_{\rm C}$, м. д.: 162.3 (CONH₂), 160.8 $(C^{4'}, C^{4''}), 159.9 (C^5), 156.7 (C^1, C^3), 130.2 (C^{2'}, C^{6'})$ $C^{2''}$, $C^{6''}$), 129.9 ($C^{1}\underline{C}^{1'}$, $C^{3}\underline{C}^{1''}$), 126.6($C^{3'}$, $C^{5'}$, $C^{3''}$, $C^{5''}$), 116.5 (C⁴), 115.6 (C⁶CN), 114.0 (C²CN), 88.5 (C^2) , 74.7 (C⁶), 55.4 (OCH₃). Macc-cnektp, m/z (I_{OTH} , %): 398 (0.5) [M]⁺. Найдено, %: С 67.84; Н 4.02; N 14.98. С₂₃Н₁₈N₄O₃. Вычислено, %: С 69.34; Н 4.55; N 14.06.

Метил 5'-амино-2',6'-дициано-[1,1':3',1''-терфенил]-4'-карбоксилат (43). Выход 58%, т. пл. 144–143°С (ЕtOH). ИК спектр, v, см⁻¹: 3355, 3193 ш (NH), 2197 с (С=N), 1745 сл (С=О), 1666 ш (NH), 1597 ср (С=С). Спектр ЯМР ¹H, δ, м. д.: 7.45–7.35 м (10H, C₆H₅), 6.81 с (2H, NH₂), 3.28 с (3H, OCH₃). Спектр ЯМР ¹³С, $\delta_{\rm C}$, м. д.: 165.2 (<u>С</u>ООСН₃), 162.4 (C⁵), 135.8 (C¹), 134.3 (C³), 129.5 (C¹<u>C</u>^{1'}), 129.2 (C^{3'}, C^{5'}, C^{3''}, C^{5''}), 129.0 (C³<u>C</u>^{1''}), 128.9 (C^{2'}, C^{6'}, C^{2''}, C^{6''}), 128.7 (C^{4'}, C^{4''}), 128.4 (C⁴), 118.0(C⁶<u>C</u>N), 117.0 (C²<u>C</u>N), 89.4 (C²), 74.1 (C⁶), 53.4 (OCH₃). Масс-спектр, *m/z* ($I_{\rm OTH}$, %): 353 (1.5) [*M*]⁺, 354 (2.4) [*M* + H]⁺. Найдено, %: С 72.21; Н 3.72; N 11.02. С₂₂H₁₅N₃O₂. Вычислено, %: С 74.78; Н 4.28; N 11.89.

6-Амино-4-(4-метоксифенил)-2-оксо-2*H*-пиран-3,5-дикарбонитрил (5). Выход 55%, т. пл. 152–153°С (ЕtOH). ИК спектр, v, см⁻¹: 3301, 3206 ш (NH), 2220, 2191 с (С=N), 1638 сл (С=О), 1612 ш (NH), ср 1568 (С=С). Спектр ЯМР ¹Н, δ, м. д.: 7.40 д (2, CH, $J_{\rm HH}$ = 8.8 Гц), 7.06 д (2H, CH, $J_{\rm HH}$ = 8.5 Гц), 4.83 уш. с (2H, NH₂), 3.82 с (3H, OCH₃). Спектр ЯМР ¹³С, $\delta_{\rm C}$, м. д.: 161.0 (С⁴), 160.7 (С⁶), 158.0 (С⁴), 156.9 (С²), 130.2 (С², С⁶), 126.9 (С⁴С¹), 115.7 (С⁵СN), 115.4 (С³СN), 114.0 (С^{3'}, С^{5'}), 85.9 (С³), 81.3 (С⁵), 55.4 (ОСН₃). Масс-спектр, *m/z* ($I_{\rm отн}$, %): 267 (100.0) [*M*]⁺. Найдено, %: С 64.02; H 4.64; N 13.56. С₁₄H₉N₃O₃. Вычислено, %: С 62.92; H 3.39; N 15.72.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Toche R.B., Kazi M.A., Patil S.P. Kanawade S.B., Jachak M.N. // J. Fluoresc. 2010. Vol. 20. N. 5. P. 1129. doi 10.1007/s10895-010-0654-9
- Safaei-Ghomi J., Bamoniri A.H., Soltanian-Telkabadi M. // Chem. Heterocycl. Compd. 2006. Vol. 42. N. 7. P. 892. doi 10.1007/s10593-006-0176-1
- Varghese B., Al-Busafi S.N., Suliman F.O., Al-Kindy, Salma M.Z. // Spectrochim. Acta (A). 2015. Vol. 136. Pt B. P. 661. doi 10.1016/j.saa.2014.09.080

- Нестеров В.Н., Стручков Ю.Т., Хорошилов Г.Е., Шаранин Ю.А., Шкловер В.Е. // Изв. АН СССР. Сер. хим. 1988. Т. 52. № 12. С. 2771; Nesterov V.N., Struchkov Yu.T., Khoroshilov G.E., Sharanin Yu.A., Shklover V.E. // Russ. Chem. Bull. 1989. Vol. 38. N. 12. P. 2537. doi 10.1007/BF00962440
- Hartke K., Matusch R., Fallert M. // Synthesis. 1986.
 Vol. 18. N. 8. P. 677. doi 10.1055/s-1986-31747
- Webber S.E., Tao X., Brin E. Pat. US 2017/0369489 A1 (2017).
- Dawood K.M., Abdel-Gawad H., Ellithey M., Mohamed H.A., Hegazi B. // Arch. Pharm. Chem. Life Sci. 2006. Vol. 339. N. 3. P. 133. doi 10.1002/ ardp.200500176
- Heilman W.P., Battershell R.D., Pyne W.J., Goble P.H., Magee T.A. // J. Med. Chem. 1978. Vol. 21. N. 9. P. 906. doi 10.1021/jm00207a013
- Huang C., Yan S.-J., He N.-Q., Tang Ya-J., Wang X.-H., Lin J. // Bioorg. Med. Chem. Lett. 2013. Vol. 23. N 8. P. 2399. doi 10.1016/j.bmcl.2013.02.033
- Bell R.A., Brown B.E., Duarte M., Howard-Lock H.E., Lock C.J.L. // Can. J. Chem. 1987. Vol. 65. N. 2. P. 261. doi 10.1139/v87-043
- Sheldrick G.M. // Acta Crystallogr. (C). 2015. Vol 71.
 N. 1. P. 3. doi 10.1107/S2053229614024218
- Farrugia L.J. // J. Appl. Cryst. 2012. Vol. 45. N. 4. P. 849. doi 10.1107/s0021889812029111

Synthesis of Aminophenylpolycarbonitriles from Arylidenemalononitriles by the Michael Reaction

M. A. Maryasov^{a,*}, V. V. Davydova^a, O. E. Nasakin^a, S. A. Shteingolts^b, and O. A. Lodochnikova^b

^a I.N. Ulyanov Chuvash State University, Cheboksary, 428015 Russia ^b A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center of the Russian Academy of Sciences, Kazan, 420088 Russia *e-mail: marsikprovisor@mail.ru

Received February 20, 2020; revised February 20, 2020; accepted February 27, 2020

The reactions of arylidenemalononitriles with malononitrile, methyl cyanoacetate and cyanoacetamide yielded aminophenyldi- and tricarbonitriles. Formation of these compounds occurs through the dehydrocyanation step of the corresponding aminohexenepolycarbonitriles.

Keywords: arylidenemalononitriles, malononitrile, aminophenylcarbonitriles, 4-aminocyclohex-4-ene-1,1,3,3,5-pentacarbonitrile, SK2 inhibitors