УДК 547.26'118;548.737

РЕАКЦИЯ ТРИГАЛОГЕНИДОВ ФОСФОРА С МЕТИЛТРИФЛАТОМ. МОЛЕКУЛЯРНАЯ И СУПРАМОЛЕКУЛЯРНАЯ СТРУКТУРА ТРИФЛАТОВ МЕТИЛТРИХЛОР- И МЕТИЛТРИБРОМФОСФОНИЯ

© 2020 г. А. Т. Губайдуллин, В. Ф. Миронов*, И. А. Литвинов

Институт органической и физической химии имени А. Е. Арбузова, Федеральный исследовательский центр «Казанский научный центр Российской академии наук», ул. Академика Арбузова 8, Казань, 420088 Россия *e-mail: mironov@iopc.ru

> Поступило в Редакцию 20 апреля 2020 г. После доработки 20 апреля 2020 г. Принято к печати 26 апреля 2020 г.

Показано, что длительное (~ 4 года) выдерживание смесей трихлорида или трибромида фосфора с метилтрифлатом в защищенном от света месте при 20–25°С приводит к образованию кристаллических трифлатов метилтрихлор- и метилтрибромфосфония с содержанием в реакционной смеси 10–11% и выходом 5–6%. Строение трифлатов установлено методом рентгеноструктурного анализа.

Ключевые слова: трибромид фосфора, трихлорид фосфора, метилтрифлат, квазифосфониевая соль, молекулярная и супрамолекулярная структура

DOI: 10.31857/S0044460X20090073

Известно, что реакции трихлорида и трибромида фосфора с алкилгалогенидами легко протекают лишь в присутствии сильных кислот Льюиса, таких как AlCl₃, AlBr₃ и т. д., и приводят к первоначальному образованию солей алкилфосфония 1 (схема 1), которые обычно далее подвергают гидролизу до дигалогенангидридов фосфоновых кислот 2, образующихся в этих условиях со средними выходами, или до самих фосфоновых кислот 3 (реакция Клея-Киннера-Перрена) [1-3]. Эта реакция, несмотря на неудобства, связанные с отделением соединений алюминия, является одним из важнейших методов получения соединений со связью фосфор-углерод – фосфонатов, которые рассматривают в качестве формальных аналогов фосфатов, не подвергающихся энзиматическому гидролизу [4, 5], благодаря чему фосфонаты проявляют высокую биологическую активность. Именно поэтому интерес к новым методам получения этих соединений постоянно возрастает [6, 7].

Механизм реакции Клея–Киннера–Перрена сложен и до настоящего времени не выяснен. Предполагается, что тригалогенид фосфора как нуклеофил атакует алкилгалогенид, активированный комплексообразованием с кислотой Льюиса. Если в систему тригалогенид фосфора–алкилгалогенид вводить кислород (окислительное галогенфосфинилирование), то возможно непосредственное образование производных фосфоновых кислот 2 [8].

В данной работе нами впервые показано, что такие слабые нуклеофилы, как трихлорид и три-

$$PX_{3} + RX + AIX_{3} \longrightarrow RPX_{3}AIH_{2}X_{4}^{-} \xrightarrow{H_{2}O} RP(O)X_{2} \xrightarrow{H_{2}O} -HX -AIX_{3} RP(O)(OH)_{2}$$

$$1 \qquad X = Cl. Br.$$

$$PX_{3} + MeOSO_{2}CF_{3} \longrightarrow MePX_{3} CF_{3}SO_{3}^{-}$$
4, 5 6 7, 8

$$X = Cl (4, 7), Br (5, 8).$$

бромид фосфора (4, 5) способны в кинетически контролируемых условиях (20°С, запаянная ампула, ~4 года) реагировать с достаточно сильным электрофилом – метилтрифлатом 6 – с образованием солей метилфосфония 7, 8 (схема 2) с содержанием в реакционной смеси 10–11%. Этот весьма примечательный экспериментальный факт может стать основой для создания новой технологии получения производных метилфосфоновой кислоты.

Фосфониевые соли 7 и 8, которые частично кристаллизовались при столь длительном выдерживании в крупнокристаллические осадки, были выделены из реакционных масс фильтрованием в атмосфере аргона. Их строение было установлено методом рентгеноструктурного анализа (табл. 1). Учитывая чрезвычайную гидролитическую неустойчивость данных соединений, эксперименты проводились при низких температурах с кристал-

Таблица 1. Параметры кристаллов соединений 7, 8 и ус	словия рентгеноструктурных экспериментов
--	--

Параметр	7	8	
Цвет, габитус	Бесцветные, призматической формы		
Размеры кристалла, мм	0.50×0.41×0.36	0.50×0.43×0.41	
Брутто-формула	C ₂ H ₃ Cl ₃ F ₃ O ₃ PS	C ₂ H ₃ Br ₃ F ₃ O ₃ PS	
M	301.42	434.80	
<i>Т</i> , К	100(2)	100(2)	
Сингония	Ромбическая	Ромбическая	
Пространственная группа	Pnma	Pnma	
Параметры элементарной ячейки, Å	a = 13.073(2)	a = 13.623(9)	
	b = 8.031(2)	b = 8.077(5)	
	c = 9.295(2)	c = 9.482(8)	
Объем, Å ³	975.9(4)	1043(1)	
Ζ	4	4	
$d_{\rm выч}$, г/см ³	2.052	2.768	
Коэффициент поглощения µ(Мо), мм ⁻¹	1.333	11.969	
Излучение, Å	0.71073	0.71073	
F(000)	592	808	
Измерено отражений	1054	1076	
$R_{ m int}$	0.0212	0.03	
Число наблюдаемых независимых отражений с $I > 2\sigma(I)$	969	712	
Значения факторов расходимости, $I > 2\sigma(I)$	$R^1 = 0.0332,$	$R^1 = 0.0632,$	
	$wR^2 = 0.0893$	$wR^2 = 0.1516$	
Значения факторов расходимости, (все данные)	$R^1 = 0.0365,$	$R^1 = 0.1165,$	
	$wR^2 = 0.0912$	$wR^2 = 0.1736$	
Параметр подгонки (goodness of fit)	1.094	1.009	
Число уточняемых параметров	77	59 (наложены условия	
		одинаковых параметров	
		анизотропных смещений	
		на атомы С, О, F по типам	
		атомов)	
Область измерений по индексам	$-16 \le h \le 0,$	$-16 \le h \le 0,$	
	$-10 \le k \le 0,$	$0 \le k \le 10,$	
	$-11 \le l \le 0$	$0 \le l \le 11$	
Область измерений по углам θ , град	3.12-26.29	2.99–26.31	
Максимальный/минимальный пики остаточной электронной плотности, е/Å ³	0.980/-0.383	1.787/-1.557	

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 90 № 9 2020

Рис. 1. Общий вид молекул метилфосфониевой соли 7 (а) и метилфосфониевой соли 8 (б) в кристалле. Неводородные атомы представлены вероятностными эллипсоидами тепловых колебаний (*p* = 50%), атомы водорода – сферами произвольного радиуса.

лами, защищенными криопротектором. На рис. 1 приведен общий вид молекул фосфониевых солей 7 и 8 в кристалле, а в табл. 2 представлены избранные геометрические параметры (длины связей и валентные углы). Несмотря на простое химическое строение этих фосфониевых солей, в литературе найдены сведения только об одной подобной структуре метилтригалогенфосфония – иодиде метилтрииодфосфония 9 [9].

Следует отметить, что кристаллы соединений 7 и 8 изоструктурны (пространственная группа *Pnma*), причем в случае бромзамещенного параметры ячейки увеличены по всем трем кристаллографическим осям, что несколько необычно, так как чаще в изоструктурных кристаллах меняется один или только два параметра из трех. Кристалл соединения **9**, также относящийся к ромбической сингонии, им не изоструктурен (пространственная группа *Pbcm*). Тем не менее, во всех трех кристаллах анионы и катионы находятся в частном положении на плоскости *m*.

Во всех трех структурах атом фосфора имеет искаженную тетраэдрическую конфигурацию, обычную для фосфониевого атома. Геометрические параметры трифлат-анионов в структурах 7 и 8 обычные, и в пределах экспериментальных погрешностей одинаковые. При закономерном увеличении длин связей Р–Х в катионах кристаллов

Связь	<i>d</i> , Å			ω, град	
	7	8	ф, град	7	8
X^1-P^1	1.9505(9)	2.120(3)	$C^1P^1X^2$	111.6(1)	109.4(6)
$X^{2}-P^{1}$	1.948(1)	2.124(5)	$C^1P^1X^1$	111.36(7)	111.8(3)
P^1-C^1	1.758(4)	1.81(2)	$X^2P^1X^1$	107.63(4)	108.2(1)
$C^1 - H^{11}$	1.02(5)	0.95	$X^1P^1X^{1*}$	107.03(6)	107.2(2)
$C^{1}-H^{12}$	0.97(3)	0.95	$O^{1}S^{1}O^{1}*$	114.2(2)	114.4(8)
S^1-O^1	1.436(2)	1.420(9)	$F^{1}C^{2}F^{1*}$	107.3(3)	108(1)
S^1-O^2	1.438(3)	1.45(1)	$P^{1}C^{1}H^{11}$	106(3)	113(6)
$S^{1}-C^{2}$	1.816(4)	1.84(1)	$P^{1}C^{1}H^{12}$	106(1)	114(6)
F^1-C^2	1.328(3)	1.30(1)	$O^1S^1O^2$	115.32(9)	114.6(4)
F^2-C^2	1.335(4)	1.32(2)	$O^1S^1C^2$	103.4(1)	104.3(5)
			$O^2S^1C^2$	102.8(1)	102.6(7)
			$F^1C^2F^2$	107.7(2)	109.0(9)
			$F^1C^2S^1$	111.4(2)	110.4(8)
			$F^2C^2S^1$	111.3(2)	110(1)

Таблица 2. Геометрические параметры молекул соединений 7 и 8 и валентные углы (ф, град)

Рис. 2. Две проекции зигзагообразных супрамолекулярных структур в кристаллах солей 7 (а, в) и 8 (б, г). Вид примерно вдоль оси 0c (а, б), 0b (в, г). Взаимодействия S–O···X показаны *пунктиром*.

7–9 [1.950(1), 2.122(5) и 2.424(2) Å соответственно] наблюдается и тенденция к удлинению связи Р–С [1.758(4), 1.81(2) и 1.83(1) Å соответственно], но из-за низкой точности определения длины этой связи в структурах с тяжелыми атомами галогена эту тенденцию нельзя считать строго доказанной. Валентные углы при атоме фосфора в катионах структур 7–9 обычные.

Кристаллическая структура исследованных соединений определяется множественными невалентными взаимодействиями гетероатомов с неподеленными электронными парами и атомами водорода, типа галоген-галогенных [10, 11], галоген-халькогенных взаимодействий [12] и водородных связей типа С–Н···Х [13, 14]. В кристалле соединения **9** наблюдаются только галогеновые связи I····I между анионом и катионом. Коротких контактов атомов водорода метильного заместителя с атомами иода, соответствующих водородным связям типа С–H···X, не найдено [9].

В изоструктурных кристаллах соединений 7 и 8 структурообразующие взаимодействия одинаковые. Показано, что трифторметильные группы трифлат-аниона не имеют коротких межмолекулярных контактов с другими гетероатомами или атомами водорода. Структурообразующие взаимодействия в кристаллах 7 и 8 реализуются между SO₃-группами трифлат-анионов и тригалогенфосфониевыми группами катионов, а также с метильными группами фосфониевых катионов. В каче-

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 90 № 9 2020

Рис. 3. Межмолекулярные взаимодействия в кристаллах солей 7 и 8 (показано на примере кристалла 8). Взаимодействия S=O···X (X = Cl, Br) и C-H···O показаны *пунктиром*.

стве основного супрамолекулярного мотива для обеих структур служит зигзагообразная (гофрированная) лента из катионов и анионов, связанных взаимодействиями Х···O (рис. 2а, б) с расстояниями Cl···O в диапазоне величин 2.931(1)–3.015(1) Å, и расстояниями Br···O в диапазоне значений 2.893(2)–2.896(2) Å. При этом три атома кислорода SO_3 -группы аниона оказываются в неэквивалентном положении с точки зрения реализации межмолекулярных взаимодействий с их участием. Только один из них (O²) принимает участие в трифуркатном межмолекулярном взаимодействии S–O···X, в то время как два других участвуют в образовании связей С–H···O с водородами метильных групп соседних катионов.

Отметим, что роль связей С–Н···О (рис. 3) (расстояния Н···О лежат в диапазоне 2.26–2.46 Å) заключается в объединении между собой зигзагообразных лент, в то время как направленность в кристаллах обоих соединений подобных лент одинакова – вдоль кристаллографического направления 0y (рис. 2в, г). При этом взаимное расположение катионов и анионов в кристалле таково, что образуется слоевая (конденсаторная) система с чередованием положительно и отрицательно заряженных слоев вдоль кристаллографического направления 0*a* (рис. 4).

В целом, в результате совокупного влияния взаимодействий галоген-кислород и водородных связей С-Н····О-типа в кристаллах данных соединений реализуется сложная трехмерная сетка анионов и катионов, так что в кристаллах не наблюдается свободных объемов, доступных для

Рис. 4. Упаковка кристалла соединения **8**. Фосфониевые катионы и трифлат-анионы показаны в виде ван-дер-ваальсовых сфер светлого и темного цвета соответственно.

молекул растворителей. Однако и при таком взаимном расположении молекул не удается достичь их плотнейшей упаковки — рассчитанные значения коэффициентов упаковки для кристаллов 7 и 8 равны 69.6 и 70.0%, что соответствует лишь промежуточным значениям диапазона величин, характерного для кристаллов органических соединений (65–75%). Но, так или иначе, в кристаллах наблюдается избранное направление 0*a*, вдоль которого следует ожидать анизотропию физико-химических свойств.

Таким образом, установленный нами факт образования трифлатов метилтригалогенфосфония – продуктов реакции тригалогенидов фосфора с метилтрифлатом с высоким потенциальным барьером в кинетических условиях позволяет предположить о возможности протекания данного процесса по туннельному механизму. Кроме того, следует также отметить, что изоструктурность данных кристаллических солей свидетельствует о возможности образования смешанных кристаллов трифлат-анионом и тригалогенфосфониевыми катионами, что, в свою очередь, может позволить в дальнейшем изменять физико-химические свойства этих кристаллов путем варьирования соотношения двух катионов в них.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Трифлат метилтрихлорфосфония (7). Смесь 4.91 мл PCl₃ и 9.22 г метилтрифлата выдерживали в запаянной ампуле, заполненной аргоном, ~ 4 года (20–25°C) в защищенном от света месте. Через год наблюдалось образование небольшого количества кристаллического осадка, количество которого заметно увеличилось через 3 года. Чрезвычайно гигроскопичный кристаллический осадок (0.95 г, 5.5%) отфильтровывали в атмосфере аргона, т. пл. 202–203°С (в запаянном капилляре). Спектр ЯМР ³¹Р{¹H} (PCl₃): δ_P 43.0 м. д. Найдено Cl, %: 36.0. C₂H₃Cl₃F₃O₃PS. Вычислено Cl, %: 35.32.

Трифлат метилтрибромфосфония (8) получали алогично из 3.33 мл PBr₃ и 5.79 г метилтрифлата. Выход 0.8 г (5.2%), т. пл. 115–118°С (в запаянном капилляре). Найдено Br, %: 55.72. C₂H₃Br₃F₃O₃PS. Вычислено Br, %: 55.17.

Рентгеноструктурный анализ монокристаллов соединений 7 и 8 проведен в Федеральном спектро-аналитическом центре коллективного пользования Института органической и физической химии им. А.Е. Арбузова ФИЦ КазНЦ РАН на базе Лаборатории дифракционных методов исследования. Кристаллографические характеристики соединений, параметры экспериментов и уточнения структур приведены в табл. 1. Эксперименты выполнены на автоматическом четырехкружном дифрактометре CAD-4 Nonius B.V.. Кристаллы обоих соединений чрезвычайно нестабильны, на воздухе начинают расплываться и растворяться при взаимодействии с атмосферной влагой, в связи с этим эксперименты выполняли при –173(2)°С (100 К) с кристаллами, предварительно изолированными криопротектором (силиконовое масло) от окружающей среды. Предварительная обработка данных проведена с использованием программы MolEN [15]. Структуры расшифрованы прямым методом и уточнены методом наименьших квадратов вначале в изотропном, затем в анизотропном приближении (для всех неводородных атомов) с использованием программы SHELX [16] в среде программного пакета WinGX [17]. Атомы водорода выявлены из разностных рядов электронной плотности и уточнены в изотропном приближении. В структуре 8 применены ограничения на параметры анизотропных смещений атомов C, O и F (SIMU по типам атомов). Анализ межмолекулярных взаимодействий и рисунки выполнены с использованием программы PLATON [18] и Mercury [19].

Координаты атомов структур 7 и 8, а также их температурные параметры депонированы в Кембриджской базе кристаллоструктурных данных (ССDC 1989404, 1989405).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Clay J.P. // J. Org. Chem. 1951. Vol. 16. N 6. P. 892. doi 10.1021/jo01146a010
- Kinner A.M., Perren E.A. // J. Chem. Soc. 1952. P. 3437. doi 10.1039/JR9520003437
- Freedman L.D., Doak G.O. // Chem. Rev. 1957. Vol. 57. N 3. P. 479. doi 10.1021/cr50015a003
- Engel R. // Chem. Rev. 1977. Vol. 77. N 3. P. 349. doi 10.1021/cr60307a003
- Drug Discovery / Ed. H.A. El-Shemy. London: InTech, 2013. Ch. 12. P. 325. doi 10.5772/52504
- 6. *Fields S.C.* // Tetrahedron. 1999. Vol. 55. N 42. P. 12237. doi 10.1016/S0040-4020(99)00701-2
- Demmer C.S., Krogsgaard-Larsen N., Bunch L. // Chem. Rev. 2011. Vol. 111 N 12. P. 7981. doi 10.1021/ cr2002646
- Зиновьев Ю.М., Соборовский Л.З. // Реакции и методы исследования органических соединений. М.: Химия, 1970. Т. 21. С. 6.
- du Mont W.-W., Stenzel V., Jeske J., Jones P.G., Sebald A., Pohl S., Saak W., Batcher M. // Inorg. Chem. 1994. Vol. 33. N 7. P. 1502. doi 10.1021/ic00085a047
- Politzer P., Murray J.S. // ChemPhysChem. 2013. Vol. 14. N 2. P. 278. doi 10.1002/cphc.201200799
- Politzer P., Murray J.S., Clark T. // PhysChem ChemPhys. 2013. Vol. 14. N 27. P. 11178. doi 10.1039/ C3CP00054K
- Lommerse J.P.M., Stone A.J., Taylor R., Allen F.H. // J. Am. Chem. Soc. 1996. Vol. 118. N 13. P. 3108. doi 10.1021/ja953281x
- Grabowski S.J. // Theor. Chem. Acc. 2013. Vol. 132. N 4. Article N 1347. doi 10.1007/s00214-013-1347-7
- Navon O., Bernstein J., Khodorkovsky V. // Angew. Chem. Int. Ed. 1997. Vol. 36. N 6. P. 601. doi 10.1002/ anie.199706011
- Straver L.H., Schierbeek A.J. MOLEN. Structure Determination System. Program Description. Nonius B.V. 1994. Vol. 1. 180 p.
- Sheldrick G.M. SHELX-97. Programs for Crystal Structure Analysis (Release 97-2). University of Gottingen, Germany. 1997. 154 p.
- Farrugia L.J. // J. Appl. Cryst. 1999. Vol. 32. N 4. P. 837. doi 10.1107/S0021889899006020
- Spek A.L. // J. Appl. Cryst. 2003. Vol. 36. N 1. P. 7. doi 10.1107/S0021889802022112
- Macrae C.F., Edgington P.R., McCabe P., Pidcock E., Shields G.P., Taylor R., Towler M., van de Streek J. // J. Appl. Crystallogr. 2006. 39. N 3. P. 453. doi 10.1107/ S002188980600731X

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 90 № 9 2020

Reaction of Phosphorus Trihalides with Methyl Triflate. Molecular and Supramolecular Structure of Methyltrichloroand Methyltribromophosphonium Triflates

A. T. Gubaidullin, V. F. Mironov*, and I. A. Litvinov

A.E. Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center «Kazan Scientific Center of the Russian Academy of Sciences», Kazan, 420088 Russia *e-mail: mironov@iopc.ru

Received April 20, 2020; revised April 20, 2020; accepted April 26, 2020

Prolonged (~ 4 years) storage of mixtures of phosphorus trichloride or tribromide with methyl triflate in a place protected from light at $20-25^{\circ}$ C led to the formation of crystalline methyltrichloro- and methyltribromophosphonium triflates with a content of 10-11% in the reaction mixture and a yield of 5-6%. Structure of the triflates was established by X-ray diffraction analysis.

Keywords: phosphorus tribromide, phosphorus trichloride, methyl triflate, quasi-phosphonium salt, molecular and supramolecular structure