УДК 547.246

ГИДРОСИЛИЛИРОВАНИЕ АЛЛИЛГЕРМАНОВ

© 2021 г. В. Г. Лахтин*, Д. А. Ефименко, А. М. Филиппов, Т. И. Шулятьева, И. Б. Сокольская, И. А. Семяшкина, Н. Г. Комаленкова, П. А. Стороженко

Государственный научно-исследовательский институт химии и технологии элементоорганических соединений, и. Энтузиастов 38, Москва, 105118 Россия *e-mail: vlachtin@rambler.ru

> Поступило в Редакцию 9 октября 2020 г. После доработки 9 октября 2020 г. Принято к печати 20 октября 2020 г.

Исследованы реакции гидросилилирования аллилгерманов R₃GeAll (R₃ = Cl₃, Me₃) в присутствии платинового катализатора (катализатора Карстедта) метилхлоргидридсиланами Me_nCl_{3-n}SiH (n = 0-2) и 1,1,3,3-тетраметилдисилоксаном. Установлено, что образуются исключительно 1,3-аддукты. В некоторых случаях замена у кремния всего одной метильной группы на Cl или наоборот приводит не просто к снижению выходов получаемых продуктов, а к полному отсутствию реакции. Предложена схема возможного протекания изучаемых реакций. Проведена идентификация синтезированных соединений с помощью методов газожидкостной хроматографии, спектроскопии ЯМР ¹Н и хромато-масс-спектрометрии.

Ключевые слова: аллилгерман, органохлоргидридсиланы, гидросилилирование, катализатор Карстедта, хромато-масс-спектрометрия

DOI: 10.31857/S0044460X21010108

Изучению гидросилилирования винил- и аллилсиланов посвящено довольно много исследований [1–6]. Синтезировано множество дисилильных производных этана с различным набором заместителей у атомов кремния и имеющих очень широкий спектр практического применения, заключающийся, главным образом, во введении дисилилэтановых звеньев в различные композиции для придания им гибкости и эластичности [7]. Имеется также ряд работ [8–11], в которых изучено гидросилилирование ряда винилсиланов различными гидридсодержащими силсесквиоксанами.

В отличие от винил- и аллилсиланов гидросилилирование их германиевых аналогов изучено в значительно меньшей степени. Имеется лишь несколько статей польских авторов [12, 13]. В работе [12] авторы изучили гидросилилирование ряда аллилгерманов R₃GeAll (R = Et₃, Pr₃, *n*-Bu₃, Me₂Ph, Ph₃) симметричным тетраметилдисилазаном для возможного последующего использования полученных аддуктов в хроматографии для модификации стационарных фаз. Б. Марчинец и сотр. [13] изучили гидросилилирование R_3 GeVin и R_3 GeAll ($R = Et_3$, Me_2 Ph) различными типами гидридсодержащих силсесквиоксанов и сферосиликатов. Кроме того, имеются сведения о том, что поверхность кремнезема с функциональными группами, содержащими атомы германия, может показывать высокую термостабильность [14].

Нами были изучены реакции гидросилилирования аллилгерманов R_3 GeAll ($R_3 = Cl_3$, Me_3) метилхлоргидридсиланами Me_nCl_{3-n} SiH (n = 0-2) и симметричным тетраметилдисилоксаном. Успешное осуществление этих реакций и синтез соответствующих гермилсилилпропанов помимо научного может представлять интерес в нескольких практических аспектах, например, в синтезе новых гермилсилилсодержащих биологически активных соединений. Аллилгерманы с активными заместителями у атомов кремния и германия $Cl_3Ge(CH_2)_3SiMe_nCl_{3-n}$, переведенные затем в соответствующие гидриды, $H_3Ge(CH_2)_3SiMe_nH_{3-n}$ могут быть использованы для введения гетероатомов C, Si, Ge в полупроводниковые слои из по-

ГИДРОСИЛИЛИРОВАНИЕ АЛЛИЛГЕРМАНОВ

		Продукты	Время	Мольное соотношение	Выход.
№ опыта	Исходные реагенты	реакции	реакции, ч	аллилгерман-метилхлоргидридсилан	%
1	$1 + HSiCl_3$	3 a	7	1:1.2	75.5
2	$1 + HSiMeCl_2$	36	10	1:1.2	74.2
3	$1 + HSiMe_2Cl$	3в	16	1:1.2	_
4	$2 + \mathrm{HSiCl}_3$	4a	14	1:1.2	_
5	$2 + \mathrm{HSiMeCl}_2$	4б	6	1:1.2	73.5
6	$2 + HSiMe_2Cl$	4в	5	1:1.2	81.0
7	$1 + HSiMe_2OSiMe_2H$	5a	14	1:2	_
8	$2 + HSiMe_2OSiMe_2H$	56	7	1:2	77.2

Гидросилилирование аллилгерманов 1 и 2 при 110-120°С

ликристаллического кремния для варьирования в широких пределах фотоэлектрических свойств солнечных элементов. По мнению авторов статьи [15], до сих пор практически не исследованы материалы, полученные на основе мономеров, содержащих углерод, кремний и германий, которые могут быть эффективно использованы в области низких энергий солнечного спектра. Кроме того, такие гидриды вследствие их летучести могут представлять интерес для специалистов в области сердечно-сосудистых заболеваний, чтобы генерировать материалы a-GeC:H или -Ge, Si, C:H [15].

Реакции проводили в присутствии катализатора Карстедта при температуре 110–120°С в запаянных ампулах (схема 1). В обычных условиях данные реакции не протекают. Результаты экспериментов приведены в таблице.

Анализ методами ГЖХ и ЯМР ¹Н полученных соединений показал, что в изучаемых реакциях образуются исключительно γ -аддукты. Из данных таблицы видно, что конечный результат в изучаемых реакциях существенно зависит от окружения у атомов как германия, так и кремния. Аллилгерман **1** показал высокую реакционную способность по отношению к трихлор- и метилдихлорсиланам, но не вступил в реакцию с диметилхлорсиланом. В случае аллилгермана **2** реакционная способность гидросиланов увеличивается в обратном порядке: от HSiCl₃ к HSiMe₂Cl, причем с трихлорсиланом аллилгерман **2** не реагирует вообще. В реакциях

с тетраметилдисилоксаном также определяющим фактором является обрамление атома германия: если с соединением 1 тетраметилдисилоксан не реагирует вообще, то с аллилгерманом 2 достаточно легко и с высоким выходом образуется аддукт моноприсоединения 56 без образования в реакционной смеси продуктов расщепления силоксановой связи.

Анализ индивидуального аллилгермана 2 показал сходимость полученных масс-спектрометрических данных с литературными [16]. В условиях электронной ионизации (ЭИ) в первую очередь отрывается аллильный радикал ·C₃H₅ и образуется максимально устойчивый триметилгерманиевый катион *m/z* 119. В меньшей степени от молекулярного иона отрывается Ме-группа, при этом образуется диметилаллилгерманиевый катион, *m/z* 145. Основные направления фрагментации соединения 2 приведены на схеме 2. Германий в природе имеет 5 основных изотопов, из которых изотоп германия ⁷⁴Ge имеет максимальную интенсивность. Природный хлор имеет изотопы ³⁵Cl и ³⁷Cl в соотношении 3:1. Поэтому во всех приведенных ниже схемах фигурируют изотопы ⁷⁴Ge и ³⁵Cl.

Для аддукта **За** (см. таблицу, оп. 1) характерно незначительное присутствие спектральных линий катионов с германием и хлором m/z 319 $[M-35]^+$, что, вероятно, связано с образованием доминирующего положительно заряженного псевдомолекулярного [17] иона с m/z 174 $[Cl_3C_3H_5Si]^{+\bullet}$ (схема 3)

$$\begin{array}{ccc} R^{1}{}_{3}\text{GeCH}_{2}\text{CH}=\text{CH}_{2} + \text{HR}^{2} & \xrightarrow{\text{cat}} & R^{1}{}_{3}\text{GeCH}_{2}\text{CH}_{2}\text{CH}_{2}\text{R}^{2} \\ \textbf{1, 2} & \textbf{3-5} \end{array}$$

 $R^{1} = Cl (1), Me (2); R^{1} = Cl, R^{2} = SiCl_{3} (3a), SiMeCl_{2} (3b), SiMe_{2}Cl (3b); R^{1} = Me, R^{2} = SiCl_{3} (4a), SiMeCl_{2} (4b), SiMe_{2}Cl (4b); R^{1} = Cl, R^{2} = Me_{2}SiOSiMe_{2}H (5a); R^{1} = Me, R^{2} = Me_{2}SiOSiMe_{2}H (5b).$

за счет элиминирования нейтрального фрагмента $HGeCl_3$ с массой 180 Да. От молекулярного катиона с m/z 174 отрывается аллильный радикал 'C₃H₅ и образуется катион Cl_3Si^+ (m/z 133). Интенсивности масс-спектрометрических линий катионов с m/z 174 и 176, а также m/z 133 и 135 сопоставимы вследствие присутствия в этих катионах трех атомов хлора ³⁷Cl.

Для аддукта **36** (см. таблицу, оп. 2) молекулярный ион с *m/z* 334 в масс-спектре отсутствует. Предполагается, что в условиях ЭИ имеет место элиминирование из этого иона нейтрального фрагмента HGeCl₃ (180 Да), полученного из катиона

 Cl_3Ge^+ и водорода из C_3H_6 -группы. Это приводит к образованию содержащего кремний псевдомолекулярного иона с m/z 154 $[C_4H_8Cl_2Si]^{+*}$ [17]. Последний элиминирует пропиленовый радикал и переходит в катион m/z 113 (схема 4). Соотношение интенсивностей пиков катионов с m/z 154/156 и 113/115, равное 3:2, свидетельствует о том, что эти катионы содержат по 2 атома хлора.

При проведении реакции аллилгермана 2 с трихлорсиланом (см. таблицу, оп. 4) помимо исходного 2 был обнаружен продукт его диспропорционирования (4а), который по масс-спектру и схеме фрагментации был идентифицирован как

аллилдиметилхлоргерман. При фрагментации молекулы не образуются катионы с m/z 165 (отрыв Ме-группы) и 139 (отрыв С₃H₅-группы), наблюдается отрыв только атома хлора (схема 5).

Для аддукта **46** (см. таблицу, оп. 5), согласно схеме 6, основной катион с m/z 119 образуется в результате элиминирования 1,1-дихлорсилациклобутана из катиона $[M - 15]^+$, при этом в масс-спектре наблюдаются практически только катионы, содержащие наборы изотопов германия.

При взаимодействии аллигермана 2 с диметилхлорсиланом (см. таблицу, оп. 6) образуется продукт 4в. В условиях ЭИ из молекулярного иона соединения 4в триметилгерманиевый катион с *m/z* 119 (100) образуется по двум направлениям фрагментации: отрыв Ме-группы и элиминирование, соответственно, 1-хлор-1-метилциклобутана или отрыв хлора и элиминирование 1,1-диметилсилациклобутана (схема 7).

Об образовании 1-метил-1-хлор- и 1,1-дихлорсилациклобутанов как псевдомолекулярных ионов с *m/z* 120 и 140 сообщалось ранее в работе [6].

Электронная ионизация аддукта **56** (см. таблицу, оп. 8) приводит образованию катиона $[M-15]^+$ с m/z 279. Это свидетельствует о присутствии молекулы с M294. Такую молекулярную массу имеет целевое соединение – (триметилгермилпропил) триметилдисилоксан $Me_3GeC_3H_6SiMe_2OSiMe_2H$. Отрыв метильной группы в соединении **56** может происходить от кремния или германия, при этом не исключено образование катионов ⁺CH₃ при воздействии в масс-детекторе потока электронов на радикал [•]CH₃. Фрагментация катиона $[M - Me]^+$ проходит по нескольким направлениям с образова

ЛАХТИН и др.

нием катионов и нейтральных фрагментов, представленных на схеме 8.

Если образование катионов с m/z 173 (96), 159 (100), 133 (88) и 119 (88) легко объясняется, то катион с m/z 149 (100), имеющий максимальную интенсивность, может, по нашему мнению, по-явиться только в случае разрыва связи C₃H₆–Si, миграции к атомам водорода из C₃H₆-группы и Ме-группы от германия и появления псевдомолеулярного фрагмента тетраметилдисилоксана (134 Да). На последний переносится энергия метильного катиона с m/z 15 (⁺CH₃), образовавшегося в условиях ЭИ из метильного радикала, что приводит к газофазной химической ионизации [18, 19] и образованию положительно заряженного кластерного иона ⁺CH₃[HMe₂SiOSiMe₂H] (m/z 149).

Необходимо отметить, что при наложении масс-спектров германия и хлора часто наблюдается непропорциональное изменение интенсивности их пиков, и видимо по этой причине природное соотношение изотопов Ge и Cl в совместных катионах часто не воспроизводится.

Мы попытались объяснить полученные результаты, взяв за основу одну из наиболее известных и широко применяемых гипотез, согласно которой в лигандном окружении платины участвуют как олефин, так и гидросилан [20]. Преимущественная координация электрофильного металла в первоначально образующемся π-комплексе с β- или γ-углеродным атомом будет определяться характером поляризации связи С_в=С_у. В работе [21] авторы при помощи квантово-химических расчетов показали, что для молекулы аллилсилана H₃Si-CH₂-CH=CH₂ характерно о, *π*-гиперсопряжение и что максимальная электронная плотность сосредоточена на у-углеродном атоме. Полученные в нашей работе результаты позволяют предположить, что независимо от характера заместителей у атома германия (Cl₃Ge или Me₃Ge) относительно больший отрицательный заряд будет все равно находиться на крайнем атоме углерода, что предопределяет координацию с ним атома платины и, как следствие, образование исключительно у-аддуктов. Тогда для объяснения сути исследованных реакций можно представить схему 9.

На первой стадии (1*) происходит образование π -комплекса и активация силана. На следующем этапе на каталитическом центре происходит взаимодействие активированного гидросилана с координированным олефином, при этом атом водорода присоединяется к β -атому углерода (2* \rightarrow 3*). Этот процесс будет проходить тем легче, чем больший

дефицит электронной плотности на атоме углерода и чем больше степень гидридности атома водорода гидросилана. По-видимому, наличие в молекуле олефина 1 электроноакцепторной группы Cl₂Ge обеспечивает частичное смещение электронной плотности связи С_в=С_у к β-атому углерода. Гидридный характер атома водорода в гидросиланах качественно согласуется с изменением его химического сдвига и увеличивается в ряду HSiCl₃ $(6.0 \text{ м.д.}) \rightarrow \text{HSiMeCl}_2 (5.5 \text{ м. д.}) \rightarrow \text{HSiMe}_2\text{Cl}$ (4.8 м. д.). Возможно, именно поэтому присоединение гидросиланов к олефину 1 имеет место только в случае с трихлорсиланом и метилдихлорсиланом, где степень гидридности атома водорода наименьшая. При переходе к HSiMe₂Cl она повышается настолько, что Н- уже не способен присоединиться к β-атому углерода. Косвенным подтверждением являются и работы французских исследователей [22], где авторы сообщают об инверсии полярности связи Ge-H в ряду этилхлоргерманов Cl₃Ge⁻H⁺, Cl₂EtGeH, ClEt₂GeH, Et₃Ge⁺H⁻. По их данным, инверсия происходит на стадии образования Cl₂EtGeH. В нашем случае, как показывают экспериментальные данные, инверсия полярности связи Ge-Н имеет место при переходе от HSiMeCl₂ к HSiMe₂Cl.

При наличии в молекуле исходного олефина электронодонорной Me_3Ge группы (олефин 2), по-видимому, не происходит смещения электронной плотности связи $C_{\beta}=C_{\gamma}$ и на β -углеродном атоме сохраняется ее дефицит. Поэтому в данном случае невозможно присоединение $Cl_3Si^-H^+$ и образование аддуктов наблюдается только для гидросиланов $MeCl_2Si^+H^-$ и $Me_2ClSi^+H^-$.

Результаты, полученные в реакциях соединений 1 и 2 с тетраметилдисилоксаном, можно объ-

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 91 № 1 2021

яснить аналогичными рассуждениями, приведенными выше.

Таким образом, установлено, что при гидросилилировании аллилгерманов метилхлоргидридсиланами и 1,1,3,3-тетраметилдисилоксаном образуются исключительно γ-аддукты. Показано, что получаемые результаты зависят, главным образом, от обрамления атомов германия и кремния в исходных реагентах. В некоторых случаях замена у кремния всего одной Ме-группы на Cl (или наоборот, Cl на Ме-группу) приводит не просто к снижению выходов получаемых продуктов, а к полному отсутствию реакции.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В работе использовали Cl₃SiH (HORSTechnologies, 98%), Me₂ClSiH (Acros, 98%), MeCl₂SiH (Acros, 98%), 1,1,3,3-тетраметилдисилоксан (Acros, 97%), 2%-ный раствор катализатора Карстедта [платина(0)–1,2-дивинил-1,1,3,3-тетраметилдисилоксановый комплекс] (ABCR). Эти вещества не подвергали дополнительной очистке.

Метод ГЖХ использовали для количественного определения исходных соединений и продуктов реакции. Анализ проводили на приборе Хроматэк-Кристалл 5000.2 в изотермических условиях при 110°С на капиллярной колонке HP-1 (30 × 0.32 × 0.25) и температуре испарителя и детектора по теплопроводности 230°С.

Для идентификации кремний-германиевых соединений использовали хромато-масс-спектрометр с ионной ловушкой 240 Ion Trap GC/MS Agilent Technologies и энергией ионизирующих электронов 70 эВ. Для разделения компонентов использовали капиллярную колонку DB-1 (25 м × 0.32 мм × 0.25 мкм). Полимеры растворяли в осушенном тетрагидрофуране. Навеску образца в количестве 3 мг вносили в 1 мл растворителя и с помощью автосемплера вводили 1 мкл пробы в испаритель хроматографа при 240°С. Разделение газового потока составляло 1:30, скорость газа-носителя гелия – 1 мл/мин. Анализ начинали при температуре 50°С с выдержкой 0.5 мин, затем нагревали до 200°С со скоростью 10 град/мин. Для идентификации исследуемых соединений использовали электронную библиотеку масс-спектров NIST 11 [23].

Аллилтрихлоргерман 1 получали по методике, подробно изложенной в работе [24]. Аллилтриметилгерман 2 получали по известной методике [25].

Гидросилилирование аллилгерманов. В стеклянную ампулу загружали расчетное количество аллилгермана, метилхлоргидридсилан (в молярном соотношении реагентов аллилгерман:метилхлоргидридсилан = 1:1.2) и 1 каплю катализатора Карстедта. Запаянную ампулу помещали в масляную баню и выдерживали в течение 5–16 ч при 110–120°С, после чего ампулу вскрывали. Реакционную смесь анализировали методом ГЖХ и разгоняли в вакууме. Выделенные продукты были идентифицированы при помощи ГЖХ, спектроскопии ЯМР ¹Н и хромато-масс-спектрометрии.

Реакции аллилгерманов с тетраметилдисилоксаном проводили по аналогичной методике при соотношении аллилгерман:тетраметилдисилоксан = 1:2.

1-Трихлоргермил-3-трихлорсилилпропан (**3a**). Выход 75.5%, т. кип. 115–117°С (5 мм. рт. ст.) {т. кип.74–75°С (1.5 мм. рт. ст.) [26]}, n_D^{20} 1.5042 (n_D^{20} 1.5040 [26]). Спектр ЯМР ¹Н, δ, м. д.: 1.58– 1.64 м (2H, CH₂Si), 2.04–2.15 м (2H, CH₂<u>CH₂</u>CH₂), 2.15–2.22 м (2H, CH₂Ge). Масс-спектр, *m/z* ($I_{\text{отн}}$, %): 354 (0) [*M*]⁺⁺, 323(6), 321 (7.5), 319 (9) [*M* – Cl]⁺, 179 (17), 178 (38), 177 (45), 176 (100), 174 (85) [*M* – 180]⁺⁺, 135(23), 133 (18), 117 (8,5), 115 (13.5), 42 (12), 39 (11).

1-Трихлоргермил-3-метилдихлорсилилпропан (**36**). Выход 74.2%, т. кип.148–150°С (5 мм. рт. ст), n_D^{20} 1.4986. Спектр ЯМР ¹H, δ, м. д.: 0.82 с (3H, CH₃Si), 1.22–1.33 м (2H, CH₂Si), 1.95–2.07 м (2H, CH₂<u>CH₂</u>CH₂), 2.10–2.19 м (2H, CH₂Ge). Массспектр, *m/z* (I_{orrH} , %): 334 (0) [*M*]⁺⁺, 321 (3), 319 (4.5), 317 (2), 303 (13), 301 (26), 299 (31) [*M* – 35]⁺, 297 (15), 295 (5), 179 (3.5), 177 (10), 175 (8), 156 (60), 154 (100) [*M* – 180]⁺, 115 (50), 113 (75), 42 (75), 41 (8), 39 (11).

Аллилдиметилхлоргерман (4а). Масс-спектр, *m/z* (*I*_{отн}, %): 180 (0) [*M*]^{+•}, 145 (100) [*M* – 35]⁺, 105 (80), 89 (27).

1-Триметилгермил-3-метилдихлорсилилпропан (46). Выход 73.5%, т. кип. 41–42°С (4 мм. рт. ст), n_D^{20} 1.4539. Спектр ЯМР ¹Н, δ , м. д.: 0.15 с (9H, CH₃Ge), 0.78 с (3H, CH₃Si), 0.80–0.86 м (2H, CH₂Ge), 1.16–1.22 м (2H, CH₂Si), 1.58–1.70 м (2H, CH₂Ge), 1.16–1.22 м (2H, CH₂Si), 1.58–1.70 м (2H, CH₂CH₂CH₂). Масс-спектр, m/z ($I_{\text{отн}}$, %): 274 (0) $[M]^{+*}$, 259 (61) $[M-15]^+$, 119 (100) $[M-15-140]^+$, 105 (37), 89 (18).

1-Триметилгермил-3-диметилхлорсилилпропан (4в). Выход 81%, т. кип. 30°С (4 мм. рт. ст), n_D^{20} 1.4449. Спектр ЯМР ¹Н, δ, м. д.: 0.14 с (9H, CH₃Ge), 0.42 с (6H, CH₃Si), 0.77–0.85 м (2H, CH₂Ge), 0.85–0.92 м (2H, CH₂Si), 1.48–1.59 м (2H, CH₂Ge), 0.85–0.92 м (2H, CH₂Ge), 0.85–0.92 м (2H, CH₂Si), 1.48–1.59 м (2H, CH₂Ge), 0.85–0.92 м (2H, CH₂Ge),

1-Триметилгермил-3-(диметилсилоксидиметилсилан)пропан (56). Выход 77.2%, т. кип. 75°С (4 мм. рт. ст), n_D^{20} 1.4251. Спектр ЯМР ¹Н, δ , м. д.: 0.11 с [6H, CH₂Si(<u>CH₃</u>)₂O], 0.15 с (9H, CH₃Ge), 0.19–0.20 м [6H, OSi(<u>CH₃</u>)₂H], 0.61–0.72 м (2H, CH₂Si), 0.79–0.91 м (2H, CH₂Ge), 1.45–1.60 м (2H, CH₂CH₂CH₂), 4.73–4.82 м (1H, HSi). Масс-спектр, m/z ($I_{\text{отн}}$, %): 294 (0) [M]⁺⁺, 281 (8), 279 (32) [M – 15]⁺, 277 (27), 275 (15), 173 (96) [M – 15 – 106]⁺, 161 (50), 159 (100) [M – 15 – 120]⁺, 149 (100), 145 (9), 133 (88), 119 (98) [M – 15 – 160]⁺, 117 (88), 115 (46), 105 (13), 103 (17), 101 (8), 91 (8), 89 (18), 87 (13), 85 (7), 73 (51), 59 (15), 45 (6).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Шелудяков В.Д., Жунь В.И., Власенко С.Д., Бочкарев В.Н., Слюсаренко Т.Ф., Кисин А.В., Носова В.М., Туркельтауб Г.Н., Чернышев Е.А. // ЖОХ. 1981. Т . 51. Вып. 9. С. 2022.
- Жунь В.И., Жунь А.Б., Власенко С.Д., Белорусская Л.А., Чернышев Е.А., Шелудяков В.Д. // ЖОХ. 1982. Т. 52. Вып. 11. С. 2065.

- Власенко С.Д. Автореф. дис. ... канд. хим. наук. М., 1983. 20 с.
- Чернышев Е.А., Белякова З.В., Князев С.П., Щербакова Т.В., Кузнецов В.М. // Вестн. МИТХТ. 2008. Т. 5. № 1. С. 27.
- Marciniec B. Comprehensive Handbook on Hydrosilylation. Oxford; New York: Pergamon Press, 1992. P. 754.
- Жунь В.И., Цветков А.Л., Бочкарев В.Н., Слюсаренко Т.Ф., Туркельтауб Г.Н., Шелудяков В.Д. // ЖОХ. 1989. Т. 59. Вып. 2. С. 390.
- Паршкова Л.А. Автореф. дис. ... канд. хим. наук. М., 2015. 20 с.
- Franczyk A., Stefanowska K., Dutkiewicz M., Frąckowiak D., Marciniec B. // Dalton Trans. 2017. Vol. 46. N 1. P. 158. doi 10.1039/c6dt04190f
- Walczak M., Stefanowska K., Franczyk A., Walkowiak J., Wawrzyńczak A., Marciniec B. // J. Catal. 2018. Vol. 367. P. 1. doi 10.1016/j.jcat.2018.08.012
- Walczak M., Januszewski R., Franczyk A., Marciniec B. // J. Organomet. Chem. 2018. Vol. 872. P. 73. doi 10.1016/j.jorganchem.2018.07.021
- Walczak M., Franczyk A., Dutkiewicz M., Marciniec B. // Organometallics. 2019. Vol. 38. P. 3018. doi 10.1021/ acs.organomet.9b00350
- Kaźmierczak J., Kuciński K., Szudkowska-Frątczak J., Hreczycho G. // Eur. J. Inorg. Chem. 2017. Vol. 13. P. 1888. doi 10.1002/ejic.20170008
- Grzelak M., Frąckowiak D., Januszewski R., Marciniec B. // Dalton Trans. 2020. Vol. 49. N 16. P. 5050. doi 10.1039/D0DT00557F

- Nédez C., Choplin A., Basset J.M., Benazzi E. // Inorg. Chem. 1994. Vol. 33. N 6. P.1094. doi 10.1021/ ic00084a020
- Schmidbauer H., Rott J. // Z. Naturforsch. B. 1990. Vol 45. P. 961. doi 10.1515/znb-1990-0708.
- Kocher J., Lehnig M., Neumann W.P. // Organometallics. 1988. Vol. 7. N 5. P. 1201. doi 10.1021/om00095a029.
- Заикин В.Г., Варламов А.В., Микая А.И., Простаков Н.С. Основы масс-спектрометрии органических соединений. М.: МАИК, Наука/Интерпериодика, 2001. С. 286.
- Терентьев П.Б. Масс-спектрометрия в органической химии. М.: ВШ, 1979. С. 223.
- 19. *Smirnov B.M.* Cluster ions and Van der Waals molecules. Philadelphia: Gordon and Breach, 1992.
- Chalk A.J., Harrod J.F. // J. Am. Chem. Soc. 1965.
 Vol. 87. N 1. P. 21. doi 10.1021/ja01079a005
- Deleris G., Pillot J.P., Rayex J.G. // Tetrahedron. 1980. Vol. 36. N 15. P. 2215. doi 10.1016/0040-4020(80)80114-1
- 22. Лебр М., Мазероль П., Сатже Ж. Органические соединения германия. М.: Мир, 1974. С. 154.
- 23. NIST 11. NIST/EPA/NIH (NIST 11) Mass Spectral Data base. 2011.
- 24. Наметкин Н.С., Королев В.К., Кузьмин О.В. // Докл. АН СССР. 1972. Т. 205. № 5. С. 1111.
- Петров А.Д., Миронов В.Ф., Долгий И.Е. // Изв. АН СССР. Сер. хим. 1956. № 9. С. 1146.
- Миронов В.Ф., Гар Т.К., Буяков А.А. // ЖОХ. 1973. Т. 43. Вып. 4. С. 798.

Hydrosilylation of Allylgermanes

V. G. Lakhtin*, D. A. Efimenko, A. M. Filippov, T. I. Shulyatieva, I. B. Sokolskaya, I. A. Semyashkina, N. G. Komalenkova, and P. A. Storozhenko

State Research Institute of Chemistry and Technology of Organoelement Compounds, Moscow, 105118 Russia *e-mail: vlachtin@rambler.ru

Received October 9, 2020; revised October 9, 2020; accepted October 20, 2020

The hydrosilylation reactions of allylgermanes R_3 GeAll ($R_3 = Cl_3$, Me_3) in the presence of a platinum catalyst (Karstedt catalyst) with methylchlorohydridesilanes $Me_nCl_{3-n}SiH$ (n = 0-2) and 1,1,3,3-tetramethyldisiloxane have been studied. It was found that only 1,3-adducts are formed. In some cases, the replacement of only one methyl group at silicon with Cl (or vice versa, Cl for methyl group) leads not only to a decrease in the yields of the products obtained, but to a complete absence of reaction. A possible route of the studied reactions is proposed. The identification of the synthesized compounds was carried out using the methods of gas-liquid chromatography, ¹H NMR spectroscopy and chromatography-mass spectrometry.

Keywords: allylgermane, organochlorohydridesilane, hydrosilylation, Karstedt catalyst, chromatography-mass spectrometry