УДК 543.062

РОЛЬ КИСЛОРОДА В ФОРМИРОВАНИИ ПЕРОВСКИТОПОДОБНЫХ ОКСИДОВ ГОМОЛОГИЧЕСКОГО РЯДА $Ba_m Bi_{m+n}O_y$ (m = 1-9; n = 0-3, 5, 7, 9)

© 2021 г. Н. В. Барковский*

Институт физики твердого тела Российской академии наук, ул. Академика Осипьяна 2, Черноголовка, 142432 Россия *e-mail: barkov@issp.ac.ru

> Поступило в Редакцию 18 сентября 2020 г. После доработки 12 октября 2020 г. Принято к печати 17 октября 2020 г.

Методами рентгенофазового и химического анализа исследовано влияние условий синтеза на фазовый состав и валентное состояние висмута в перовскитоподобных оксидах гомологического ряда $Ba_m Bi_{m+n}O_y$ (m = 1-9; n = 0-3, 5, 7, 9). Оксиды, полученные при $p(O_2) = 1$ кПа, практически не содержат Bi(V), характеризуются средней степенью окисления висмута $\overline{Bi} = 3.00-3.01$ и термодинамически устойчивы от области кристаллизации до 20°С. При охлажднии ниже линии солидуса происходит окисление оксидов $Ba_m Bi_{m+n}O_y$ и возрастание степены окисления ($\overline{Bi} > 3.06$). Конечные продукты окисления при ~700–20°С – оксиды BaBiO₃ и Ba₄Bi₁₃^{+3.00}O_{23.5}. Перовскитоподобные оксиды $Ba_m Bi_{m+n}O_y$ со средней степенью окисления или до 20°С – или висмута $\overline{Bi} > 3.06$ не обнаружены. Индивидуальные оксиды этого ряда со значительным количеством Bi(V) или только Bi(V) не могут быть получены при $p(O_2) = 21-100$ кПа.

Ключевые слова: гомологические ряды, перовскитоподобные оксиды Ва–Ві–О, валентное состояние, картины рентгеновской дифракции, химический анализ

DOI: 10.31857/S0044460X21010170

Исследования системы Ba–Bi–O имеют более чем полувековую историю. Первый оксид этой системы Ba(BiO₃)₂·4H₂O синтезирован при кипячении NaBiO₃ с 15%-ным раствором BaCl₂ [1]. В полученном оксиде, по данным иодометрического титрования, весь висмут имеет степень окисления +5. Однако индивидуальность полученного соединения не подтверждена рентгенографически.

Методом порошковой рентгеновской дифракции обнаружен твердый раствор $Ba_{2x}Bi_{2(1-x)}O_{3-x}$ с перовскитоподобной структурой (x = 0.22-0.50, катионное соотношение Ba–Bi 0.28–1.0) [2]. В образцах, полученных на воздухе или в атмосфере сухого азота при 850–1000°С, по данным иодометрического титрования, практически нет висмута со степенью окисления +5. При последующем низкотемпературном отжиге при 550°С в кислородсодержащей атмосфере образцы изменяли красный цвет на черный, и доля ионов Bi^{5+} доходила до 34% от общего количества висмута. Таким образом, в исследованных твердых растворах висмут находится в «смешанно-валентном» состоянии Bi(III) и Bi(V). Для количественной характеристики валентного состояния висмута в таких образцах используют среднюю степень окисления висмута (\overline{Bi}). В полученных образцах [2] максимальное значение $\overline{Bi} =$ 3.68.

При отжиге смеси оксидов бария и висмута в соотношении [Ba]:[Bi] = 1:2 в атмосфере кислорода при 1000°С с последующим медленным охлаждением получен оксид, в котором, по данным волюмометрического определения активного кислорода, средняя степень окисления висмута $\overline{\text{Bi}} = 3.46$ [3]. Рентгенографические данные оксида не приведены. Для впервые синтезированного оксида BaBiO₃ на основании данных химическо-

Состав фазы Ва _{<i>m</i>} Ві _{<i>m+n</i>} О _{<i>v</i>}			Параметры (±0.002) ячейки, Å			U Å3
т	п	[Ba]:[Bi]	a	b	С	V, A^{2}
6	1	6:7	4.374	4.402	4.514	86.91
4	1	4:5	4.365	4.385	4.520	86.52
3	1	3:4	4.362	4.382	4.511	86.22
2	1	2:3	4.361	4.375	4.502	85.90
3	2	3:5	4.353	4.367	4.503	85.60
6	5	6:11	4.362	4.364	4.486	85.39
1	1	1:2	4.353	4.358	4.495	85.27
1	5	4:9	4.367	4.390	4.405	84.45
2	3	2:5	4.352	4.359	4.401	83.49
4	7	4:11	4.352	4.359	4.400	83.49
1	2	1:3	4.374			83.68
4	9	4:13	4.370			83.45

Параметры и объемы элементарных ячеек перовскитоподобных оксидов гомологического ряда Ва_{*m*}Ві_{*m+n*}О_{*v*}

го анализа рассчитано значение $\overline{\mathrm{Bi}} = 4.04$, позже уточненное (4.00) [4–6]. Методами рентгеновской дифракции и нейтронной дифракции показано [7], что перовскитовая ячейка этого оксида удвоена ($\mathrm{Ba}_2\mathrm{Bi}^{3+}\mathrm{Bi}^{5+}\mathrm{O}_6$) и в ней ионы висмута Bi^{3+} и Bi^{5+} в эквимолярном соотношении занимают два набора неэквивалентных позиций.

Сиспользованиемметодоввизуальногополитермического, рентгенофазового, дифференцальнотермического, термогравиметрического, локального рентгеноспектрального, химического, элементного анализа и электронной дифракции в просвечивающем электронном микроскопе В обогащенной висмутом системе Ва-Ві-О доказано отсутствие твердых растворов замещения Ва_{2x}Ві_{2(1-x)}О_{3-x} [8, 9]. В этой области существуют два гомологических ряда оксидов – Ba_mBi_{m+n}O_v (*m* = 1–9; *n* = 0–3, 5, 7, 9) с перовскитоподобной и Ва₂Ві_{8+n}О_v (*n* = 0, 1, 2, 4, 6, 8 и 10) с ромбоэдрической структурой [10]. Все обнаруженные оксиды бария-висмута характеризуются упорядоченной по барию и висмуту перовскитоподобной или ромбоэдрической структурой, что подтверждается наличием индивидуальной сверхструктуры (метод электронной дифракции) и картинами высокого разрешения в просвечивающем электронном микроскопе [8-10].

В настоящей работе представлены результаты исследования влияния условий синтеза на фазовый состав и валентное состояние висмута в перовскитоподобных оксидах гомологического ряда Ва_mBi_{m+n}O_y. Поиск оптимальных условий синтеза оксидов бария–висмута проведен исходя из областей их термической устойчивсти на схемах фазовых равновесий системы Ва–Ві–О, построенных ранее [8]. Для исследования фазообразования оксидов образцы отжигали при различных парциальных давлениях кислорода (1–101 кПа) в широких интервалах температуры и времени. Фазовый состав закаленных в жидком азоте образцов контролировали по картинам рентгеновской дифракции. Полученные образцы тестировали разработанными методами [11, 12] на наличие или отсутствие Bi(V). При положительных результатах методом иодометрического титрования определяли количество Bi(V) и рассчитывали среднюю степень окисления висмута Bi.

Все оксиды $Ba_m Bi_{m+n}O_y$ кристаллизуются в ячейке перовскита. На рис. 1 представлены картины рентгеновской дифракции, демонстрирующие главную особенность оксидов гомологического ряда $Ba_m Bi_{m+n}O_y$ – их изоструктурность. Близкие параметры ячеек (см. таблицу) и наложение рефлексов затрудняют их идентификацию по картинам рентгеновской дифракции, но индивидуальные картины электронной дифракции [8, 9] позволяют справиться с этой проблемой. Элементарная ячей-ка оксидов $Ba_m Bi_{m+n}O_y$ – ромбическая (рис. 1) за исключением фаз с соотношением [Ba]:[Bi] = 1:3 и 4:13 с кубической ячейкой.

Параметры *а* и *b* мало зависят от катионного состава фаз $Ba_m Bi_{m+n}O_y$. Объемы ячеек [8] с увеличением доли висмута в оксиде $Ba_m Bi_{m+n}O_y$ имеют тенденцию к уменьшению (рис. 2) по причине уменьшения параметра *c*, что особенно заметно на обогащенных висмутом оксидах ([Ba]:[Bi] = 4:11–

Рис. 1. Картины рентгеновской дифракции изоструктурных перовскитоподобных оксидов гомологического ряда $Ba_m Bi_{m+n}O_y$: m = 3, n = 1 (I); m = 2, n = 1 (2); m =3, n = 2 (3); m = 4, n = 3 (4); m = 6, n = 5 (5); m = 1, n =1 (6); m = 2, n = 3 (7). Оксиды получены при $p(O_2) = 1$ кПа методом твердофазного синтеза последовательным отжигом стехиометрических смесей $Ba(NO_3)_2$ и Bi_2O_3 , начиная от 600°C и окончательно при 880 (I-4), 780 (5, 6) и 750°C (7).

4:9). Минимальный объем ромбической ячейки найден для фазы оксидов $Ba_m Bi_{m+n}O_y$ с соотношением [Ba]:[Bi] = 2:5 ($V = 83.49 \text{ Å}^3$) (рис. 1, 7). В этой фазе степень ромбического искажения уменьшена по сравнению с остальными членами ряда, для которых значения объемов находятся в интервале V = 84.45 ([Ba]:[Bi] = 4:9) – 86.91 Å³ ([Ba]:[Bi] = 6:7).

В области ликвидус–солидус при $p(O_2) = 1$ кПа формируются 16 фаз оксида $Ba_m Bi_{m+n}O_y$ с соотношениями [Ba]:[Bi] = 6:7, 4:5, 7:9, 3:4 (рис. 1, *I*), 5:7,

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 91 № 1 2021

Рис. 2. Зависимость объема элементарной ячейки оксидов гомологического ряда $Ba_m Bi_{m+n}O_y$ от соотношения [Ba]:[Bi], по данным настоящей работы и работы [8]. Все оксиды, за исключением оксида с соотношением [Ba]:[Bi] = 4:13 (**u**), получены при $p(O_2) = 1$ кПа.

2:3 (2), 5:8, 3:5 (3), 4:7 (4), 6:11 (5), 1:2 (6), 4:9, 2:5 (7), 3:8, 4:11 и 1:3 [8]. Согласно данным иодометрического титрования, за исключением оксидов с соотношениями [Ba]:[Bi] = 6:7 и 4:5 (\overline{Bi} = 3.01), во всех остальных оксидах $Ba_m Bi_{m+n}O_y$, синтезированных при $p(O_2) = 1$ кПа, отсутствует Bi(V) (\overline{Bi} = 3.00–3.01). Это подтверждается химическими тест-методами [11, 12]: образцы оксидов $Ba_m Bi_{m+n}O_y$ с \overline{Bi} = 3.00 не окисляют Mn(II) в Mn(VII), Ce(III) в Ce(IV), а из органических реагентов – метиловый красный, дифениламин, основание Арнольда. Следовательно, фазы $Ba_m Bi_{m+n}O_y$ представляют собой оксиды бария–висмута(III) со стехиометрическим количеством кислорода.

Если при $p(O_2) = 1$ кПа наиболее обогащенные висмутом фазы оксидов $Ba_m Bi_{m+n}O_y$ с соотношениями [Ba]:[Bi] = 3:8, 4:11 и 1:3 формируются в области ликвидус–солидус, то на воздухе [$p(O_2) =$ 21 кПа] эти оксиды и близкая по соотношению к [Ba]:[Bi] = 1:3 фаза [Ba]:[Bi] = 4:13 обнаружена в субсолидусной области [8]. Эта фаза имеет широкую по температуре область термической устойчивсти (20–710°С). Завершает ряд оксидов $Ba_m Bi_{m+n}O_y$, формирующихся на воздухе в области ливидус–солидус, фаза с соотношением [Ba]:[Bi] = 2:5.

Таким образом, перовскитоподобные оксиды гомологического ряда $\text{Ba}_m \text{Bi}_{m+n} O_y$ (m = 1-9; n = 0-3, 5, 7, 9) формируются преимущественно в области ливидус–солидус [8]. Независимо от парциального давления кислорода [$p(O_2) = 1$ и 21 кПа] образцы,

Рис. 3. Зависимость средней степени окисления висмута \overline{Bi} от температуры закалки *T* образцов оксидов бариявисмута с соотношениями [Ba]:[Bi] = 1:1 (*1*), 4:5 (*2*), 3:4 (*3*), 2:3 (*4*), 1:2 (*5*), 1:3 (*6*), 4:13 (*7*), 1:4 (*8*). Образцы, за исключением *6*–*8*, расплавлены на воздухе, медленно охлаждены до температуры *T* и закалены в жидком азоте. Прямые линии – области термической устойчивости фаз оксидов $Ba_m Bi_{m+n}O_y$ аналогичного состава. *Звездочкой* отмечены значения \overline{Bi} , рассчитанные для двухфазных смесей ([Ba]:[Bi] = 1:1–4:13).

закаленные от линии ликвидуса, обеднены кислородом и не содержат Bi(V). Можно утверждать, что в оксидах $Ba_m Bi_{m+n}O_y$ находится незначительное количество Bi(V) или он отсутствует.

Область термической устойчивсти оксидов $Ba_m Bi_{m+n}O_y$ зависит от парциального давления кислорода [8]. Фазы оксидов $Ba_m Bi_{m+n}O_y$, полученные при $p(O_2) = 1$ кПа, термодинамически устойчивы в интервале температур от области кристаллизации до 20°С. Охлаждение расплава Ba-Bi-O в пределах области кристаллизации на воздухе сопровождается незначительным поглощением кислорода при изменении значений $\overline{Bi} = 3.00-3.06$ без разложения сформировавшихся в расплаве фаз оксидов $Ba_m Bi_{m+n}O_y$. Область термической устойчивсти последних, как правило, составляет 10–20°С [8]. Как отмечалось выше, фазы с более широкими диапазонами термической устойчивсти формируются на воздухе в субсолидусной области.

Фазы оксидов $Ba_m Bi_{m+n}O_y$, сформировавшиеся в расплаве, при охлаждении на воздухе ниже линии солидуса окисляются, о чем свидетельствует возрастание значений \overline{Bi} . Продукты окисления – кислорододефицитные фазы оксидов гомологического ряда $Ba_{2n}Bi_{n+1}^{3+}Bi_{n-1}^{5+}O_{6n-1}$ (n = 1, 2, ...): $BaBiO_{2.55}$, $BaBiO_{2.83}$, $BaBiO_{2.88}$, полностью окисленный $BaBiO_3$ [13, 14] и фаза того же ряда оксидов $Ba_m Bi_{m+n}O_y$, обогащенная висмутом. В субсолидусной области при охлаждении образцов до 20°С происходят окислительно-восстановительные реакции (1)–(5).

$$9Ba_{4}Bi_{5}^{+3}O_{11.5} + 8O_{2} \rightarrow 32BaBiO_{3} + Ba_{4}Bi_{13}^{+3}O_{23.5},$$
(1)

$$9Ba_{3}Bi_{4}^{+3}O_{9} + 5.75O_{2} \rightarrow 23BaBiO_{3} + Ba_{4}Bi_{13}^{+3}O_{23.5},$$
(2)

 $9Ba_{3}Bi_{3}^{+3}O_{65} + 3.5O_{2} \rightarrow 14BaBiO_{3} + Ba_{4}Bi_{13}^{+3}O_{23.5}, \quad (3)$

 $9BaBi_{2}^{+3}O_{4} + 1.25O_{2} \rightarrow 5BaBiO_{3} + Ba_{4}Bi_{13}^{+3}O_{23,5}, \qquad (4)$

$$9BaBi_{3}^{+3}O_{5.5} + 0.25O_{2} \rightarrow BaBiO_{3} + 2Ba_{4}Bi_{13}^{+3}O_{23.5}.$$
 (5)

В интервале температур $20-710^{\circ}$ С образуются продукты окисления BaBiO₃ и Ba₄Bi₁₃^{+3.00}O_{23.5}. Поскольку оксиды Ba_mBi_{m+n}O_y легко окисляются на воздухе, достоверную информацию о фазовом составе исследуемых образцов можно получить только закалкой в жидком азоте. Закаленные на воздухе образцы всегда окислены и включают примесные продукты окисления.

На рис. 3 показан характер изменения $\overline{Bi} = f(T)$ для образцов оксидов с соотношениями [Ba]:[Bi] = 1:1 (1), 4:5 (2), 3:4 (3), 2:3 (4), 1:2 (5), 1:3 (6), 4:13 (7) и 1:4 (8) при их охлаждении на воздухе. Для каждой фазы такого же номинального состава показаны области их термической устойчивости. Образцы оксидов с соотношениями [Ba]:[Bi] = 4:5-1:3 (2-6) при температуре ниже области их термической устойчивости являются двухфазными [8]. Образцы интенсивно поглощают кислород при 750-900°С (4:5), 500-800°С (3:4), 700-800°С (2:3), о чем свидетельствует возрастание значений Ві. В отличие от обогащенных барием образцов оксидов с соотношениями [Ba]:[Bi] = 1:1-2:3 (1-4), образец с соотношением [Ba]:[Bi] = 1:2 (рис. 3, 5) поглощает незначительное количество кислорода: в охлажденном до 20°C образце $\overline{Bi} = 3.19$. С увеличением доли висмута в образцах способность к поглощению кислорода значительно снижается. Оксид с соотношением [Ba]:[Bi] = 1:3 практически не поглощает кислорода (\overline{Bi} = 3.06 при 20°C), а оксиды с соотношениями [Ba]:[Bi] = 4:13 и 1:4 не поглощают кислород вообще (рис. 3, 7, 8). Фаза оксида ([Ba]:[Bi] = 1:3) при $p(O_2) = 21 \ \kappa \Pi a - продукт твердофазных$ превращений – существует в узком температурном интервале температур (710-720°С). Обнаруженный в образце шихтового оксида ([Ba]:[Bi] = 1:3) при температуре ниже 700°С сверхстехиометричный кислород обусловлен присутствием оксида BaBiO₃, образовавшегося при разложении фазы оксида с соотношениями [Ba]:[Bi] = 1:3 в соответствии с уравнением (5).

Поглощение кислорода обогащенными висмутом образцами оксидов Ва-Ві-О обусловлено окислением кислорододефицитных фаз BaBiO_{2 55} → $BaBiO_{2.83} \rightarrow BaBiO_{2.88} \rightarrow BaBiO_3 - продуктов раз$ ложения оксидов Ва_{*m*}Ві_{*m*+*n*}О_{*v*}. В двухфазных образец шихтового состава оксидов с соотношениями [Ba]:[Bi] = 4:5, 3:4, 2:3, 1:2 и 1:3 количество кислорододефицитных фаз $Ba_{2n}Bi_{n+1}^{3+}Bi_{n-1}^{5+}O_{6n-1}$ уменьшается с обогащением фаз висмутом. Доля поглощенного кислорода уменьшается в этом же направлении, о чем свидетельствует снижение значений Ві (рис. 3). В образцах, полученных из расплава, как правило, средняя степень окисления висмута Ві занижена по сравнению с керамическими образцами (точки с пометкой «А» на рис. 3), что объясняется более высокой плотностью первых и образованием корки расплава на поверхности, препятствующей диффузии кислорода вглубь образца.

Разложение и окисление оксидов Ba_mBi_{m+n}O_v с участием кислорододефицитных фаз BaBiO_{2.55}, ВаВіО283, ВаВіО288 и образованием конечного продукта окисления ВаВіО₃ описываются суммарными реакциями (1-5). Например, фаза оксида с соотношением [Ba]:[Bi] = 2:3 формируется из расплава путем протекания последовательных жидкофазных превращений с участием BaBiO_{2 55} (1000-1015°C) и оксидов с соотношениями $[Ba]:[Bi] = 7:8 (990-1000^{\circ}C), 6:7 (980-990^{\circ}C), 9:11$ (965–980°C), 4:5 (945–965°C), 7:9 (925–945°C), 3:4 (910-925°С), 5:7 (890-910°С) [8]. Фаза оксида с соотношением [Ba]:[Bi] = 2:3 существует в интервале температур 875-890°С. Ниже 875°С фазовые превращения протекают без участия жидкой фазы. Оксид с соотношением [Ba]:[Bi] = 2:3 окисляется до ВаВіО_{3-г} и обогащенных висмутом фаз оксидов $Ba_m Bi_{m+n} O_v$ с соотношениями [Ba]:[Bi] = 5:8 (860–875°C), 7:5 (835–860°C), 4:7 (825–835°C), 6:11 (820-835°C), 1:2 (810-920°C), 4:9 (795-810°C), 2:5 (780–795°C), 3:8 (755–780°C), 4:11 (720–755°C), 1:3 (710-720°С) и 4:13 (20-710°С). Состав соседствующей с оксидом Ba_mBi_{m+n}O_v кислорододефицитной фазы $Ba_{2n}Bi_{n+1}^{3+}Bi_{n-1}^{5+}O_{6n-1}$ в интервале температур 650-875°С требует уточнения. Поскольку оксид ВаВіО₃ начинает терять кислород при ~650–700°С [14], в образцах, закаленных при 650-875°С, должны присутствовать кислорододефицитные фазы $BaBiO_{297}(n=15), BaBiO_{295}(n=10), BaBiO_{293}(n=7),$ $BaBiO_{292} (n = 6), BaBiO_{290} (n = 5) [13].$

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 91 № 1 2021

Рис. 4. Рентгеновская дифракция граничных оксидов – моноклинного BaBiO₃ (*1*) и кубического Ba₄Bi₁₃^{+3.00}O_{23.5} (*3*), образующих протяженную по составу (50–76.5 мол% BiO_{1.5}) и по температуре (20–710°С) двухфазную область при $p(O_2) = 21$ кПа [8], а также двухфазного образца шихтового состава (*2*) с соотношением [Ba]:[Bi] = 4:5, полученного на воздухе медленным охлаждением расплава от 1030 до 20°С.

Рентгенографически идентифицировать граничные фазы в двухфазных областях достаточно сложно [15], поскольку рефлексы BaBiO₃ (или кислорододефицитной фазы) и оксида Ba₄Bi₁^{+3.00}O_{23.5} накладываются, но благодаря разным картинам электронной дифракции могут быть обнаружены [8, 9]. Картины рентгеновской дифракции, представленные на рис. 4, – яркое тому подтверждение. Медленное (2 град/ч) охлаждение расплавленного шихтового образца оксида Ba_mBi_{m+n}O_y ([Ba]:[Bi] = 4:5) до 20°С приводит к образованию двухфазной мелкодоменной смеси. По данным рентгеновской дифракции, этот образец оксида является псевдокубическим (рис. 4, 2).

Результаты настоящей работы позволяют объяснить имеющиеся в литературе немногочисленные данные о валентном состоянии висмута в оксидах $Ba_m Bi_{m+n}O_y$, синтезированных в атмосфере кислорода. Рассчитанные из экспериментальных данных [2] значения Ві, равные 3.42, 3.62 и 3.68 соответственно для образцов оксидов с соотношениями [Ba]:[Bi] = 2:3, 3:4 и 4:5, отожженных при 550°C, не являются характеристикой индивидуальных фаз. В условиях синтеза при $p(O_2) =$ 101 кПа и $T = 550^{\circ}$ С эти значения \overline{Bi} характерны для двухфазной смеси, состоящей из BaBiO₂ и оксида с соотношением [Ba]:[Bi] = 4:11 (\overline{Bi} = 3.00) [8]. Расчет средней степени окисления висмута для трех шихтовых образцов с соотношениями [Ba]:[Bi] = 2:3, 3:4 и 4:5 дает значения $\overline{Bi} = 3.47$, 3.61 и 3.69 соответственно, хорошо согласующиеся (кроме первого) с экспериментально полученными [2]. Доли кислорода и Bi(V) только в одном из образцов $Ba_{2x}Bi_{2(1-x)}O_{3-x}$ (x = 0.262, [Ba]:[Bi] = 4:11) аномально завышены (Ві = 3.16). Такая средняя степень окисления висмута характеризует двухфазные смеси, обогащенные барием, близкие по катионному составу к оксидам с соотношениями [Ba]:[Bi] = 4:9 и 1:2.

Данные настоящей работы подтверждают, что в области ликвидуса образцы оксидов системы Ва–Ві–О обеднены кислородом, что хорошо согласуется с полученными ранее результатами [2]. Для четырех образцов $Ba_{2x}Bi_{2(1-x)}O_{3-x}$ [x = 0.262, [Ba]:[Bi] = 4:11; 0.363 (4:7), 0.389 (~5:8), 0.406 (2:3)] степени окисления \overline{Bi} = 3.01–3.02. В образцах оксидов, синтезированных на воздухе или в атмосфере сухого азота при 850–1000°C [2], находятся упорядоченные по катионам оксиды $Ba_mBi_{m+n}O_y$ [8]. Низкотемпературный (550°C) окислительный отжиг таких образцов приводит к спинодальному распаду оксидов $Ba_mBi_{m+n}O_y$ с образованием мелкодоменной смеси псевдокубических фаз (по данным рентгеновской дифракции [8, 16]).

Как показано выше, фаза с соотношением [Ba]:[Bi] = 1:2 существует в субсолидусной области только при $p(O_2) = 1$ кПа (рис. 1, 6) и не содержит Bi(V) ($\overline{Bi} = 3.00$) в отличие от двухфазной смеси с соотношениями [Ba]:[Bi] = 1:1 и 4:11 такого же валового состава, полученной при $p(O_2) =$ 101 кПа, для которой значение $\overline{Bi} = 3.46$ [23% Bi(V)] [3]. Оксид Ba(Bi⁵⁺O_3)₂·4H₂O [1] не может присутствовать на схемах фазовых соотношений при $p(O_2) = 1-101$ кПа, поскольку независимо от парциального давления кислорода в обогащенной висмутом области системы Ba–Bi–O формируются фазы, практически не содержащие Bi(V). По всей вероятности, эта фаза может быть обнаружена при $p(O_2) >> 101$ кПа. Как показано ниже, высокое давление кислорода не гарантирует значительного повышения доли Bi(V).

Предпринята попытка получения сверхпроводящего «электрондопированного» оксида (Ba_{0.6}Bi_{0.4})BiO_{2.92} при высоком давлении кислорода [17] с катионными соотношениями [Ba]:[Bi] = 0.59:1.41, 0.43, 3:7. Доля кислорода (у), по данным иодометрического титрования, составила 2.92, Bi = 3.30 [15% Bi(V)], несмотря на достаточно высокое лавление кислорода при окончательном отжиге [6×10⁷ Па (600 атм), 400°С]. Полученный оксид не проявляет сверхпроводящих свойств, кристаллизуется в кубической структуре перовскита (параметр не приведен). По всей вероятности, как и в работе [2], получена мелкодоменная смесь псевдокубических оксидов Ва_{*m*}Ві_{*m*+*n*}О_{*v*}, по данным рентгеновской лифракции.

Таким образом, в индивидуальных перовскитоподобных оксидах Ва_{*m*}Ві_{*m*+*n*}О_{*v*} отсутствует висмут со средней степенью окисления Bi >3.06. Доля кислорода в оксидах Ва_{*m*}Ві_{*m*+*n*}О_{*v*}, обусловленная величиной $\overline{Bi} = 3.00 - 3.06$, может считаться критической. В отличие от оксидов $Ba_m Bi_{m+n} O_v$ [8] низкотемпературных фаз, обогащенных кислородом и Bi(V), не обнаружено. Большинство оксидов Ва"Ві_{м+}"О, стехиометричны по кислороду и представляют собой оксиды бария-висмута(III). Описанные в литературе образцы номинальных составов, соответствующих оксидам Ba_mBi_{m+n}O_v, со средней степенью окисления Bi > 3.06 представляют собой двухфазные смеси, состоящие из ВаВіОз и кислорододефицитных фаз гомологического ряда $\operatorname{Ba}_{2n}\operatorname{Bi}_{n+1}^{3+}\operatorname{Bi}_{n-1}^{5+}\operatorname{O}_{6n-1}$ (n = 1, 2, ...): BaBiO_{2.55}, ВаВіО_{2.83}, ВаВіО_{2.88} [13, 14] – и соседней фазы того же ряда оксидов Ва_{*m*}Ві_{*m*+*n*}О_{*v*}, обогащенной висмутом. При $p(O_2) = 21-100$ кПа индивидуальные оксиды $Ba_m Bi_{m+n} O_v$, содержащие в значительном количестве Bi(V) или только Bi(V), не могут быть получены. Вероятно, оксиды Ва_{*m*}Ві_{*m*+*n*}О_{*v*} имеют незначительную область гомогенности по кислороду, обусловленную смешанно-валентным состоянием висмута в пределах средней степени окисления $\overline{Bi} = 3.00 - 3.06$. Кислород незначительно растворяется в расплаве Ва-Ві-О, полученном в кислородсодержащей атмосфере, поскольку при кристаллизации закалкой можно получить оксиды с низкой долей Bi(V) ($\overline{Bi} = 3.02 - 3.06$). Фазы оксидов $\operatorname{Ba}_m\operatorname{Bi}_{m+n}\operatorname{O}_v$ со средней степенью окисления

 $\overline{\text{Bi}} = 3.00-3.01$ формируются в атмосфере аргона, $p(\text{O}_2) = 1$ кПа, и существуют в интервале температур от области кристаллизации до комнатной.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Однофазные образцы оксидов Ba_mBi_{m+n}O_v синтезированы в атмосфере аргона, $p(O_2) = 1 \text{ кПа}$, при последовательных отжигах шихты, состоящей из Ba(NO₃)₂ (XЧ) и оксида Bi₂O₃ (ОСЧ. 13-3), начиная от 600°С. Образец оксида с соотношением [Ba]: [Bi] = 4:13 получен при $p(O_2) = 21$ кПа. Закаленные образцы оксидов гомогенизировали измельчением и прессованием после каждого отжига с шагом 100 град по 24 ч. Температура окончательного отжига при твердофазном синтезе была ниже температуры плавления образца, определенной визуально, на ≈100–150°С. В ряде экспериментов образцы расплавляли при $p(O_2) = 1$ и 21 кПа и медленно (2-20 град/ч) охлаждали до заданной температуры. Полная характеристика синтезированных оксидов Ва_{*m*}Ві_{*m*+*n*}О_{*v*}, включая картины электронной дифракции в просвечивающем электронном микроскопе, представлены в работах [8, 9].

В синтезированных образцах методом иодометрического титрования [15] определяли среднюю степень окисления висмута Bi.

Картины рентгеновской дифракции снимали при комнатной температуре на установке Siemens D-500 с излучением $CuK_{\alpha 1}$ и монохроматором. Параметры ячеек с погрешностью ±0.002 Å рассчитывали методом профильного анализа.

БЛАГОДАРНОСТЬ

Автор выражает глубокую признательность О.Ф. Шахлевич (Институт физики твердого тела РАН), принявшей участие в выполнении рентгенофазового анализа.

ФОНДОВАЯ ПОДДЕРЖКА

Работа выполнена в рамках госзадания Института физики твердого тела РАН (№ 0032-2018-0005).

КОНФЛИКТ ИНТЕРЕСОВ

Автор заявляет об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Von Sholder R., H.Stobbe // Z. anorg. allg. Chem. 1941. Bd 247. H. 4. S. 392. doi 10.1002/zaac.19412470404
- Aurivillius B. // Ark. Kemi. Mineral. Geol. (A). 1943. Bd 16. N 17. P. 1.
- Von Sholder R., Ganter K.-W. // Z. anorg. allg. Chem. 1963. Bd 19. H. 5–6. S. 375. doi 10.1002/ zaac.19633190518
- Nakamura T., Kose S., Sata T. // J. Phys. Soc. Jap. 1971. Vol. 31. P. 1284. doi 10.1143/JPSJ.31.1284
- Takahashi T., Esaka T., Iwahara H. // J. Solid State Chem. 1976. Vol. 16. P. 317. doi 10.1016/0022-4596(76)90047-5
- Скориков В.М., Шевчук А.В., Неляпина Н.И. // ЖНХ. 1988. Т. 33. № 10. С. 2467.
- Cox D.E., Sleight A.W. // Acta Crystallogr. (B). 1979.
 Vol. 35. N 1. P. 1. doi 10.1107/S0567740879002417
- Клинкова Л.А., Николайчик В.И., Барковский Н.В., Федотов В.К. // ЖНХ. 1999. Т. 44. № 12. С. 2081; Klinkova L.A., Nikolaichik V.I., Barkovskii N.V., Fedotov V.K. // Russ. J. Inorg. Chem. 1999. Vol. 44. N 12. P. 1974.
- Nikolaichik V.I., Amelinckx S., Klinkova L.A., Barkovskii N.V., Lebedev O.I., Van Tendeloo G. // J. Solid State Chem. 2002. Vol. 163. N 1. P. 44. doi 10.1006/ jssc.2001.9362
- Клинкова Л.А., Николайчик В.И., Барковский Н.В., Федотов В.К. // ЖНХ. 2006. Т. 51. № 7. С. 1201; Klinkova L.A., Nikolaichik V.I., Barkovskii N.V., Fedotov V.K. // Russ. J. Inorg. Chem. 2006. Vol. 51. N 7. P. 1122. doi 10.1134/ S0036023606070175
- Барковский Н.В. // Зав. лаб. Диагностика материалов. 2019. Т. 85. № 8. С. 16. doi 10.26896/1028-6861-2019-85-8-16-28
- Барковский Н.В. // ЖАХ. 2015. Т. 70. № 11. С. 1171; Barkovskii N.V. // J. Anal. Chem. 2015. Vol. 70. N 11. P. 1346. doi 10.1134/ S1061934815090048
- Клинкова Л.А., Николайчик В.И., Барковский Н.В., Федотов В.К. // ЖНХ. 1997. Т. 42. № 6. С. 905; Klinkova L.A., Nikolaichik V.I., Barkovskii N.V., Fedotov V.K. // Russ. J. Inorg. Chem. 1997. Vol. 42. N 6. P. 810.
- Klinkova L.A., Nikolaichik V.I., Barkovskii N.V., Fedotov V.K. // J. Solid State Chem. 1999. Vol. 146. P. 439. doi 10.1006/ jssc.1999.8390
- Барковский Н.В. // ЖОХ. 2019. Т. 89. Вып. 2. С. 167. doi 10.1134/S0044460X1902001X; Barkovskii N.V. // Russ. J. Gen. Chem. 2019. Vol. 89. N 2. P. 173. doi 10.1134/S1070363219020014
- Клинкова Л.А., Барковский Н.В., Филатова М.В., Шевченко С.А. // Сверхпроводимость. Физика, химия, техника. 1992. Т. 5. № 9. С. 1691.
- Imai Y., Kato M., Koike Y., Sleight A.W. // Physica (C). 2003. Vol. 388–389. P. 449. doi 10.1016/S0921-4534(02)02572-8

Role of Oxygen in the Formation of Perovskite-Like Oxides of Homologous Series $Ba_m Bi_{m+n}O_v$ (m = 1-9; n = 0-3, 5, 7, 9)

N. V. Barkovskii*

State Physics of the Russian Academy of Sciences, Chernogolovka, 142432 Russia *e-mail: barkov@issp.ac.ru

Received September 18, 2020; revised October 12, 2020; accepted October 17, 2020

The effect of synthesis conditions on the phase composition and valence state of bismuth in perovskite-like oxides of $Ba_m Bi_{m+n}O_y$ (m = 1-9; n = 0-3, 5, 7, 9) homologous series was studied by X-ray diffraction and chemical analyses. The oxides synthesized at $p(O_2) = 1$ kPa almost do not contain Bi(V), are characterized by an average oxidation number of bismuth $\overline{Bi} = 3.00-3.01$, and, consequently, are stoichiometric in oxygen content. These phases are thermodynamically stable from the crystallization region to 20°C. Under cooling below the solidus line, $Ba_m Bi_{m+n}O_y$ oxides are oxidized, as shown by an increase of $\overline{Bi} > 3.06$. The final oxidation products at $\approx 700-20^{\circ}$ C are $BaBiO_3$ and $Ba_4Bi_{13}^{+3.00}O_{23.5}$ oxides. Perovskite-like $Ba_mBi_{m+n}O_y$ oxides with an average oxidation number $\overline{Bi} > 3.06$ were not been found. At $p(O_2) = 21-100$ kPa, one cannot obtain individual oxides of this series which contain a significant amount of Bi(V) or Bi(V) only.

Keywords: homologous series, Ba–Bi–O perovskite-like oxides, valence state, X-ray diffraction patterns, chemical analysis