РЕАКЦИЯ ДИЭТИЛХЛОРЭТИНИЛФОСФОНАТА С 3-АМИНО-1,2,4-ТРИАЗОЛАМИ

© 2021 г. А. С. Крылов^{*a*}, В. В. Толстяков^{*a*}, В. В. Гуржий^{*b*}, А. В. Догадина^{*a*,*}

^а Санкт-Петербургский государственный технологический институт (технический университет), Московский пр. 26, Санкт-Петербург, 190013 Россия ^b Санкт-Петербургский государственный университет, Санкт-Петербург, 199034 Россия *e-mail: dog alla@mail.ru

> Поступило в Редакцию 2 декабря 2020 г. После доработки 2 декабря 2020 г. Принято к печати 12 декабря 2020 г.

Реакцией диэтилхлорэтинилфосфоната с 2-замещенными 3-амино-1,2,4-триазолами с последующей 5-эндо-диг-циклизацией получены новые 6-фосфонилированные 1*H*-имидазо[2,1-*c*][1,2,4]триазолы. Установлено, что наличие атома брома в положении 5 исходного 1,2,4-триазола полностью меняет хемоселективность реакции, приводя к образованию соответствующего симметричного амидина, диэтил-{2-[(3-бром-1-метил-1*H*-1,2,4-триазол-5-ил)амино]-2-[(3-бром-1-метил-1*H*-1,2,4-триазол-5-ил)имино]-этил}фосфоната.

Ключевые слова: хлорэтинфосфонат, 3-амино-1,2,4-триазолы, имидазотриазолы, фосфорилирование

DOI: 10.31857/S0044460X2101008X

Конденсированные полиядерные азотсодержащие гетероциклические соединения привлекают большое внимание вследствие их разнообразной биологической активности. Имеются сведения о фармакологическом потенциале имидазотриазольного каркаса, присутствие которого в структуре обусловливает наличие противораковых [1, 2], антиоксидантных [3], противомикробных [4] и противовоспалительных свойств [5].

Как известно, фосфонаты обладают высокой способностью подавлять многие важные биохимические реакции, имитируя эфиры фосфорных и карбоновых кислот в различных метаболических процессах [6–8]. Особый интерес представляют фосфорсодержащие гетероциклические соединения, поскольку они проявляют широкий спектр биологической активности [9, 10]. В связи с этим, синтез новых азагетероциклических фосфонатов, содержащих имидазотриазольный фрагмент, является актуальной задачей, так как данные соединения могут найти применение в качестве перспективных объектов для дизайна на их основе новых лекарственных препаратов. Существующие подходы к синтезу имидазотриазолов состоят в построении бициклической системы, исходя из 3-амино-1,2,4-триазола. Традиционно образование имидазольного фрагмента основано на использовании α -галогенкетонов [11]. Мультикомпонентная реакция Гребке–Блэкберна между 3-амино-1,2,4-триазолами, альдегидами и алифатическими изонитрилами успешно применяется для получения N-алкилиден-4*H*-имидазо[1,2-*b*][1,2,4]триазол-6-аминов [12, 13]. Взаимодействие 5-диазоимидазолов с нитро-, галоген- и ацетиламиномалоновыми эфирами с последующей циклизацией приводит к образованию имидазо[5,1-*c*][1,2,4]триазолов [14].

С целью синтеза биологически релевантных гетероциклических структур с одновременной функционализацией их фосфорсодержащими заместителями мы исследовали реакцию диэтилхлорэтинилфосфоната 2 с 3-амино-1,2,4-триазолами 1а-е (схема 1).

Реакция проходит при комнатной температуре в среде ацетонитрила в присутствии K_2CO_3 как акцептора хлористого водорода, приводя к образованию диэтил-1*H*-имидазо[2,1-*c*][1,2,4]триазол-

5-илфосфонатов **За**–е с высокими выходами. Контроль за ходом реакции осуществляли с помощью спектроскопии ЯМР на ядрах ³¹Р, что позволило подобрать оптимальные условия (см. таблицу). Установлено, что наилучшая регио- и хемоселективность наблюдается при кипячении исходных реагентов в CCl₄ в присутствии K₂CO₃. Продукты реакции выделяли с помощью колоночной хроматографии на силикагеле (элюент – 1%-ный MeOH в CH₂Cl₂). Фосфонаты **За–в**, д, е представляют собой желтоватые вязкие маслообразные вещества. Фосфонат **Зг** – бесцветное кристаллическое вещество с температурой плавления 125–126°С.

Строение соединений полученных соединений подтверждено данными спектроскопии ЯМР ¹H, ¹³C, ³¹P с применением методов корреляционной гетероядерной спектроскопии (¹H–¹³C HSQC и HMBC) и масс-спектрометрии высокого разрешения (HRMS-ESI). Химический сдвиг фосфора имидазотриазолов **3а–е** находится в области 10.2–10.7 м. д., что свидетельствует о связи фосфонатной группы с углеродом *sp*²-гибридизации. Сигнал

протонов имидазольного фрагмента наблюдается в основном в виде синглета в области 7.65 м. д. Однако в некоторых случаях (соединения 3д, е) наблюдается малая константа спин-спинового взаимодействия (${}^{3}J_{\rm HP}$ 1.3 Гц) с ядром атома фосфора, что является достаточно редким случаем для аналогичных шестичленных соединений [15]. Протон триазольного цикла регистрируется в виде синглета при 8.0 м. д. В спектрах ЯМР ¹³С сигналы атомов углерода имидазольного цикла проявляются в слабом поле с характерными константами спин-спинового взаимодействия с ядром фосфора ¹*J*_{CP} 236.8, ²*J*_{CP} 36.7, ³*J*_{CP} 26.9 Гц. Для отнесения сигналов в спектрах ЯМР ¹H, ¹³С использовали методы двумерной гетероядерной спектроскопии ЯМР НМВС (схема 2).

Однозначно строение фосфорилированных имидазотриазолов 3a-e подтверждено данными рентгеноструктурного анализа на примере соединения 3r (см. рисунок).

На примере 2-аминопиридинов нами было ранее показано [15], что наличие атома брома ря-

N⁰	Растворитель	Температура, °С	Время, ч	Конверсия фосфоната 2, % ^а	Выход, %а
1	CH ₃ CN	20-25	48	<5	Следы
2	CH ₃ CN	82	24	>95	64
3	CCl_4	77	24	>95	92
4	Толуол	80	24	>95	86
5	CH ₃ OH	65	12	>99	32
6	ДМФА	80	8	>99	43

Влияние условий реакции на выход имидазотриазолов За-е

^а По данным спектроскопии ЯМР ³¹Р.

дом с эндоциклическим атомом азота затрудняет циклизацию. В случае использования в реакции с диэтилхлорэтинилфосфонатом 2 пятичленных 5-бром-гетероциклических аминов также наблюдается изменение хемоселективности реакции. Так, при введении в реакцию 3-амино-5-бром-1,2,4-триазола 1ж наблюдалось образование соответствующего амидина 4 (схема 3). Такое направление реакции [16] обычно реализуется в результате образования промежуточного инамина, последующей его изомеризации в кетенимин и присоединении еще одной молекулы амина 1ж.

Химический сдвиг фосфора соединения 4 (20.95 м. д.) находится в характерной области для алкилфосфонатов. Сигнал протонов метиленовой группы наблюдается в виде дублета при 3.87 м. д. с КССВ от ядра фосфора ${}^{2}J_{\rm HP}$ 20.2 Гц. Протоны двух метильных групп в триазольных кольцах резонируют синглетом при 3.84 м. д. В слабом поле регистрируется сигнал протона NH амидинового фрагмента (12.3 м. д.). Определенные молекулярные массы продуктов соответствуют рассчитанным значениям.

Таким образом, показана возможность формирования конденсированных циклов, а именно 1-замещенных диэтил-(1*H*-имидазо[2,1-*c*][1,2,4]триазол-6-ил)фосфонатов, хемо- и региоселективной

Общий вид молекулы соединения **3**г в кристалле (ССDС 2046366).

реакцией хлорэтинилфосфоната с 2-замещенными 3-амино-1,2,4-триазолами.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹H, ¹³C, ³¹P сняты на спектрометре Bruker Avance III HD 400 NanoBay на рабочих частотах 400.17, 100.63 и 162.01 МГц соответственно в растворе CDCl₃. Химические сдвиги фосфора приведены относительно внешнего стандарта – 85%-ной фосфорной кислоты. Для отнесения сигналов в спектрах ЯМР ¹H, ¹³С использовали методы двумерной гетероядерной спектроскопии HMBC. ИК спектры записаны на спектрометре Shimadzu IRAffinity-1 в таблетках КВг. Масс-спектры высо-

кого разрешения записаны на масс-спектрометре Вruker MicrOTOF при ионизации вещества распылением в электрическом поле (ESI) (температура ионизационной камеры – 180°С, напряжение ионизации – 70 и 100 эВ). Температуры плавления измерена на столике Кофлера (VEB Wägetechnik Rapido, PHMK 81/2969). Рентгеноструктурный анализ выполнен на дифрактометре Rigaku Oxford Diffraction XtaLab Synergy HyPix-6000 при 100 К.

Общая методика синтеза фосфонатов 3a-e, 4. К раствору 1 ммоль 3-аминотриазола 1a-ж в 5 мл безводного четыреххлористого углерода добавляли 1.1 ммоль свежепрокаленного K_2CO_3 и 1 ммоль диэтилхлорэтинилфосфоната 2. Реакционную смесь интенсивно перемешивали при кипении в течение 24 ч. По окончании реакции отфильтровывали осадок неорганических солей, полученный раствор упаривали в вакууме. Остаток очищали колоночной хроматографией на силикагеле (элюент – 1%-ный MeOH в CH₂Cl₂).

Диэтил-(1-метил-1*H*-имидазо[2,1-*c*][1,2,4]триазол-6-ил)фосфонат (За). Выход 87%, желтоватое вязкое масло. ИК спектр, v, см⁻¹: 732, 802, 858, 962, 1016 (P–O–C), 1229 (P=O), 1440, 1616 (C=N), 2983, 3441. Спектр ЯМР ¹H (CDCl₃), δ , м. д. (*J*, Гц): 1.32 т (6H, CH₂CH₃, ³J_{HH} 7.1), 3.86 с (3H, NCH₃), 4.08–4.24 м (4H, OCH₂), 7.65 с (1H, H³), 8.04 с (1H, H⁵). Спектр ЯМР ¹³С (CDCl₃), $\delta_{\rm C}$, м. д. (*J*, Гц): 16.30 д (³J_{CP} 6.5), 35.00, 62.60 д (²J_{CP} 5.6), 112.67 д (²J_{CP} 36.8), 125.50, 137.69 д (¹J_{CP} 236.8), 153.01 д (³J_{CP} 26.9). Спектр ЯМР ³¹Р (CDCl₃): $\delta_{\rm P}$ 10.67 м. д. Масс-спектр (HRMS-ESI), *m/z*: 259.0956 [*M* + H]⁺ (вычислено для C₉H₁₅N₄O₃P: 259.0955 [*M* + H]⁺).

Диэтил-(1-бензил-1*H*-имидазо[2,1-*c*][1,2,4]триазол-6-ил)фосфонат (36). Выход 92%, желтоватое вязкое масло. ИК спектр, v, см⁻¹: 783, 815, 829, 875, 1003 (P–O–C), 1248 (P=O), 1298, 1404, 1495, 1629 (C=N). Спектр ЯМР ¹H (CDCl₃), δ , м. д. (*J*, Гц): 1.37 т (6H, CH₂CH₃, ³J_{HH} 7.1), 4.11–4.32 м (4H, OCH₂), 5.37 с (2H, CH₂Ph), 7.29–7.48 м (3H, C₆H₅), 7.66 с (1H, H³), 8.03 с (1H, H⁵). Спектр ЯМР ¹³С (CDCl₃), $\delta_{\rm C}$, м. д. (*J*, Гц): 16.34 д (³J_{CP} 6.4), 51.96, 62.63 д (²J_{CP} 5.5), 112.51 д (²J_{CP} 36.7), 125.90, 128.37, 128.76, 135.20, 138.02 д (¹J_{CP} 236.2), 152.79 д (³J_{CP} 27.0). Спектр ЯМР ³¹Р (CDCl₃): $\delta_{\rm P}$ 10.61 м. д. Масс-спектр (HRMS-ESI), *m/z*: 335.1268 [*M* + H]⁺).

Диэтил-{1-(4-метоксибензил)-1*Н*-имидазо[2,1-с][1,2,4]триазол-6-ил}фосфонат (Зв). Выход 89%, желтоватое вязкое масло. ИК спектр. v, cm⁻¹: 732, 804, 964, 1018 (P–O–C), 1037, 1228 (P=O), 1601 (C=N), 2360, 2941. Спектр ЯМР ¹Н (CDCl₃), б, м. д. (*J*, Гц): 1.32 т (6H, CH₂CH₃, ³J_{HH} 7.1), 3.73 с (3H, OCH₃), 4.06–4.27 м (4H, OCH₂), 5.24 c (2H, CH₂Ph), 6.80 \pm (2H, Ph-H^{3,5}, ³J_{HH} 8.6), 7.32 д (2H, Ph- $H^{2,6}$, ${}^{3}J_{HH}$ 8.6), 7.61 с (1H, H^{3}), 8.01 с (1H, H⁵). Спектр ЯМР ¹³С (CDCl₃), _б_C, м. д. (*J*, Гц): 16.31 д (${}^{3}J_{CP}$ 6.4), 51.43, 55.23, 62.59 д (${}^{2}J_{CP}$ 5.5), 112.54 д (²J_{CP} 36.7), 114.04, 129.86, 137.72 д (¹*J*_{CP} 236.3), 152.65 д (³*J*_{CP} 26.9), 159.57. Спектр ЯМР ³¹Р (CDCl₃): δ_P 10.72 м. д. Масс-спектр (HRMS-ESI), m/z: 365.1369 $[M + H]^+$ (вычислено для C₁₆H₂₁N₄O₄P: 365.1373 [*M* + H]⁺).

Диэтил-(1-(2,4-дихлорбензил)-1Н-имидазо[2,1-с][1,2,4]триазол-6-ил)фосфонат (3г). Выход 95%, бесцветные кристаллы, т. пл. 125-126°С (гептан–СН₂Сl₂). ИК спектр, v, см⁻¹: 732, 812, 973, 1012 (P-O-C), 1218 (P=O), 1456, 1622 (C=N), 2948, 3439. Спектр ЯМР ¹Н (CDCl₃), δ, м. д. (*J*, Гц): 1.37 т (6H, CH₂CH₃, ³*J*_{HH} 7.1), 4.12–4.32 м (4H, OCH₂), 5.47 с (2H, CH₂Ph), 7.16–7.26 м (2H, Ph-H^{5,6}), 7.44 д (1H, Ph-H³, ⁴J_{HH} 1.9), 7.69 с (1H, H³), 8.08 с (1H, H⁵). Спектр ЯМР ¹³С (CDCl₃), δ_C, м. д. (*J*, Гц): 16.36 д (³*J*_{CP} 6.4), 48.89, 62.68 д (²*J*_{CP} 5.5), 112.66 (²*J*_{CP} 36.6), 126.34, 127.41, 129.64, 130.71, 131.44, 134.17, 134.92, 138.29 д (¹*J*_{CP} 236.4), 152.75 (³*J*_{CP} 26.8). Спектр ЯМР ³¹Р (CDCl₃): δ_P 10.30 м. д. Масс-спектр (HRMS-ESI), m/z: 403.0487 [M + H]⁺ (вычислено для C₁₅H₁₇Cl₂N₄O₃P: 403.0488 $[M + H]^+$). Кристаллы соединения **3**г ромбические, C₁₅H₁₇Cl₂N₄O₃P, *Pbca*, *a* 8.38490(11), *b* 14.8465(2), *с* 28.9122(4) Å, *V* 3599.18(9) Å³, *Z* 8, *d*_{выч} 1.488 г/см³, μ (Cu K_{α}) 4.295 мм⁻¹, F(000) 1664, R_1 0.0296 и wR_2 0.0754 (для 3101 $|F_{o}| \ge 4\sigma_{F}$), CCDC 2046366.

Диэтил-(1-(тетрагидро-2*H*-пиран-2-ил)-1*H*-имидазо[2,1-*c*][1,2,4]триазол-6-ил)фосфонат (3д). Выход 83%, желтоватое вязкое масло. ИК спектр, v, см⁻¹: 738, 814, 1012, 1043 (P–O–C), 1251 (P=O), 1338, 1637 (C=N). Спектр ЯМР ¹H (CDCl₃), δ , м. д. (*J*, Гц): 1.35 т (3H, CH₂CH₃, ³*J*_{HH} 7.1), 1.36 т (3H, CH₂CH₃, ³*J*_{HH} 7.1), 1.53–1.79 м (3H, H^{e,d,d'}), 1.91–2.14 м (2H, H^{b,c'}), 2.41–2.58 м (1H, H^{b'}), 3.67– 3.82 м (1H, H^e), 4.01–4.11 м (1H, H^{e'}), 4.11–4.32 м (4H, CH₂CH₃), 5.62 д. д (1H, CH^a, ³*J*_{aa} 10.5, ³*J*_{ae} 2.4), 7.66 д (1H, H³, ³*J*_{HP} 1.3), 8.07 с (1H, H⁵). Спектр ЯМР ¹³С (CDCl₃), $\delta_{\rm C}$, м. д. (*J*, Гц): 16.32 д (³*J*_{CP} 6.6), 16.35 д (³*J*_{CP} 6.2), 22.66, 24.71, 28.92, 62.57 д $({}^{2}J_{CP}$ 6.1), 62.63 д (${}^{2}J_{CP}$ 6.1), 68.10, 84.15, 112.48 д (${}^{2}J_{CP}$ 36.3), 126.56, 137.65 д (${}^{1}J_{CP}$ 236.6), 152.10 д (${}^{3}J_{CP}$ 27.1). Спектр ЯМР ³¹Р (CDCl₃): δ_{P} 10.50 м. д. Масс-спектр (HRMS-ESI), *m/z*: 351.1190 [*M* + H]⁺ (вычислено для C₁₃H₂₁N₄O₄P: 351.1193 [*M* + Na]⁺).

Диэтил-(1-(2-гидроксиэтил)-1Н-имидазо[2,1-с][1,2,4]триазол-6-ил)фосфонат (3e). Выход 85%, желтоватое вязкое масло. ИК спектр, v, cm⁻¹: 798, 1043 (P–O–C), 1232 (P=O), 1573, 1651 (C=N), 2360, 3273, 3419. Спектр ЯМР ¹Н (CDCl₃), δ, м. д. (*J*, Гц): 1.32 т (6H, CH₂CH₃, ³*J*_{HH} 7.1), 4.03– 4.11 м (2H, CH₂OH), 4.09–4.25 м (4H, OCH₂), 4.28– 4.35 м (2H, NCH₂), 7.66 д (1H, H³, ³J_{HP} 1.3), 8.12 с (1H, H⁵). Спектр ЯМР ¹³С (CDCl₃), δ_C, м. д. (*J*, Гц): 16.30 д (${}^{3}J_{CP}$ 6.5), 51.64, 60.04, 62.72 д (${}^{2}J_{CP}$ 5.5), 112.66 д (²*J*_{CP} 36.1), 126.05, 137.34 д (¹*J*_{CP} 236.1), 152.87 д (³*J*_{CP} 26.6). Спектр ЯМР ³¹Р (CDCl₃): δ_Р 10.21 м. д. Масс-спектр (HRMS-ESI), m/z: 311.0865 $[M + H]^+$ (вычислено для $C_{10}H_{17}N_4O_4P$: 311.0880 $[M + Na]^+$).

Диэтил-{2-[(3-бром-1-метил-1*H*-1,2,4-триазол-5-ил)амино]-2-[(3-бром-1-метил-1H-1,2,4триазол-5-ил)имино]этил}фосфонат (4). Выход 82%, желтоватое вязкое масло. ИК спектр, v, cm⁻¹: 712, 837, 962, 1030 (P–O–C), 1248 (P=O), 1417, 2936, 3482. Спектр ЯМР ¹Н (CDCl₃), б, м. д. (*J*, Гц): 1.28 т (6H, CH₂CH₃, ³*J*_{HH} 7.1), 3.84 с (6H, NCH₃), 3.87 д (2H, PCH₂, ²J_{HP} 20.2), 4.11–4.11 д. к (4H, OCH₂, ${}^{3}J_{\text{HH}}$ 7.2, ${}^{3}J_{\text{HP}}$ 7.2), 12.29 c (1H, NH). Спектр ЯМР ¹³С (CDCl₃), $\delta_{\rm C}$, м. д. (*J*, Гц): 16.31 д (³*J*_{CP} 6.2), 33.55 д (¹*J*_{CP} 131.1), 34.10, 34.69, 62.66 д (²*J*_{CP} 6.1), 134.71, 136.87, 148.61, 153.84 д (²*J*_{CP} 8.2), 155.49 д (⁴*J*_{CP} 2.5 Гц). Спектр ЯМР ³¹Р (CDCl₃): δ_P 20.95 м. д. Масс-спектр (HRMS-ESI), m/z: 512.9763 $[M+H]^+$ (вычислено для $C_{12}H_{19}Br_2N_8O_3P$: 512.9757 $[M + H]^+$).

ФОНДОВАЯ ПОДДЕРЖКА

Работа выполнена финансовой поддержке Министерства науки и высшего образования РФ (госзадание № 785.00.Х6019) и Российского фонда фундаментальных исследований (грант № 19-03-00365) с использованием оборудования Инжиниригового центра Санкт-Петербургского государственного технологического института, ресурсных центров «Рентгенодифракционные методы исследования» и «Методы анализа состава вещества» Научного парка Санкт-Петербургского государственного университета.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Fascio M.L., Errea M.I., D'Accorso N.B. // Eur. J. Med. Chem. 2015. Vol. 90. P. 666. doi 10.1016/j. ejmech.2014.12.012
- Hassan A.Y., El Deeb M.A., Sarg M.T., El Rabeeb S.I. // Tetrahedron. 2020. Vol. 76. N 23. P. 131218. doi 10.1016/j.tet.2020.131218
- Sayed H.H., Morsy E.M.H., Flefel E.M. // Synth. Commun. 2010. Vol. 40. P. 1360. doi 10.1080/00397910903079631
- Aouali M., Mhalla D., Allouche F., El Kaim L., Tounsi S., Trigui M., Chabchoub F. // Med. Chem. Res. 2015. Vol. 24. P. 2732. doi 10.1007/s00044-015-1322-z
- Huang Y., Hu X.-Q., Shen D.-P., Chen Y.-F., Xu P.-F. // Mol. Divers. 2007. Vol. 11. P. 73. doi 10.1007/s11030-007-9059-3
- Horsman G.P., Zechel D.L. // Chem. Rev. 2017. Vol. 117. N 8. P. 5704. doi 10.1021/acs.chemrev.6b00536
- Petkowski J.J., Bains W., Seager S. // Molecules. 2019. Vol. 24. P. 866. doi 10.3390/molecules24050866
- Kafarski P. In: Biological Role of Phosphorus / Ed. G. Churchill. London: IntechOpen, 2019. doi 10.5772/ intechopen.87155
- Van der Jeught S., Stevens C.V. // Chem. Rev. 2009. Vol. 109. N 6. P. 2672. doi 10.1021/cr800315j
- Moonen K., Laureyn I., Stevens C.V. // Chem. Rev. 2004. Vol. 104. N 12. P. 6177. doi 10.1021/cr030451c
- Chernyshev V.M., Pyatakov D.A., Astakhov A.V., Sokolov A.N., Fakhrutdinov A.N., Rybakov V.B., Chernyshev V.V. // Tetrahedron. 2015. Vol. 71. N 36. P. 6259. doi 10.1016/j.tet.2015.06.059
- Parchinsky V.Z., V.V. Koleda, Shuvalova O., Kravchenko D.V., Krasavin M. // Tetrahedron Lett. 2006. Vol. 47. P. 6891. doi 10.1016/j.tetlet.2006.07.037
- Sadek K.U., Abdel-Hameed A.M., Abdelnabi H.A. Meleigy Y. // Green Process Synth. 2019. Vol. 8. P. 297. doi 10.1515/gps-2018-0093
- Безматерных М.А., Мокрушин В.С., Поспелова Т.А. // ХГС. 1999. Т. 35. Вып. 11. С. 1544. Bezmaternykh М.А., Mokrushin V.S., Pospelova T.A. // Chem. Heterocycl. Compd. 1999. Vol. 35. P. 1349. doi 10.1007/ BF02252008
- Krylov A.S., Kaskevich K.I., Erkhitueva E.B., Svintsitskaya N.I., Dogadina A.V. // Tetrahedron Lett. 2018. Vol. 59. P. 4326. doi 10.1016/j.tetlet.2018.10.052
- Erkhitueva E.B., Panikorovskii T.L., Svintsitskaya N.I., Trifonov R.E., Dogadina A.V. // Synlett. 2018. Vol. 29. N 7. P. 933. doi 10.1055/s-0036-1591919

КРЫЛОВ и др.

Reaction of Diethyl Chloroethynylphosphonate with 3-Amino-1,2,4-triazoles

A. S. Krylov^a, V. V. Tolstyakov^a, V. V. Gurzhiy^b, and A. V. Dogadina^{a,*}

^a St. Petersburg State Institute of Technology (Technical University), Moskovskii pr. 26, St. Petersburg, 190013 Russia ^b St. Petersburg State University, St. Petersburg, 199034 Russia *e-mail: dog alla@mail.ru

Received December 2, 2020; revised December 2, 2020; accepted December 12, 2020

New 6-phosphonylated 1*H*-imidazo[2,1-*c*][1,2,4]triazoles were obtained by the reaction of diethyl chloroethynylphosphonate with 2-substituted 3-amino-1,2,4-triazoles followed by 5-*endo-dig* cyclization. It was found that 3-amino-5-bromo-1,2,4-triazole reacts in the other way, leading to the formation of the corresponding symmetric amidine, diethyl {2-[(3-bromo-1-methyl-1*H*-1,2,4-triazol-5-yl)amino]-2-[(3-bromo-1-methyl-1*H*-1,2,4-triazol-5-yl)imino]ethyl}phosphonate.

Keywords: chloroethynylphosphonate, 3-amino-1,2,4-triazole, imidazotriazole, phosphorylation