УДК 541.49:546.562:548.736:547.574

СИНТЕЗ, СТРОЕНИЕ И БИОЛОГИЧЕСКАЯ АКТИВНОСТЬ СМЕШАННО-ЛИГАНДНЫХ АМИНСОДЕРЖАЩИХ КООРДИНАЦИОННЫХ СОЕДИНЕНИЙ МЕДИ(II) С 2-(2-ГИДРОКСИБЕНЗИЛИДЕН)-N-(ПРОП-2-ЕН-1-ИЛ)-ГИДРАЗИНКАРБОТИОАМИДОМ

© 2021 г. А. П. Гуля^{*a*}, В. О. Граур^{*a*}, Я. И. Улькина^{*a*,*}, П. Н. Боурош^{*b*}, В. А. Смаглий^{*c*}, О. С. Гарбуз^{*a,d*}, В. И. Цапков^{*a*}

^a Молдавский государственный университет, ул. Матеевича 60, Кишинев, MD-2009 Молдова

^b Институт прикладной физики, Кишинев, MD-2028 Молдова

^c Институт химии, Кишинев, MD-2028 Молдова

^d Институт зоологии, Кишинев, MD-2028 Молдова

*e-mail: ianina.ulchina@gmail.com

Поступило в Редакцию 2 октября 2020 г. После доработки 2 октября 2020 г. Принято к печати 17 октября 2020 г.

Взаимодействие нитрата меди(II) с 2-(2-гидроксибензилиден)-N-(проп-2-ен-1-ил)гидразинкарботиоамидом (H_2L) в молярном отношении 1:1 в этаноле приводит к образованию координационного соединения $Cu(HL)NO_3\cdot H_2O$. Введение в реакционную смесь аминов [имидазола (Im), 3,5-дибромпиридина (3,5- Br_2Py), 4-метилпиридина (4-Pic)] в молярном отношении 1:1:2 приводит к образованию комплексов $CuA(HL)NO_3\cdot nH_2O$ [A=Im, 3,5- Br_2Py , 4-Pic; n=0, 3]. Строение полученных соединений установлено методом PCA. Синтезированные комплексы проявляют противомикробную, противогрибковую, антиоксидантную и противораковую активность.

Ключевые слова: координационные соединения Cu(II), амины, 4-аллилтиосемикарбазон салицилового альдегида, противомикробная активность, противораковая активность

DOI: 10.31857/S0044460X21010133

Тиосемикарбазоны и координационные соединения переходных металлов с ними являются биологически активными соединениями [1–3]. Многие из них проявляют противомикробную, противогрибковую и противораковую активность [4–6]. В большинстве случаев координация тиосемикарбазонов к ионам меди(II) приводит к наиболее значительному усилению биологической активности по сравнению с ионами других 3*d*-металлов. Ряд исследований [7–9] показал, что введение различных аминов во внутреннюю сферу тиосемикарбазонатов меди(II) приводит к изменению их биологических свойств. В связи с

этим представляет интерес синтез и исследование новых смешанно-лигандных аминосодержащих координационных соединений меди(II) с тиосемикарбазонами.

Нами были синтезированы координационные соединения меди(II) с 2-(2-гидроксибензилиден)-N-(проп-2-ен-1-ил)гидразинкарботиоамидом (H_2L , схема 1) и такими аминами, как имидазол (Im), 3,5-дибромпиридин (3,5- Br_2 Py), 4-метилпиридин (4-Pic), установлен их состав и строение, исследованы физико-химические и биологические свойства.

При взаимодействии горячего (50–55°С) этанольного раствора тиосемикарбазона H_2L с этанольным раствором нитрата меди(II) в молярном отношении 1:1 образуется мелкокристаллическое соединение состава $Cu(HL)NO_3 \cdot H_2O$ (1). Для синтеза комплексов меди, содержащих в своем составе гетероароматические амины, были проведены реакции этанольных растворов тиоамида H_2L с нитратом меди(II) и аминами (имидазолом, 3,5-дибромпиридином, 4-метилпиридином) в молярном соотношении 1:1:2. В результате получены три аминосодержащих комплекса 2–4 состава $CuA(HL)NO_3 \cdot nH_2O$ [A = Im (2), 3,5- Br_2Py (3), 4-Pic (4), n = 0 (2, 3), 3 (4)].

Полученные координационные соединения **1–4** нерастворимы в диэтиловом эфире, мало растворимы в воде, лучше – в спиртах, хорошо растворимы в ДМФА и ДМСО. Определение молярной электропроводности (æ) синтезированных комплексов в метаноле показало, что соединения **1–4** представляют собой бинарные электролиты типа 1:1 (æ = 92-103 Oм⁻¹·см 2 ·моль-1) (табл. 1).

Магнетохимическое исследование синтезированных координационных соединений показало, что комплексы **1–4** обладают заниженным значением эффективного магнитного момента ($\mu_{9\varphi}$ = 1.42–1.50 М. Б., табл. 1) по сравнению с чисто спиновым значением для одного неспаренного электрона, что указывает на их полиядерное строение.

Для определения способа координации тиосемикарбазона к ионам меди(II) был проведен сравнительный анализ ИК спектров лиганда $\rm H_2L$

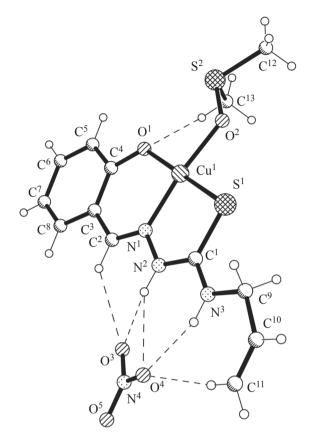


Рис. 1. Общий вид молекулы комплекса 1а в кристалле.

и комплексов 1–4. В спектрах синтезированных соединений присутствуют полосы поглощения в областях 3380–3100, 1630-1570, 1400-1100 см $^{-1}$, которые характеризуют валентные колебания координированных молекул соответствующих лигандов. В области 3380-3100 см $^{-1}$ ИК спектров всех комплексов исчезает полоса поглощения $\nu(O-H)$ фенольной группы, что указывает на депротонирование молекулы лиганда H_2L в результате координации. Кроме того, в спектрах наблюдается смещение полосы поглощения $\nu(C=N)$ в низкочастотную область на 18-25 см $^{-1}$ и полосы поглощения $\nu(C=S)$ в высокочастотную область на 24-

Таблица 1. Физико-химические характеристики координационных соединений меди с 2-(2-гидроксибензилиден)-N-(проп-2-ен-1-ил)гидразинкарботиоамидом

	Выход,	$\mu_{9\Phi}^{a}$,	æ, a	Найдено, %		Вычислено, %				
745	%	М. Б.	$Om^{-1} \cdot cm^2 \cdot moль^{-1}$	Cu	N	S	Формула	Cu	N	S
1	71	1.50	103	16.97	15.02	8.69	C ₁₁ H ₁₄ CuN ₄ O ₅ S	16.82	14.83	8.49
2	72	1.47	97	14.63	19.84	7.70	C ₁₄ H ₁₆ CuN ₆ O ₄ S	14.85	19.64	7.49
3	85	1.42	96	10.53	11.16	5.48	$C_{16}H_{15}Br_2CuN_5O_4S$	10.65	11.74	5.37
4	83	1.50	92	12.36	14.15	6.60	C ₁₇ H ₂₅ CuN ₅ O ₇ S	12.53	13.81	6.32

а При 293 К.

Таблица 2. Кристаллографические характеристики, данные эксперимента и уточнение структур комплексов 1а и 2-4

Параметр	1a	2	3	4
Химическая формула	$C_{13}H_{18}Cu_1N_4O_5S_2$	C ₂₈ H ₃₂ Cu ₂ N ₁₂ O ₈ S ₂	$C_{32}H_{30}Br_4Cu_2N_{10}O_8S_2$	C ₃₄ H ₅₀ Cu ₂ N ₁₀ O ₁₄ S ₂
M	437.97	855.85	1193.50	1014.04
Сингония	Триклинная	Триклинная	Триклинная	Орторомбическая
Пространственная группа	PĪ	PΤ	PĪ	Pnna
Z	2	1	1	4
a, Å	4.4503(5)	7.4237(6)	7.1201(7)	26.5825(13)
b, Å	12.5530(12)	11.4130(9)	12.7325(11)	22.4006(10)
c, Å	17.0921(18)	11.8704(11)	13.0483(10)	7.5445(7)
α, град	108.339(9)	113.657(9)	114.097(8)	90
β, град	93.073(9)	98.037(8)	96.429(8)	90
ү, град	91.077(9)	97.209(7)	100.090(8)	90
V, Å ³	904.40(18)	893.70(14)	1040.73(17)	4492.5(5)
$d_{\scriptscriptstyle m BM\Psi}$, $_{\scriptstyle \Gamma}/{ m cm}^3$	1.608	1.590	1.904	1.499
μ , cm ⁻¹	1.470	1.372	5.022	1.113
F(000)	450	438	586	2104
Размеры образца, мм	$0.08 \times 0.04 \times 0.03$	0.45×0.14×0.06	$0.4 \times 0.09 \times 0.04$	0.6×0.05×0.015
$\theta_{ m max}$, град	3.25–25.05	3.07-25.05	2.97–25.50	2.95–25.04
Пределы h , k , l	$-5 \le h \le 5$,	$-8 \le h \le 8$,	$-8 \le h \le 8$,	$-31 \le h \le 29$,
	$-14 \le k \le 14,$	$-13 \le k \le 9,$	$-12 \le k \le 15,$	$-16 \le k \le 26,$
	$-20 \le l \le 15$	$-13 \le l \le 14$	$-15 \le l \le 15$	$-8 \le l \le 8$
Измеренные/независимые	4883	4348	5800	14413
рефлексы				
	3194 [<i>R</i> (int) 0.0762]	3082 [<i>R</i> (int) 0.0213]	3847 [<i>R</i> (int) 0.0203]	3954 [<i>R</i> (int) 0.0736]
Рефлексы с $I > 2\sigma(I)$	1175	2309	2979	2251
GOOF	1.001	1.002	1.001	1.008
R -Факторы с $I > 2\sigma(I)$	$R_1 = 0.0847, wR_2 = 0.1358$	$R_1 0.0466, wR_2 0.0873$	$R_1 \ 0.0374, wR_2 \ 0.0899$	$R_1 0.0733, wR_2$
				0.1583
<i>R</i> -Факторы по всему	R_1 0.2269,	R_1 0.0718,	R_1 0.0551,	R_1 0.1372,
массиву	$wR_2 \ 0.1894$	$wR_2 \ 0.0979$	$wR_2 \ 0.0972$	$wR_2 \ 0.1853$
$\Delta \rho_{\text{max}}/\Delta \rho_{\text{min}}, e/\text{Å}^3$	0.426/-0.400	0.276/-0.262	0.538/0.408	0.466/-0.273

38 см $^{-1}$. Это указывает на координацию лиганда H_2L к центральным атомам посредством депротонированного фенольного атома кислорода, азометинового атома азота и атома серы в тионной форме. В ИК спектрах всех комплексов появляется ряд новых полос поглощения в области 510–415 см $^{-1}$, обусловленных колебаниями v(Cu-N), v(Cu-O) и v(Cu-S).

При перекристаллизации комплекса **1** из ДМСО и комплексов **2–4** из этанола получены монокристаллы, структура которых была установлена методом РСА. Соединение **1a**, полученное перекристаллизацией комплекса **1** из ДМСО, кристаллизуется в триклинной пространственной группе $P\overline{I}$ (табл. 2). В независимой части элементарной ячейки кристалла находится комплексный катион $[Cu(DMSO)(HL)]^+$ и анион NO_3^- . Таким образом,

при перекристаллизации полиядерного комплекса 1 из ДМСО произошло образование одноядерного соединения [Cu(DMSO)(HL)]NO₃1a, содержащего координированную молекулу ДМСО (рис. 1). Тиосемикарбазон выступает в качестве тридентатного монодепротонированного лиганда и координируется к центральному атому металла, используя ONS-набор донорных атомов и образуя два металлоцикла: пятичленный тиосемикарбазидный и шестичленный салицилиденовый. Четвертое координационное место атома Cu¹ занимает атом О молекулы ДМСО, а его координационный полиэдр, образованный O₂NS-набором донорных атомов, представляет собой искаженный квадрат. При этом отклонение координированных атомов от средней плоскости равно ±0.05 Å. Межатомные расстояния Cu-O¹, Cu-N¹ и Cu-S¹ равны 1.896(7),

Таблица 3. Межатомные расстояния и валентные углы в координационных полиэдрах Cu(II) соединений 1а и 2-4^a

*	<u>*</u>	-	* ' '	
Связь		d,	Å	
Связь	1a	2	3	4
Cu ¹ -N ¹	1.933(8)	1.954(3)	1.971(3)	1.957(5)
Cu^1 – O^1	1.896(7)	1.925(2)	1.926(3)	1.923(4)
Cu^1-S^1	2.263(3)	2.294(1)	2.295(1)	2.279(2)
Cu^{1} $-O^{2}/N^{4}$	1.952(6)	1.961(3)	2.044(3)	2.000(6)
Cu^1-O^1*		2.703(1)	2.405(1)	2.664(1)
Угол		ω, τ	рад	
$N^1Cu^1O^1$	93.1(3)	90.8(1)	89.26(12)	92.57(2)
$N^1Cu^1S^1$	87.0(3)	85.31(9)	84.76(10)	85.4(2)
$N^1Cu^1O^2/N^4$	173.3(4)	174.9(1)	171.07(12)	172.5(2)
$N^1Cu^1O^{1*}$	_	94.3(4)	99.96(11)	90.7(1)
$O^1Cu^1S^1$	178.3(3)	176.08(8)	173.74(8)	177.9(1)
$O^1Cu^1O^2/N^4$	92.1(3)	90.0(1)	90.00(12)	89.1(2)
$O^1Cu^1O^{1*}$	_	83.7(9)	81.00(10)	82.9(1)
$S^1Cu^1O^2/N^4$	87.9(2)	93.89(9)	96.19(9)	93.0(1)
$S^1Cu^1O^{1*}$	_	95.8(10)	98.17(7)	96.9(3)
$N^4Cu^1O^{1*}$	_	90.9(9)	88.71(10)	96.8(3)

 $[\]overline{a^* - x + 1, -y + 1, -z}$ (2); -x + 1, -y + 1, -z + 1 (3); x, -y + 3/2, -z + 1/2 (4).

1.933(8) и 2.263(3) Å и соответствуют значениям для подобных соединениий [3, 10, 11]; расстояние Cu–O² равно 1.952(6) Å (табл. 3).

В кристалле соединения **1а** комплексные катионы ассоциированы в стопку вдоль оси a слабыми взаимодействиями $Cu^1\cdots O^1(x+1,y,z)$ 3.525 Å и $Cu^1\cdots S^1(x-1,y,z)$ 3.505 Å, межатомное расстояние $Cu^1\cdots Cu^1(x+1,y,z)$ 3.525 Å (рис. 2, 3). Комплексные катионы дополнительно стабилизированы внутримолекулярными водородными связями C^{13} — $H\cdots O^1$ (табл. 4). Анионы NO_3^- связаны с одним катионом как посредством протонов лиганда HL^- , образуя межмолекулярные водородные связи N^2 — $H\cdots O^3$, N^2 — $H\cdots O^4$, N^3 — $H\cdots O^4$ и слабые C^2 — $H\cdots O^3$ и C^{11} — $H\cdots O^4$, так и связями C— $H\cdots O$ протонов метильных групп молекул ДМСО (рис. 1—3, табл. 4). Кроме

того, в кристалле можно выделить отдельные слои (рис. 2), связанные между собой слабыми водородными связями С–Н···S (рис. 3).

Рентгеноструктурный анализ показал, что соединения 2–4, также как и комплекс 1а, являются ионными, однако в них образованы двуядерные комплексные катионы, заряды которых компенсированы теми же анионами NO₃. В кристаллах соединений 2 и 3 нет кристаллизационных молекул растворителя, в то время как в комплексе 4 выявлены разупорядоченные молекулы воды, занимающие 10 позиций, в соотношении катионы: анионы: молекулы воды = 1:2:6.

Координационные соединение **2**—**4** кристаллизуются в пространственных группах $P\overline{1}$ триклинной и Pnna орторомбической сингоний (табл. 2).

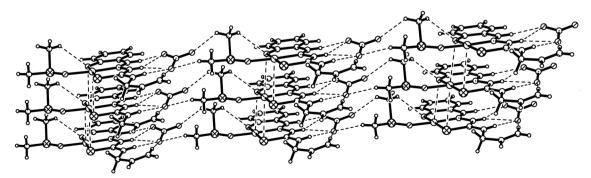


Рис. 2. Образование стопок из комплексных катионов и формирование слоя в комплексе 1а.

Координационные формулы этих соединений $[Cu_2(Im)_2(HL)_2](NO_3)_2$ **2**, $[Cu_2(3,5-Br_2Py)_2(HL)_2]$. (NO₃)₂ **3** и [Cu₂(4-Pic)₂(HL)₂](NO₃)₂·6H₂O **4**, т. е во всех кристаллах обнаружены двухъядерные комплексные катионы $[Cu_2(A)_2(HL)_2]^{2+}$ (рис. 4). Координационные полиэдры атомов меди в комплексах 2-4 - искаженные квадратные бипирамиды, координиционные числа которых можно описать как 4+1+1. В экваториальной плоскости полиэдров находятся ONS-набор атомов монодепротонированного лиганда HL- и атом азота соответствующего амина: Іт, 3,5-Вг₂Ру и 4-Ріс. Кроме того, лиганды НС выполняют функцию мостиков. Аналогичный способ координирования лиганда HL- найден в трехъядерном комплексе сульфата меди(II) [12] и двуядерном комплексе нитрата

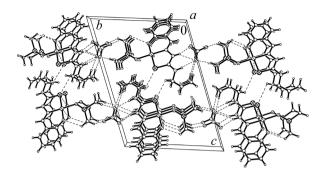


Рис. 3. Упаковка слоев в кристалле соединения 1а.

меди(II) с N-метилзамещенным лигандом [10]. В результате этого, в одной из аксиальных позиций полиэдров металла находится атом кислорода ${\rm O}^1$ второго лиганда ${\rm HL}^-$ из данного димера (табл. 3). Вторую аксиальную позицию координационного

Таблица 4. Геометрические параметры водородных связей для соединений 1а и 2-4

Varran D. H. A		Расстояние	e, Å	V-a-DIIA	Преобразование симметрии
Контакт D–Н···А	D–H	H···A	D···A	Угол DHA	для атомов А
			1a		
N^2 – H^2 ···O ³	0.86	1.92	2.74(1)	158	x, y, z
N^2 – H^2 ···· O^4	0.86	2.53	3.25(1)	141	x, y, z
N^3 – H^3 ···· O^4	0.86	2.06	2.89(1)	163	x, y, z
C^2 – H^2 ···O ³	0.93	2.58	3.32(2)	137	x, y, z
C^{11} – H^{11A} O^4	0.93	2.33	3.34(1)	165	x, y, z
C^{12} – H^{12B} O^5	0.96	2.61	3.33(1)	133	x-1, y+1, z
C^{13} – $H^{13}C$ O^1	0.96	2.53	3.12(1)	120	x, y, z
C^{13} – H^{13B} O^5	0.96	2.48	3.23(1)	134	x-1, y+1, z
			2		
N^2 – H^2 ···O ²	0.86	1.92	2.767(4)	167	x, y, z
$N^3 - H^3 - O^4$	0.86	2.05	2.899(4)	170	x, y, z
$N^5 - H^5 - O^4$	0.86	1.98	2.831(4)	169	x, y-1, z-1
C^2 – H^2 ··· O^2	0.93	2.56	3.319(5)	139	x, y, z
C^{10} – H^{10} O^3	0.93	2.46	3.361(6)	164	-x, -y+2, -z+2
C^{12} – H^{12} ···O ¹	0.93	2.37	2.830(5)	110	x, y, z
			3		
N^2 – H^2 ···O ³	0.86	2.54	3.244(5)	139	x, y, z
N^2 – H^2 ···· O^4	0.86	1.91	2.733(4)	160	x, y, z
$N^3 - H^3 - O^3$	0.86	1.97	2.817(5)	169	x, y, z
C^2 – H^2 ···O ⁴	0.93	2.48	3.243(5)	139	x, y, z
C^{12} – H^{12} ··· S^{1}	0.93	2.73	3.307(4)	121	x, y, z
C^{16} – H^{16} O^{1}	0.93	2.24	2.802(5)	119	x, y, z
			4		
N^2 – H^2 ···O ²	0.86	2.54	3.243(5)	178	x, y, z
N^3 – H^3 ···· O^3	0.86	1.91	2.734(4)	180	x, y, z
C^{15} – H^{15} … O^4	0.93	2.45	3.371(8)	170	x-1/2, y, -z+1
C^9 – H^{9B} O^{7W}	0.97	2.75	3.607(4)	143	x, y, z
C^{16} – H^{16} … O^{5W}	0.93	2.73	3.419(5)	131	x, y, z

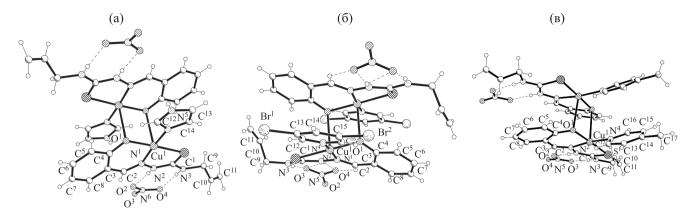


Рис. 4. Общий вид молекул двухъядерных комплексов 2 (а), 3 (б), 4 (в).

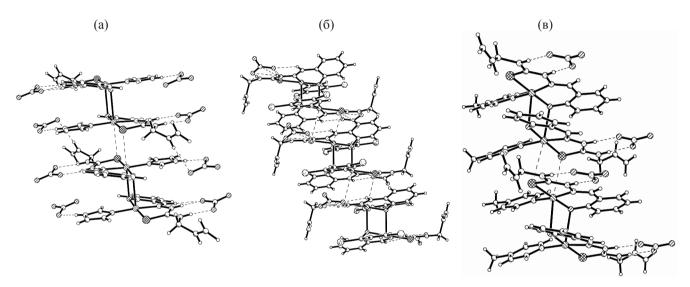


Рис. 5. Кристаллическая упаковка двухъядерных комплексных соединений 2 (а), 3 (б), 4 (в).

полиэдра занимает атом серы S^1 соседнего димера (рис. 5). Межатомные расстояния $Cu-O^1$, $Cu-N^1$ и $Cu-S^1$ в координационных полиэдрах комплексов **2–4**, равные в среднем 1.925(3), 1.9614 и 2.289(1) Å (табл. 3), подобны найденным ранее [12] и немного отличаются от найденных в комплексе **1a**, а расстояния $Cu-N^4$, $Cu-O^{1*}$, $Cu-S^{1*}$ находятся в интервалах 1.961(3)–2.044(3), 2.405(1)–2.703(1) и 3.328(1)–3.484(1) Å соответственно. Геометрические параметры аминов соответствуют найденным в комплексах меди с подобными лигандами из Кембриджской базы структурных данных [13].

Во всех кристаллических структурах **2–4** можно выделить стопки, образованные двуядерными комплексными катионами с нанизанными на них анионами. Межатомные расстояния Cu¹···Cu¹*

равны 3.486 и 3.957 Å (2), 3.308 и 3.853 Å (3), 3.462 и 4.102 Å (4) (рис. 2, 3, 5). При этом сами катионы в кристалле объединены с анионами NO₃- водородными связями N^2 –H···O, N^3 –H···O и C–H···O¹. Донорами протонов выступают различные группы лиганда HL⁻, а акцепторами – атомы кислорода нитрат-ионов (табл. 4, рис. 4, 5). При этом комплексы 2 и 3 ассоциированы в трехмерный каркас за счет водородных связей С-Н-О, в которых в качестве доноров выступают СН-группы как лиганда HL-, так и аминов. Кроме того, в комплексе 2 можно выделить слои, образованные за счет более сильных водородных связей N⁵–H···O⁴* (рис. 6а). В комплексе 3 можно выделить дополнительно Br···О-взаимодействия с расстояниями между атомами 3.017 и 3.169 Å (рис. 6б). В структуре комплекса 4 можно отметить образование

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 91 № 1 2021

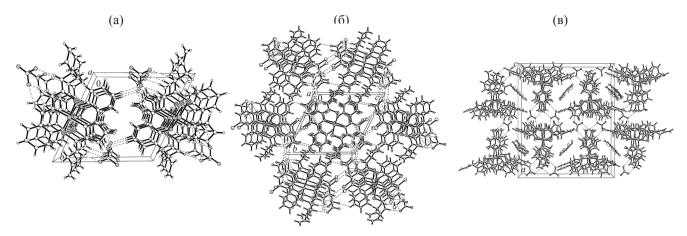


Рис. 6. Фрагменты кристаллической упаковки соединений 2 (а), 3 (б) и 4 (в).

слоев посредством водородных связей С–Н···О, при упаковке которых образуются полости, в которых расположены разупорядоченные молекулы воды (рис. 6в). Расчет объема полостей в $\bf 4$ показал, что они занимают 765.1 из 4492.5 ų элементарной ячейки, что составляет 17.0%, больше, чем найденное в комплексе $\bf 2$ (18.3 из 893.7 ų элементарной ячейки, что составляет 2.0%). В кристаллах соединений $\bf 1a$ и $\bf 3$ не обнаружены полости, доступные для кристаллизационных молекул.

На основании полученных физико-химических данных распределение химических связей в комплексе 1, для которого не были получены монокристаллы, можно представить следующим образом (схема 2).

Для тиосемикарбазона H₂L и координационных соединений **1–4** были изучены *in vitro* противомикробная и противогрибковая активности в отношении стандартных штаммов грамположительного микроорганизма *Staphylococcus aureus* (ATCC 25923), грамотрицательных микроорганизмов *Escherichia coli* (ATCC 25922) и *Klebsiella pneumonae* (ATCC 13883), а также представителя грибов *Candida albicans* (ATCC 10231). Установле-

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 91 № 1 2021

но, что лиганд Н₂L не проявляет противомикробной активности в отношении грамотрицательных микроорганизмов и Candida albicans, но проявляет как бактериостатическую, так и бактерицидную активность в отношении Staphylococcus aureus в интервале концентраций 7-60 мкг/мл (табл. 5). Комплекс 1 не проявил активности в отношении изученных штаммов микроорганизмов. Синтезированные аминосодержащие координационные соединения 2-4 проявляют противомикробную и противогрибковую активность и обладают значениями минимальной подавляющей концентрации (МПК) и минимальной бактерицидной концентрации (МБК) в интервале 3-500 мкг/мл. Следовательно, координация аминов привела к значительному усилению противомикробной активности в отношении грамотрицательных микроорганизмов и противогрибковой активности. Наиболее существенное усиление активности по отношению к грамотрицательным микроорганизмам наблюдается в случае комплекса 4, содержащего 4-метилпиридин.

Изучение антипролиферативной активности лиганда H_2L и соединений 1—3 в отношении линий раковых клеток HL-60 миелоидной лейкемии человека (табл. 6) и HeLa рака шейки матки (табл. 7) показало, что соединение H_2L практически не проявляет активности, подавляя рост и размножение раковых клеток на 7—8% при концентрации 10 мкМ. Соединение 1 подавляет рост и размножение клеток HL-60 на 100% при концентрации 10 мкМ., а при более низких концентрациях (1 и 0.1 мкМ.) оно полностью теряет свою активность. Введение аминов во внутреннюю сферу комплек-

Таблица 5. Минимальные подавляющие (МПК) и бактерицидные/фунгицидные (МБК/МФК) концентрации координационных соединений **1–4** по отношению к тест-микробам и грибам

	Eschirichia coli ATCC 25922		Klebsiella pneumoniae ATCC 13883		Staphylococcus aureus ATCC 25923		Candida albicans ATCC 10231		
Соединение	МПК	МБК	МПК	МБК	МПК	МБК	МПК	МФК	
	мкг/мл								
$Cu(NO_3)_2 \cdot 3H_2O$	>1000	>1000	>1000	>1000	>1000	>1000	>1000	>1000	
H_2L	>	>	>1000	>1000	7	60	>	>	
1	>	>	>1000	>1000	>	>	>	>	
2	30	60	500	500	30	30	30	30	
3	120	120	250	500	250	250	30	30	
4	3	3	120	250	30	60	30	30	

Таблица 6. Антипролиферативная активность соединений H_2L и **1–3** в отношении линии клеток HL-60 миелоидной пейкемии человека

Соотиношио	Инги	IC and		
Соединение	10 мкМ.	1 мкМ.	0.1 мкМ.	IC ₅₀ , мкМ.
H_2L	7.0	0	0	>10
1	100	0	0	5.0
2	97.6	96.6	7.6	0.32
3	96.8	94.9	25.4	0.28
Доксорубицин	99	98	15	0.50

^а Средние результаты трех экспериментов, SEM $< \pm 4\%$.

Таблица 7. Антипролиферативная активность соединений H_2L и **1–3** в отношении линии клеток HeLa рака шейки матки

Соотинонно	Инги	ICM		
Соединение	10 мкМ.	1 мкМ.	0.1 мкМ.	IC ₅₀ , мкМ.
H_2L	8.0	4.4	3.6	>10
1	100	13.6	11.9	1.3
2	88.3	0	0	7.0
3	100	0	0	5.0
Доксорубицин	49.8	12.2	0	10.0

^а Средние результаты трех экспериментов, SEM $< \pm 4\%$.

сов меди(II) 2 и 3 приводит к усилению активности в отношении клеток HL-60. Эти комплексы ингибируют пролиферацию данного вида раковых клеток почти на 100% при концентрациях 10 и 1 мкМ., а также проявляют небольшую активность и при концентрации 0.1 мкМ. В случае клеток HeLa усиления активности не наблюдается.

В табл. 8 представлены значения концентрации полумаксимального ингибирования IC_{50} , который представляют собой показатель эффективности антипролиферативного действия исследуемых веществ в отношении клеток HL-60, HeLa и модельной линии нормальных клеток млекопитающих MDCK, а также индексы селективности противо-

раковой активности, показывающие во сколько раз активность в отношении раковых клеток выше, чем в отношении нормальных клеток МDСК. Активность комплекса 1 без амина во внутренней сфере значительно уступает по активности и селективности доксорубицину, применяемому в медицинской практике в качестве противоракового вещества. Аминосодержащие комплексы 2—3 превосходят доксорубицин по активности в отношении клеток HL-60 в 1.5—1.8 и в 1.4—2 раза превосходят его активность в отношении клеток HeLa. Кроме того, комплексы 2 и 3 превосходят доксорубицин по селективности в отношении данных линий раковых клеток. Их действие в отно-

Соотино	MDCK	HL	-60	HeLa			
Соединение	IC ₅₀ , мкМ.	IC ₅₀ , мкМ.	SI ^a	IC ₅₀ , мкМ.	SI ^a		
H_2L	>10	>10	-	>10	-		
1	6.0	5.0	1.2	1.3	4.6		
2	12	0.32	37.5	7.0	1.7		
3	9.0	0.28	32.1	5.0	1.8		
Доксорубицин	7.1	0.50	14.2	10.0	0.71		

Таблица 8. Концентрации полумаксимального ингибирования IC₅₀ исследуемых веществ в отношении клеток MDCK, HL-60 и HeLa и индексы селективности SI

индекс селективности противораковой активности.

шении нормальных клеток МОСК в 32.1-37.5 раза слабее, чем в отношении раковых клеток НС-60.

Результаты исследования антиоксидантной активности соединений Н₂L и 1-4 в отношении катион-радикалов ABTS⁺ представлены в табл. 9 в виде концентраций полумаксимального ингибирования ІС50. Некоординированный тиосемикарбазон Н₂L проявляет более высокую активность, чем тролокс, применяемый в медицинской практике в качестве ингибитора свободных радикалов. Координация H_2L к иону меди(II) (комплекс 1) приводит к снижению антиоксидантной активности, а введение аминов во внутреннюю сферу (комплексы 2-4) вновь повышает антиоксидантную активность, причем активность комплексов с аминами превышает не только активность комплекса 1, но и исходного тиосемикарбазона Н₂L.

Вышеприведенные экспериментальные данные указывают на перспективность дальнейшего поиска селективных противомикробных, противогрибковых и противораковых веществ среди смешанно-лигандных аминосодержащих координационных соединений меди с производными тиосемикарбазона салицилового альдегида.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Рентгеноструктурные данные для комплексов **1а** и **2–4** получены при 293(2) K на дифрактометре Xcalibur E с MoK_a -излучением и графитовым монохроматором. Параметры элементарной ячейки, уточненные по всему массиву, и остальные экспериментальные данные получены, используя комплекс программ CrysAlis Oxford Diffraction [14]. Их структуры решены прямыми методами и уточнены МНК в анизотропном приближении для неводородных атомов по программам SHELX-97 [15]. Атомы водорода включены в уточнение в геометрически рассчитанных позициях, а их температурные факторы $U_{\rm H}$ приняты в 1.2 или 1.5 раза большими, чем у связанных с ними атомов углерода, азота и кислорода. Кристаллизационные молекулы воды в комплексе 4 локализованы в 10 позициях с коэффициентом заполнения от 0.15 до 0.55. Основные параметры эксперимента, решение и уточнение структур приведены в табл. 2, межатомные расстояния и валентные углы в координационных полиэдрах – в табл. 3, а параметры водородных связей – в табл. 4. Координаты базисных атомов исследованных структур депонированы в Кембриджский банк данных (CCDC 2033700-2033703).

Сопротивление растворов комплексов 1-4 в метаноле (20°C, c 0.001 моль/л) измеряли с помощью реохордного моста Р-38. ИК спектры веществ регистрировали на спектрометре Bruker ALPHA $(4000-400 \text{ cm}^{-1})$. Эффективные магнитные моменты соединений 1-4 определяли методом Гуи. Расчет молярной магнитной восприимчивости с поправкой на диамагнетизм проводили исходя из теоретических значений магнитной восприимчивости органических соединений.

Противомикробную, противогрибковую, антипролиферативную и антиоксидантную активности изучали по стандартным методикам, описанным в

Таблица 9. Антиоксидантная активность соединений H₂L и **1**−**4** в отношении катион-радикалов ABTS^{•+}

Соединение	IC ₅₀ , мкМ.
$\mathrm{H_{2}L}$	9.0
1	40
2	5.8
3	7.5
4	5.8
Тролокс	33

работах [16, 17].

2-(2-Гидроксибензилиден)-N-(проп-2-ен-1-ил)гидразинкарботиоамид (H_2L) был получен реакцией конденсации N-(проп-2-ен-1-ил)гидразинкарботиоамида (4-аллилтиосемикарбазида) с 2-гидроксибензальдегидом (салициловым альдегидом) в соответствии с методикой, описанной в работе [18].

Нитрат бис[µ₂-2-({2-[(проп-2-ен-1-ил)карба-мотиоил] гидразинилиден} метил)фенолято- S,N,O:О]диаквадимеди(II) (1). К этанольному раствору, содержащему 10 ммоль 2-(2-гидроксибензилиден)-N-(проп-2-ен-1-ил)гидразинкарботиоамида H₂L в 20 мл спирта, при непрерывном перемешивании и нагревании (50–55°С) прибавляли раствор, содержащий 10 ммоль тригидрата нитрата меди(II) в 20 мл этанола. Полученную реакционную смесь перемешивали в течение 40–50 мин. После охлаждения до комнатной температуры наблюдалось образование мелкокристаллического вещества, которое отфильтровывали на стеклянном фильтре, промывали небольшим количеством этанола и сушили на воздухе до постоянной массы.

Нитрат бис[µ₂-2-({2-[(проп-2-ен-1-ил)карба-мотиоил] гидразинилиден} метил)фенолято-S,N,O:О]диимидазолдимеди(II) (2). К горячему (50–55°С) этанольному раствору (20 мл), содержащему 10 ммоль 2-(2-гидроксибензилиден)-N-(проп-2-ен-1-ил) гидразинкарботиоамида H₂L, добавляли 10 ммоль тригидрата нитрата меди(II). Полученную смесь перемешивали при нагревании в течение 40–50 мин, затем к полученному раствору добавляли этанольный раствор 20 ммоль имидазола и продолжали перемешивание при нагревании в течение 30 мин. При охлаждении образовывался осадок, который отфильтровывали, промывали небольшим количеством этанола и сущили на воздухе.

Аналогично, используя вместо имидазола 3,5-дибромпиридин синтезировали соединение 3.

Гексагидрат нитрата бис[µ₂-2-({2-[(проп-2-ен-1-ил)карбамотиоил]-гидразинилиден}метил)фенолято-S,N,O:О]бис(4-метилпиридин)-димеди(II) (4). К горячему (50–55°С) этанольному раствору (20 мл), содержащему 20 ммоль 4-метилпиридина, добавляли 10 ммоль тригидрата нитрата меди(II). Полученную смесь перемешивали при нагревании в течение 30 мин, затем к полученному

раствору добавляли этанольный раствор 10 ммоль 2-(2-гидроксибензилиден)-N-(проп-2-ен-1-ил)гидразинкарботиоамида H_2 L и продолжали перемешивание при умеренном нагревании в течение 1 ч. При охлаждении образовывался осадок, который отфильтровывали, промывали небольшим количеством этанола и сушили на воздухе.

БЛАГОДАРНОСТЬ

Авторы выражают благодарность Г.Г. Бэлан и О.С. Бурдунюк (Государственный медицинский и фармацевтический университет им. Н. Тестемицану) за помощь при проведении биологических испытаний синтезированных веществ.

ФОНДОВАЯ ПОДДЕРЖКА

Работа выполнена в рамках государственных программ Республики Молдова (проекты 20.80009.5007.10 и 20.80009.5007.15).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Beraldo H., Gambino D. // Mini Rev. Med. Chem. 2004.
 Vol. 4. N 1. P. 31. doi 10.2174/1389557043487484
- Joseph J., Mary N.L., Sidambaram R. // Synth. React. Inorg. Metal-Org. Nano-Metal Chem. 2010. Vol. 40. N 10. P. 930. doi 10.1080/15533174.2010.522661
- 3. Гуля А.П., Граур В.О., Чумаков Ю.М., Петренко П.А., Бэлан Г.Г., Бурдунюк О.С., Цапков В.И., Рудик В.Ф. // ЖОХ. 2019. Т. 89. Вып. 5. С. 766. doi 10.1134/S0044460X19050159; Gulea A.P., Graur V.O., Chumakov Yu.M., Petrenko P.A., Balan G.G., Burduniuc O.S., Tsapkov V.I., Rudic V.F. // Russ. J. Gen. Chem. 2019. Vol. 89. N 5. P. 953. doi 10.1134/S1070363219050153
- 4. *Lovejoy D.B.* // Blood. 2002. Vol. 100. N 2. P. 666. doi 10.1182/blood.v100.2.666
- Pelosi G. // Open Crystallogr. J. 2010. Vol. 3. P. 16. doi 10.2174/1874846501003010016
- Liberta A.E., West D.X. // Biometals. 1992. Vol. 5. N 2.
 P. 121. doi 10.1007/bf01062223
- 7. Присакарь В.И., Цапков В.И., Бурачева С.А., Быркэ М.С., Гуля А.П. // Хим.-фарм. ж. 2005. Т. 39. № 6. С. 30. doi 10.30906/0023-1134-2005-39-6-30-32; Prisakar' V.I., Tsapkov V.I., Buracheeva S.A., Byrke M.S., Gulea A.P. // Pharm. Chem. J. 2005. Vol. 39. N 6. P. 313. doi 10.1007/s11094-005-0142-8

- Pahontu E., Fala V., Gulea A., Poirier D., Tapcov V., Rosu T. // Molecules. 2013. Vol. 18. N 8. P. 8812. doi 10.3390/molecules18088812
- Bindu P., Kurup M.R.P., Satyakeerty T.R. // Polyhedron. 1998. Vol. 18. N 3–4. P. 321. doi 10.1016/S0277-5387(98)00166-1
- Zhang Z., Gou Y., Wang J., Yang K., Qi J., Zhou Z., Liang Sh., Liang H., Yang F. // Eur. J. Med. Chem. 2016.
 Vol. 121. P. 399. doi 10.1016/j.ejmech.2016.05.021
- 11. Orysyk S.I., Repich G.G., Bon V.V., Dyakonenko V.V., Orysyk V.V., Zborovskii Yu.L., Shishkin O.V., Pekhnyo V.I., Vovk M.V. // Inorg. Chim. Acta. 2014. Vol. 423A. P. 496. doi 10.1016/j.ica.2014.08.056
- 12. Бонь В.В., Орысык С.И., Пехньо В.И. // Коорд. хим. 2011. Т. 37. № 2. С. 151; Bon' V.V., Orysyk S.I., Pekhno V.I. // Russ. J. Coord. Chem. 2011. Vol. 37. N 2. P. 149. doi 10.1134/S1070328411010027

- Allen. F.H. // Acta Crystallogr. (A). 2002. Vol. 58.
 P. 380. doi 10.1107/S0108768102003890
- 14. CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.34.76, 2003.
- Sheldrich G.M. // Acta Crystallogr. (A). 2008. Vol. 64.
 P. 112. doi 10.1107/S0108767307043930
- Gulea A., Poirier D., Roy J., Stavila V., Bulimestru I., Tapcov V., Popovschi L // J. Enzyme Inhib. Med. Chem. 2008. Vol. 23. N 6. P. 806. doi 10.1080/ 14756360701743002
- 17. Balan G., Burduniuc O., Usataia I., Graur V., Chuma-kov Yu., Petrenko P., Gudumac V., Gulea A., Pahontu E. // Appl. Organometal. Chem. 2020. Vol. 34. N 3. P. e5423. doi 10.1002/aoc.5423
- Orysyk S.I., Bon V.V., Zholob O.O., Pekhnyo V.I., Orysyk V.V., Zborovskii Y.L., Vovk M.V. // Polyhedron. 2013. Vol. 51. P. 211. doi 10.1016/j.poly.2012.12.021

Synthesis, Structure and Biological Activity of Mixed-Ligand Amine-Containing Copper(II) Coordination Compounds with 2-(2-Hydroxybenzylidene)-N-(prop-2-en-1-yl)-hydrazinecarbothioamide

A. P. Gulea^a, V. O. Graur^a, Ia. I. Ulchina^{a,*}, P. N. Bourosh^b, V. A. Smaglii^c, O. S. Garbuz^{a,d}, and V. I. Tsapkov^a

^a State University of Moldova, Chisinau, MD-2009 Moldova
 ^b Institute of Applied Physics, Chisinau, MD-2028 Moldova
 ^c Institute of Chemistry, Chisinau, MD-2028 Moldova
 ^d Institute of Zoology, Chisinau, MD-2028 Moldova
 *e-mail: ianina.ulchina@gmail.com

Received October 2, 2020; revised October 2, 2020; accepted October 17, 2020

Copper(II) nitrate reacts in ethanol with 2-(2-hydroxybenzylidene)-N-(prop-2-en-1-yl)hydrazinecarbothioamide H_2L in a 1:1 molar ratio to form coordination compound $Cu(HL)NO_3 \cdot H_2O$. Ligand H_2L reacts with copper(II) nitrate and amines [imidazole (Im), 3,5-dibromopyridine (3,5- Br_2Py), 4-methylpyridine (4-Pic)] in a 1:1:2 molar ratio to give coordination compounds $CuA(HL)NO_3 \cdot nH_2O$ [A = Im, 3,5- Br_2Py , 4-Pic; n = 0, 3]. The structures of the obtained amine-containing complexes were determined by X-ray diffraction analysis. The synthesized complexes exhibit antimicrobial, antifungal and antioxidant activities, as well as selective anticancer activity against human leukemia HL-60 cell line.

Keywords: Cu(II) coordination compounds, amines, salicylaldehyde 4-allylthiosemicarbazone, antimicrobial activity, anticancer activity