УДК 541.127:546.173-325:546.215:547.732

КИСЛОТНО-КАТАЛИТИЧЕСКОЕ ОКИСЛЕНИЕ ТИОФЕНА ПЕРОКСИДОМ ВОДОРОДА В СИСТЕМЕ H-ОКТАН-ВОДА

© 2021 Т. В. Безбожная*, А. К. Любимова, В. Л. Лобачев

Институт физико-органической химии и углехимии имени Л. М. Литивиненко, ул. Р. Люксембург 70, Донецк, 83114 Украина *e-mail: b.t.v@i.ua

Поступило в Редакцию 15 сентября 2020 г. После доработки 15 сентября 2020 г. Принято к печати 27 сентября 2020 г.

Изучено влияние времени и температуры реакции, состава и концентрации окислительной смеси на степень превращения тиофена в двухфазной системе H-октан—водная фаза. Окислительная активность пероксикислот, генерируемых из пероксида водорода и кислот (трифторуксусной, муравьиной, азотистой), изменяется в ряду $CF_3COOOH > HCOOOH > HOONO$. Добавки цетил(триметил)аммонийбромида замедляют окисление тиофена.

Ключевые слова: тиофен, окисление, пероксид водорода, муравьиная кислота, трифторуксусная кислота

DOI: 10.31857/S0044460X21010029

Строгая регламентация содержания серы в углеводородном сырье и продуктах его переработки, связанная с проблемами экологии и с эксплуатационными свойствами нефтепродуктов, делает актуальной задачу поиска экономически эффективных технологий снижения содержания общей серы в этих продуктах. Основными классами сернистых соединений, содержащихся в нефтяных фракциях, являются тиолы, диалкил- и циклоалкилсульфиды, алкиларилсульфиды, а также гетероароматические соединения — производные тиофена [1].

Среди многочисленных методов снижения общего содержания серы в нефтепродуктах [1–4] большой интерес вызывает окислительное обессеривание в сочетании с последующей экстракцией образующихся в процессе окисления кислородсодержащих продуктов. Этот метод в отличие от гидроочистки [5] не требует больших количеств водорода, высоких температур и давления, отличается простотой аппаратурного оформления и позволяет использовать более дешевые реагенты, такие как кислород воздуха, пероксид водорода в присутствии таких активаторов как муравьиная, уксусная, трифторуксусная кислоты, соли ко-

бальта, карбонат натрия, фосфорномолибденовая кислота и др. [1], образующих с ${\rm H_2O_2}$ активные пероксосоединения и различные органические перекиси.

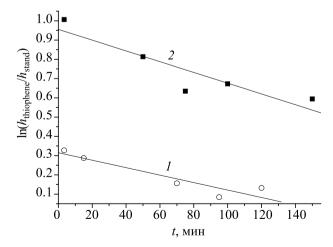
Известны работы как по окислительному обессериванию товарных нефтепродуктов, так и модельных смесей, в которых в качестве объектов окисления используют бензотиофен, дибензотиофен и их производные [5, 6]. Основной проблемой является окисление тиофена и его алкильных производных, скорость реакций которых с пероксидами значительно ниже, чем других органических серосодержащих соединений. Согласно работе [6], реакционная способность соединений серы в реакциях окисления растет с увеличением электронной плотности на атоме серы. Так, в системе H₂O₂-HCOOH-декалин при 50°C окисляются только соединения, имеющие электронную плотность на атоме S выше 5.793 (бензотиофен, дибензотиофены, диарил- и алкиларилсульфиды). Тиофен и его алкилпроизводные (электронная плотность от 5.696 до 5.716) в этой системе (H_2O_2 / тиофен = 160 моль/моль) инертны.

В то же время установлено [5], что тиофен может быть эффективно окислен в системе n-гептан— H_2O_2 —муравьиная кислота при непрерывной подаче воздуха в систему со скоростью барботирования 100 мл/мин. Константа скорости первого порядка расходования тиофена в этой системе увеличивается от 0.004 до 0.02 мин⁻¹ при изменении температуры от 25 до 60°С. Показано также, что тиофен может быть окислен в системе H_2O_2 —кислота в хлористом метилене при 20°С [7]. Скорость реакции уменьшается с увеличением pK_a кислоты в ряду $CF_3CO_2H > CCl_3CO_2H > CHCl_2CO_2H > CH_2ClCO_2H > CH_3CO_2H.$

Целью настоящей работы является поиск окислительной системы, изучение влияния природы окислителя (смеси пероксида водорода с муравьиной кислотой, трифторуксусной кислотыой, и нитритом натрия) и условий окисления [время, температура реакции, концентрация окислителя, добавок цетил(триметил)аммонийбромида] на степень трансформации тиофена в модельной смеси *н*-октан—окислитель.

Среди карбоновых кислот RCOOH муравьиная и трифторуксусная кислоты наиболее часто используются как активаторы пероксида водорода в процессах окислительной десульфуризации. Реакции с их участием включают стадию образования из пероксида водорода и кислоты соответствующей пероксокислоты, которая затем реагирует с серосодержащим соединением [7–9].

В таблице приведены данные о степени превращения тиофена при 50°C в системе n-октан— H_2O_2 -RCOOH. Найдены условия (опыты № 4, 5, 7–9), в которых удалось полностью окислить тиофен в течение 1.5–2 ч, при этом в системе с трифторуксусной кислотой этот эффект достигается при меньшей концентрации окислительной смеси по сравнению с муравьиной кислотой, что может быть объяснено более высокой кислотностью CF_3COOH (р K_a 3.75 и 0.23 соответственно [10]). Уменьшение температуры реакции от 50 до 30°C приводит к почти 5-кратному снижению эффективности окисления (ср. опыты № 9 и 11).


На рисунке приведены типичные результаты по кинетике расходования тиофена в системе H-октан— H_2O_2 –RCOOH.Вусловиях опыта № 10 константаскорости первого порядка равна $(2.8\pm0.7)\times10^{-3}$ мин $^{-1}$, в условиях опыта № $11-(1.98\pm0.4)\times10^{-3}$ мин $^{-1}$.

Степень превращения тиофена в системе n-октан— H_2O_2 — RCOOH при 50° C

1			
$N_{\underline{0}}$	[тиофен]:[H_2O_2]:[RCOOH],	Время,	η, %
опыта	МОЛЬ	Ч	11, 70
Тиофен–H ₂ O ₂ –HCOOH			
1	1:3.4:7.9	1.0	37
2	1:3.4:7.9	5.0	80
3	1:7:16.2	2.0	76
4	1:14:32.3	2.0	100
5	1:14:19	2.0	100
6	1:3.4:7.9	2.0	15 ^a
Тиофен-H ₂ O ₂ -CF ₃ COOH			
7	1:14:18.6	2.0	100
8	1:7:9.3	2.0	100
9	1:3.5:4.7	1.5	100
10	1:1.8:2.4	2.5	34
11	1:3.5:4.7	2.0	18 ⁶

^а В присутствии 0.02 г СТАВ.

В процессе окислительной десульфуризации возникает проблема, связанная с низкой растворимостью тиофена в полярной водной фазе (окислительной смеси). Для повышения растворимости тиофена в водной фазе в систему вводили цетилтриметиламмонийбромид (СТАВ). Реакция в присутствии СТАВ сопровождается повышенным пенообразованием и снижением степени превращения тиофена. По аналогии с данными работы [11] можно предположить, что для реакций окисления, протекающих одновременно в воде и мицеллярной фазе, снижение скорости окисления тиофена образующейся пероксикислотой связано с тем, что плохо растворимый в воде тиофен

Выполнение уравнения (1) для реакции окисления тиофена в условиях, приведенных в таблице. I — опыт N 11. 2 — опыт N 10.

^{° 30°}C

частично связывается мицеллами, при этом его концентрация и, как следствие, скорость в водной фазе снижается. Пероксикислота в мицеллярную фазу практически не переходит, а вклад маршрута окисления тиофена в мицеллярной фазе намного меньше, чем в воде.

Ранее было показано, что нитрит-анионы являются эффективными активаторами пероксида водорода в реакциях окисления органических сульфидов, а также тиофена [9]. Пероксиазотистую кислоту генерировали *in situ* в системе H_2O_2 — HNO_2 при pH 4.08. Установлено, что в системе μ -октан—тиофен— $NaNO_2$ — H_2O_2 —фосфатный буфер степень превращения тиофена за 2 ч составила 22% (тиофен: $NaNO_2$: H_2O_2 = 1:1:1.1), т. е. эффективность этой системы ниже, чем в случае пероксимуравьиной или перокситрифторуксусной кислоты.

После экстрагирования продуктов окисления из реакционной массы водой, а затем хлороформом из воды и его удаления при пониженном давлении было получено светло-желтое прозрачное масло, установить структуру которого по данным ЯМР не представлялось возможным, так как в нем содержалась смесь продуктов. Известно, что в отличие от замещенных тиофенов, бензотиофена, дибензотиофена, тиофен-1-оксид - первичный продукт окисления тиофена – является высокореакционноспособным соединением и легко вступает в реакцию дальнейшего окисления и реакцию Дильса-Альдера с образованием диастереомерных димеров S-оксида, которые также могут окисляться [7]. Остановить реакцию в условиях эксперимента на стадии образования тиофен-1-оксида нельзя. Ранее жидкие продукты при окислении тиофена в системе окисления Н₂О₂-НСООН были получены в работе [12], которые, по данным масс-спектрометрии, были отнесены к тиофенсульфонам.

Таким образом, найдены окислительные системы на основе пероксида водорода и трифторуксусной или муравьиной кислот, позволяющие эффективно окислять тиофен в двухфазной системе *н*-октан—водная фаза при 50°С. Степень окисления тиофена зависит от природы окислителя, его концентрации и температуры реакции. Перокситрифторуксусная кислота обладает большей окислительной способностью, чем пероксимуравьиная кислота. Добавки СТАВ снижают скорость окисления тиофена.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для приготовления растворов использовали бидистиллированную воду, 30%-ный раствор H_2O_2 , муравьиную кислоту, трифторуксусную кислоту, NaNO₂ марки Ч без дополнительной очистки. Цетилтриметиламмонийбромид (Merck) многократно перекристаллизовывали из смеси этанол—диэтиловый эфир (1:10), *н*-октан марки XЧ, тиофен марки Ч очищали перегонкой, степень чистоты контролировали хроматографически. Для приготовления буферного раствора (рН 4.08) использовали водные растворы H_3PO_4 (0.002 М.) и KH_2PO_4 (0.064 М.), рН раствора контролировали с помощью рН-метра Radelkis OP-211/1.

Реакцию проводили в термостатируемом стеклянном реакторе при интенсивном перемешивании. Первоначально в реактор вводили 5 мл н-октана, расчетное количество кислоты и тиофена. После термостатирования и энергичного перемешивания добавляли Н₂О₂ и начинали отсчет времени. За изменением концентрации тиофена следили с помощью ГЖХ (хроматограф ЛХМ-80, детектор пламенно-ионизационный, колонка 2 м, неподвижная фаза 5% SE-30 на носителе Chromaton N-AW). В качестве внутреннего стандарта использовали н-октан. При проведении кинетических измерений через определенные промежутки времени после остановки перемешивания и расслоения системы из водной и органической фаз отбирали пропорциональные объемы проб и добавляли к ним 10 мл воды. Органическую фазу анализировали методом ГЖХ. Константу скорости первого порядка расходования тиофена рассчитывали по формуле (1).

$$k = -\ln(h_{\text{тиофен}}/h_{\text{станд}})/t. \tag{1}$$

Здесь $h_{\text{тиофен}}$ – высота пика тиофена, $h_{\text{станд}}$ – высота пика μ -октана. Обработку данных проводили по методу наименьших квадратов.

Степень превращения тиофена (η , %) рассчитывали по формуле (2).

$$\eta = ([\text{тиофен}]_0 - [\text{тиофен}])/[\text{тиофен}]_0 \times 100.$$
 (2)
Здесь $[\text{тиофен}]_0$ и $[\text{тиофен}]$ – исходная и текущая концентрации тиофена.

В опытах со 100 %-ной конверсией тиофена с целью выделения продуктов окисления реакционную массу экстрагировали водой (3×5 мл), затем водный слой насыщали NaCl и экстрагировали хлороформом (3×5 мл). Объединенный экстракт

сушили сульфатом натрия. Растворитель отгоняли при пониженном давлении. Спектры ЯМР 1 Н продуктов реакции записывали на приборе Bruker Avance 400 MHz в ДМСО- d_{6} .

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Анисимов А.В., Тараканова А.В.* // Рос. хим. ж. 2008. Т. 52. № 4. С. 32.
- 2. Campos-Martin J.M., Capel-Sanchez M.C., Perez-Presas P., Fierro J.L.G. // J. Chem. Technol. Biotechnol. 2010. Vol. 85. N 7. P. 879. doi 10.1002/jctb.2371
- 3. *Mjalli F.S., Ahmed O.U., Al-Wahaibi T., Al-Wahaibi Y., Al Nashef I.M.* // Rev. Chem. Eng. 2014. Vol. 30. N 4. P. 337. doi 10.1515/revce-2014-0001
- Jiang Z., Lu H., Zhangy Y., Li C. // Chinese J. Catal. 2011. Vol. 32. N 5. P. 707. doi 10.1016/S1872-2067(10)60246-X

- Hussain F., Ahmad W., Ahmad I., Guo Sh. // Envir. Eng. Sci. 2019. Vol. 36. N 11. P. 1404. doi 10.1089/ ees.2019.0204
- Otsuki S., Nonaka T., Takashima N., Qian W., Ishihara A., Imai T., Kabe T. // Energy & Fuels. 2000. Vol. 14. N 6. P. 1232. doi 10.1021/ef000096i
- 7. *Treiber A.* // J. Org. Chem. 2002. Vol. 67. N 21. P. 7261. doi 10.1021/jo0202177
- Sun X., Zhao X., Du W., Liu D. // Chinese J. Chem. Eng. 2011. Vol. 19. N 6. P. 964. doi 10.1016/s1004-9541(11)60078-5
- 9. Лобачев В.Л., Дятленко Л.М., Рудаков Е.С. // Укр. хим. ж. 2013. Т. 79. № 5. С. 56.
- 10. Гордон А., Форд Р. Спутник химика. М.: Мир, 1976. 541 с.; Gordon A.J., Ford R.A. The Chemists Companion. New Yor; London; Sydney; Toronto: Wiley-Intersci. Publ., 1972.
- Сигаева А.К., Лобачев В.Л., Безбожная Т.В. // Вестн. Донецк. нац. унив. Сер. А Естественные науки. 2018. № 2. С. 89.
- Ahmad W., Ahmad I., Yaseen M. // Korean J. Chem. Eng. 2016. Vol. 33. N 9. P. 2530. doi 10.1007/s11814-016-0099-1

Acid-Catalytic Oxidation of Thiophene by Hydrogen Peroxide in *n*-Octane–Water System

T. V. Bezbozhnaya*, A. K. Lyubimova, V. L. Lobachev

Litvinenko Institute of Physical-Organic Chemistry and Coal Chemistry, Donetsk, 83114 Ukraine *e-mail: b.t.v@i.ua

Received September 15, 2020; revised September 15, 2020; accepted September 27, 2020

The effect of the reaction time and temperature, composition and concentration of the oxidizing mixture on the degree of thiophene conversion in the n-octane–aqueous phase two-phase system was studied. The oxidative activity of peroxyacids generated from hydrogen peroxide and acids (trifluoroacetic, formic, nitrous) changes in the series $CF_3COOOH > HCOOOH > HOONO$. The addition of cetyl(trimethyl)ammonium bromide inhibit the oxidation of thiophene.

Keywords: thiophene, oxidation, hydrogen peroxide, formic acid, trifluoroacetic acid