УДК 543.062

РОЛЬ КИСЛОРОДА В ФОРМИРОВАНИИ ПЕРОВСКИТОПОДОБНЫХ ОКСИДОВ ГОМОЛОГИЧЕСКОГО РЯДА Ва_мВі_{м+n}O_v

(m = 1-9; n = 0-3, 5, 7, 9)

© 2021 г. Н. В. Барковский*

Институт физики твердого тела Российской академии наук, ул. Академика Осипьяна 2, Черноголовка, 142432 Россия *e-mail: barkov@issp.ac.ru

Поступило в Редакцию 18 сентября 2020 г. После доработки 12 октября 2020 г. Принято к печати 17 октября 2020 г.

Методами рентгенофазового и химического анализа исследовано влияние условий синтеза на фазовый состав и валентное состояние висмута в перовскитоподобных оксидах гомологического ряда $Ba_mBi_{m+n}O_y$ ($m=1-9;\ n=0-3,\ 5,\ 7,\ 9$). Оксиды, полученные при $p(O_2)=1$ кПа, практически не содержат Bi(V), характеризуются средней степенью окисления висмута Bi=3.00-3.01 и термодинамически устойчивы от области кристаллизации до $20^{\circ}C$. При охлажднии ниже линии солидуса происходит окисление оксидов $Ba_mBi_{m+n}O_y$ и возрастание степени окисления (Bi>3.06). Конечные продукты окисления при $\sim 700-20^{\circ}C-$ оксиды $BaBiO_3$ и $Ba_4Bi_{13}^{+3.00}O_{23.5}$. Перовскитоподобные оксиды $Ba_mBi_{m+n}O_y$ со средней степенью окисления висмута Bi>3.06 не обнаружены. Индивидуальные оксиды этого ряда со значительным количеством Bi(V) или только Bi(V) не могут быть получены при $p(O_2)=21-100$ кПа.

Ключевые слова: гомологические ряды, перовскитоподобные оксиды Ba–Bi–O, валентное состояние, картины рентгеновской дифракции, химический анализ

DOI: 10.31857/S0044460X21010170

Исследования системы Ba-Bi-O имеют более чем полувековую историю. Первый оксид этой системы $Ba(BiO_3)_2 \cdot 4H_2O$ синтезирован при кипячении $NaBiO_3$ с 15%-ным раствором $BaCl_2$ [1]. В полученном оксиде, по данным иодометрического титрования, весь висмут имеет степень окисления +5. Однако индивидуальность полученного соединения не подтверждена рентгенографически.

Методом порошковой рентгеновской дифракции обнаружен твердый раствор $Ba_{2x}Bi_{2(1-x)}O_{3-x}$ с перовскитоподобной структурой (x=0.22-0.50, катионное соотношение Ba— $Bi\ 0.28-1.0$) [2]. В образцах, полученных на воздухе или в атмосфере сухого азота при $850-1000^{\circ}$ С, по данным иодометрического титрования, практически нет висмута со степенью окисления +5. При последующем низкотемпературном отжиге при 550° С в кислородсодержащей атмосфере образцы изменяли красный

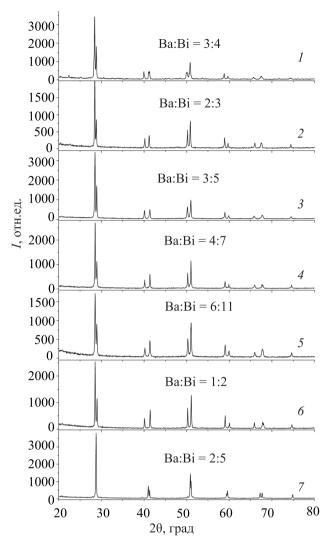
цвет на черный, и доля ионов Bi^{5+} доходила до 34% от общего количества висмута. Таким образом, в исследованных твердых растворах висмут находится в «смешанно-валентном» состоянии $\mathrm{Bi}(\mathrm{III})$ и $\mathrm{Bi}(\mathrm{V})$. Для количественной характеристики валентного состояния висмута в таких образцах используют среднюю степень окисления висмута ($\overline{\mathrm{Bi}}$). В полученных образцах [2] максимальное значение $\overline{\mathrm{Bi}}$ = 3.68.

При отжиге смеси оксидов бария и висмута в соотношении [Ba]:[Bi] = 1:2 в атмосфере кислорода при 1000° С с последующим медленным охлаждением получен оксид, в котором, по данным волюмометрического определения активного кислорода, средняя степень окисления висмута $\overline{\text{Bi}}$ = 3.46 [3]. Рентгенографические данные оксида не приведены. Для впервые синтезированного оксида $\overline{\text{BaBiO}}_3$ на основании данных химическо-

Состав фазы $Ba_m Bi_{m+n} O_v$			Параметры (± 0.002) ячейки, Å			V, Å ³
m	n	[Ba]:[Bi]	а	b	С	, A
6	1	6:7	4.374	4.402	4.514	86.91
4	1	4:5	4.365	4.385	4.520	86.52
3	1	3:4	4.362	4.382	4.511	86.22
2	1	2:3	4.361	4.375	4.502	85.90
3	2	3:5	4.353	4.367	4.503	85.60
6	5	6:11	4.362	4.364	4.486	85.39
1	1	1:2	4.353	4.358	4.495	85.27
1	5	4:9	4.367	4.390	4.405	84.45
2	3	2:5	4.352	4.359	4.401	83.49
4	7	4:11	4.352	4.359	4.400	83.49
1	2	1:3	4.374			83.68
4	9	4:13	4.370			83.45

Параметры и объемы элементарных ячеек перовскитоподобных оксидов гомологического ряда $\mathrm{Ba}_{m}\mathrm{Bi}_{m+n}\mathrm{O}_{v}$

го анализа рассчитано значение $\overline{\mathrm{Bi}}$ = 4.04, позже уточненное (4.00) [4–6]. Методами рентгеновской дифракции и нейтронной дифракции показано [7], что перовскитовая ячейка этого оксида удвоена ($\mathrm{Ba_2Bi^{3+}Bi^{5+}O_6}$) и в ней ионы висмута $\mathrm{Bi^{3+}}$ и $\mathrm{Bi^{5+}}$ в эквимолярном соотношении занимают два набора неэквивалентных позиций.


Сиспользованиемметодов визуального политермического, рентгенофазового, дифференцальнотермического, термогравиметрического, локального рентгеноспектрального, химического, элементного анализа и электронной дифракции в просвечивающем электронном микроскопе обогащенной висмутом системе Ва-Ві-О доказано отсутствие твердых растворов замещения $Ba_{2x}Bi_{2(1-x)}O_{3-x}$ [8, 9]. В этой области существуют два гомологических ряда оксидов — $Ba_m Bi_{m+n} O_v$ (m = 1-9; n = 0-3, 5, 7, 9) с перовскитоподобной и $Ba_2Bi_{8+n}O_v$ (n = 0, 1, 2, 4, 6, 8 и 10) с ромбоэдрической структурой [10]. Все обнаруженные оксиды бария-висмута характеризуются упорядоченной по барию и висмуту перовскитоподобной или ромбоэдрической структурой, что подтверждается наличием индивидуальной сверхструктуры (метод электронной дифракции) и картинами высокого разрешения в просвечивающем электронном микроскопе [8-10].

В настоящей работе представлены результаты исследования влияния условий синтеза на фазовый состав и валентное состояние висмута в перовскитоподобных оксидах гомологического ряда $\mathrm{Ba}_m\mathrm{Bi}_{m+n}\mathrm{O}_y$. Поиск оптимальных условий синтеза оксидов бария—висмута проведен исходя из обла-

стей их термической устойчивсти на схемах фазовых равновесий системы Ва-Ві-О, построенных ранее [8]. Для исследования фазообразования оксидов образцы отжигали при различных парциальных давлениях кислорода (1–101 кПа) в широких интервалах температуры и времени. Фазовый состав закаленных в жидком азоте образцов контролировали по картинам рентгеновской дифракции. Полученные образцы тестировали разработанными методами [11, 12] на наличие или отсутствие Bi(V). При положительных результатах методом иодометрического титрования определяли количество Bi(V) и рассчитывали среднюю степень окисления висмута $\overline{\text{Bi}}$:

Все оксиды $Ba_m Bi_{m+n} O_y$ кристаллизуются в ячейке перовскита. На рис. 1 представлены картины рентгеновской дифракции, демонстрирующие главную особенность оксидов гомологического ряда $Ba_m Bi_{m+n} O_y$ — их изоструктурность. Близкие параметры ячеек (см. таблицу) и наложение рефлексов затрудняют их идентификацию по картинам рентгеновской дифракции, но индивидуальные картины электронной дифракции [8, 9] позволяют справиться с этой проблемой. Элементарная ячейка оксидов $Ba_m Bi_{m+n} O_y$ — ромбическая (рис. 1) за исключением фаз с соотношением [Ba]:[Bi] = 1:3 и 4:13 с кубической ячейкой.

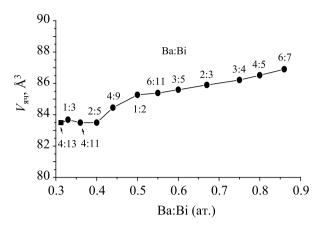

Параметры a и b мало зависят от катионного состава фаз $\mathrm{Ba}_m\mathrm{Bi}_{m+n}\mathrm{O}_y$. Объемы ячеек [8] с увеличением доли висмута в оксиде $\mathrm{Ba}_m\mathrm{Bi}_{m+n}\mathrm{O}_y$ имеют тенденцию к уменьшению (рис. 2) по причине уменьшения параметра c, что особенно заметно на обогащенных висмутом оксидах ([Ba]:[Bi] = 4:11—

Рис. 1. Картины рентгеновской дифракции изоструктурных перовскитоподобных оксидов гомологического ряда $\mathrm{Ba}_m\mathrm{Bi}_{m+n}\mathrm{O}_y$: m=3, n=1 (l); m=2, n=1 (2); m=3, n=2 (3); m=4, n=3 (4); m=6, n=5 (5); m=1, n=1 (6); m=2, n=3 (7). Оксиды получены при $p(\mathrm{O}_2)=1$ кПа методом твердофазного синтеза последовательным отжигом стехиометрических смесей $\mathrm{Ba}(\mathrm{NO}_3)_2$ и $\mathrm{Bi}_2\mathrm{O}_3$, начиная от $600^\circ\mathrm{C}$ и окончательно при 880 (1-4), 780 (5, 6) и $750^\circ\mathrm{C}$ (7).

4:9). Минимальный объем ромбической ячейки найден для фазы оксидов $Ba_mBi_{m+n}O_y$ с соотношением [Ba]:[Bi]=2:5 (V=83.49 Å 3) (рис. 1, 7). В этой фазе степень ромбического искажения уменьшена по сравнению с остальными членами ряда, для которых значения объемов находятся в интервале V=84.45 ([Ba]:[Bi]=4:9) -86.91 Å 3 ([Ba]:[Bi]=6:7).

В области ликвидус—солидус при $p(O_2) = 1$ кПа формируются 16 фаз оксида $Ba_m Bi_{m+n} O_y$ с соотношениями [Ba]:[Bi] = 6:7, 4:5, 7:9, 3:4 (рис. 1, I), 5:7,

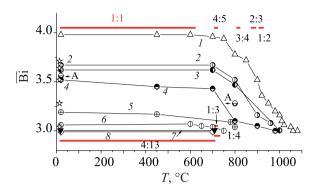


Рис. 2. Зависимость объема элементарной ячейки оксидов гомологического ряда $Ba_m Bi_{m+n} O_y$ от соотношения [Ba]:[Bi], по данным настоящей работы и работы [8]. Все оксиды, за исключением оксида с соотношением [Ba]:[Bi] = 4:13 (\blacksquare), получены при $p(O_2) = 1$ кПа.

2:3 (2), 5:8, 3:5 (3), 4:7 (4), 6:11 (5), 1:2 (6), 4:9, 2:5 (7), 3:8, 4:11 и 1:3 [8]. Согласно данным иодометрического титрования, за исключением оксидов с соотношениями [Ba]:[Bi] = 6:7 и 4:5 ($\overline{\text{Bi}}$ = 3.01), во всех остальных оксидах $\text{Ва}_{m}\text{Ві}_{m+n}\text{О}_{y}$, синтезированных при $p(\text{O}_{2})$ = 1 кПа, отсутствует Вi(V) ($\overline{\text{Bi}}$ = 3.00–3.01). Это подтверждается химическими тест-методами [11, 12]: образцы оксидов $\text{Ва}_{m}\text{Ві}_{m+n}\text{О}_{y}$ с $\overline{\text{Bi}}$ = 3.00 не окисляют Mn(II) в Mn(VII), Ce(III) в Се(IV), а из органических реагентов — метиловый красный, дифениламин, основание Арнольда. Следовательно, фазы $\text{Ва}_{m}\text{Ві}_{m+n}\text{О}_{y}$ представляют собой оксиды бария—висмута(III) со стехиометрическим количеством кислорода.

Если при $p(O_2) = 1$ кПа наиболее обогащенные висмутом фазы оксидов $Ba_m Bi_{m+n} O_y$ с соотношениями [Ba]:[Bi] = 3:8, 4:11 и 1:3 формируются в области ликвидус—солидус, то на воздухе $[p(O_2) = 21$ кПа] эти оксиды и близкая по соотношению к [Ba]:[Bi] = 1:3 фаза [Ba]:[Bi] = 4:13 обнаружена в субсолидусной области [8]. Эта фаза имеет широкую по температуре область термической устойчивсти (20–710°С). Завершает ряд оксидов $Ba_m Bi_{m+n} O_y$, формирующихся на воздухе в области ливидус—солидус, фаза с соотношением [Ba]:[Bi] = 2:5.

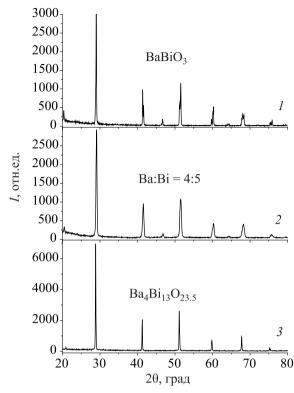
Таким образом, перовскитоподобные оксиды гомологического ряда $Ba_m Bi_{m+n} O_y$ (m=1-9; n=0-3, 5, 7, 9) формируются преимущественно в области ливидус—солидус [8]. Независимо от парциального давления кислорода [$p(O_2) = 1$ и 21 кПа] образцы,

Рис. 3. Зависимость средней степени окисления висмута $\overline{\mathrm{Bi}}$ от температуры закалки T образцов оксидов бариявисмута с соотношениями $[\mathrm{Ba}]:[\mathrm{Bi}]=1:1$ (I), 4:5 (2), 3:4 (3), 2:3 (4), 1:2 (5), 1:3 (6), 4:13 (7), 1:4 (8). Образцы, за исключением 6–8, расплавлены на воздухе, медленно охлаждены до температуры T и закалены в жидком азоте. Прямые линии – области термической устойчивости фаз оксидов $\mathrm{Ba}_m\mathrm{Bi}_{m+n}\mathrm{O}_y$ аналогичного состава. Звездочкой отмечены значения $\overline{\mathrm{Bi}}$, рассчитанные для двухфазных смесей ($[\mathrm{Ba}]:[\mathrm{Bi}]=1:1$ –4:13).

закаленные от линии ликвидуса, обеднены кислородом и не содержат Bi(V). Можно утверждать, что в оксидах $Ba_mBi_{m+n}O_y$ находится незначительное количество Bi(V) или он отсутствует.

Область термической устойчивсти оксидов $Ba_m Bi_{m+n} O_y$ зависит от парциального давления кислорода [8]. Фазы оксидов $Ba_m Bi_{m+n} O_y$, полученные при $p(O_2)=1$ кПа, термодинамически устойчивы в интервале температур от области кристаллизации до 20° С. Охлаждение расплава Ba-Bi-O в пределах области кристаллизации на воздухе сопровождается незначительным поглощением кислорода при изменении значений $\overline{Bi}=3.00-3.06$ без разложения сформировавшихся в расплаве фаз оксидов $Ba_m Bi_{m+n} O_y$. Область термической устойчивсти последних, как правило, составляет $10-20^{\circ}$ С [8]. Как отмечалось выше, фазы с более широкими диапазонами термической устойчивсти формируются на воздухе в субсолидусной области.

Фазы оксидов $Ba_m Bi_{m+n} O_y$, сформировавшиеся в расплаве, при охлаждении на воздухе ниже линии солидуса окисляются, о чем свидетельствует возрастание значений \overline{Bi} . Продукты окисления — кислорододефицитные фазы оксидов гомологического ряда $Ba_{2n}Bi_{n+1}^{3+}Bi_{n-1}^{5+}O_{6n-1}$ ($n=1,2,\ldots$): $BaBiO_{2.55}$, $BaBiO_{2.83}$, $BaBiO_{2.88}$, полностью окисленный $BaBiO_3$ [13, 14] и фаза того же ряда оксидов $Ba_m Bi_{m+n} O_y$, обогащенная висмутом. В субсолидусной обла-


сти при охлаждении образцов до 20°С происходят окислительно-восстановительные реакции (1)–(5). 9Ba₄Bi₅⁺³O_{11.5} +8O₂ \rightarrow 32BaBiO₃ +Ba₄Bi₁₃⁺³O_{23.5}, (1) 9Ba₃Bi₄⁺³O₉ +5.75O₂ \rightarrow 23BaBiO₃ +Ba₄Bi₁₃⁺³O_{23.5}, (2) 9Ba₂Bi₃⁺³O_{6.5} +3.5O₂ \rightarrow 14BaBiO₃ +Ba₄Bi₁₃⁺³O_{23.5}, (3) 9BaBi₂⁺³O₄ +1.25O₂ \rightarrow 5BaBiO₃ +Ba₄Bi₁₃⁺³O_{23.5}, (4) 9BaBi₃⁺³O_{5.5} +0.25O₂ \rightarrow BaBiO₃ +2Ba₄Bi₁₃⁺³O_{23.5}. (5)

В интервале температур 20–710°С образуются продукты окисления $BaBiO_3$ и $Ba_4Bi_{13}^{+3.00}O_{23.5}$. Поскольку оксиды $Ba_mBi_{m+n}O_y$ легко окисляются на воздухе, достоверную информацию о фазовом составе исследуемых образцов можно получить только закалкой в жидком азоте. Закаленные на воздухе образцы всегда окислены и включают примесные продукты окисления.

Ha рис. 3 показан характер изменения $\overline{Bi} = f(T)$ для образцов оксидов с соотношениями [Ва]:[Ві] = 1:1 (1), 4:5 (2), 3:4 (3), 2:3 (4), 1:2 (5), 1:3 (6), 4:13 (7) и 1:4 (8) при их охлаждении на воздухе. Для каждой фазы такого же номинального состава показаны области их термической устойчивости. Образцы оксидов с соотношениями [Ba]:[Bi] = 4:5-1:3 (2-6) при температуре ниже области их термической устойчивости являются двухфазными [8]. Образцы интенсивно поглощают кислород при 750-900°C (4:5), 500-800°С (3:4), 700-800°С (2:3), о чем свидетельствует возрастание значений $\overline{\mathrm{Bi}}$. В отличие от обогащенных барием образцов оксидов с соотношениями [Ba]:[Bi] = 1:1-2:3 (1-4), образец с соотношением [Ва]:[Ві] = 1:2 (рис. 3, 5) поглощает незначительное количество кислорода: в охлажденном до 20°C образце \overline{Bi} = 3.19. С увеличением доли висмута в образцах способность к поглощению кислорода значительно снижается. Оксид с соотношением [Ва]:[Ві] = 1:3 практически не поглощает кислорода (\overline{Bi} = 3.06 при 20°C), а оксиды с соотношениями [Ba]:[Bi] = 4:13 и 1:4 не поглощают кислород вообще (рис. 3, 7, 8). Фаза оксида ([Ba]:[Bi] = 1:3) при $p(O_2) = 21 \ к\Pi a - продукт твердофазных$ превращений - существует в узком температурном интервале температур (710-720°C). Обнаруженный в образце шихтового оксида ([Ва]:[Ві] = 1:3) при температуре ниже 700°C сверхстехиометричный кислород обусловлен присутствием оксида ВаВіО3, образовавшегося при разложении фазы оксида с соотношениями [Ва]:[Ві] = 1:3 в соответствии с уравнением (5).

Поглощение кислорода обогащенными висмутом образцами оксидов Ва-Ві-О обусловлено окислением кислорододефицитных фаз BaBiO_{2.55} → ${\rm BaBiO_{2.83}}
ightarrow {\rm BaBiO_{2.88}}
ightarrow {\rm BaBiO_{3}} - {\rm продуктов}$ разложения оксидов $Ba_m Bi_{m+n} O_v$. В двухфазных образец шихтового состава оксидов с соотношениями [Ba]:[Bi] = 4:5, 3:4, 2:3, 1:2 и 1:3 количество кислорододефицитных фаз $Ba_{2n}Bi_{n+1}^{3+}Bi_{n-1}^{5+}O_{6n-1}$ уменьшается с обогащением фаз висмутом. Доля поглощенного кислорода уменьшается в этом же направлении, о чем свидетельствует снижение значений $\overline{\text{Bi}}$ (рис. 3). В образцах, полученных из расплава, как правило, средняя степень окисления висмута Ві занижена по сравнению с керамическими образцами (точки с пометкой «А» на рис. 3), что объясняется более высокой плотностью первых и образованием корки расплава на поверхности, препятствующей диффузии кислорода вглубь образца.

Разложение и окисление оксидов $Ba_m Bi_{m+n} O_v$ с участием кислорододефицитных фаз ВаВіО2.55, ВаВіО283, ВаВіО288 и образованием конечного продукта окисления ВаВіО3 описываются суммарными реакциями (1-5). Например, фаза оксида с соотношением [Ва]:[Ві] = 2:3 формируется из расплава путем протекания последовательных жидкофазных превращений с участием ВаВіО2 55 (1000-1015°C) и оксидов с соотношениями $[Ba]:[Bi] = 7:8 (990-1000^{\circ}C), 6:7 (980-990^{\circ}C), 9:11$ (965–980°C), 4:5 (945–965°C), 7:9 (925–945°C), 3:4 (910–925°С), 5:7 (890–910°С) [8]. Фаза оксида с соотношением [Ва]:[Ві] = 2:3 существует в интервале температур 875-890°C. Ниже 875°C фазовые превращения протекают без участия жидкой фазы. Оксид с соотношением [Ва]:[Ві] = 2:3 окисляется до ВаВіО_{3-г} и обогащенных висмутом фаз оксидов $Ba_m Bi_{m+n} O_v$ с соотношениями [Ba]: [Bi] = 5:8(860–875°C), 7:5 (835–860°C), 4:7 (825–835°C), 6:11 (820–835°C), 1:2 (810–920°C), 4:9 (795–810°C), 2:5 (780–795°C), 3:8 (755–780°C), 4:11 (720–755°C), 1:3 (710–720°С) и 4:13 (20–710°С). Состав соседствующей с оксидом $Ba_m Bi_{m+n} O_v$ кислорододефицитной фазы $\mathrm{Ba}_{2n}\mathrm{Bi}_{n+1}^{3+}\mathrm{Bi}_{n-1}^{5+}\mathrm{O}_{6n-1}$ в интервале температур 650-875°C требует уточнения. Поскольку оксид ВаВіО₃ начинает терять кислород при ~650–700°С [14], в образцах, закаленных при 650–875°C, должны присутствовать кислорододефицитные фазы $BaBiO_{2.97}(n = 15)$, $BaBiO_{2.95}(n = 10)$, $BaBiO_{2.93}(n = 7)$, BaBiO_{2 92} (n = 6), BaBiO_{2 90} (n = 5) [13].

Рис. 4. Рентгеновская дифракция граничных оксидов — моноклинного BaBiO₃ (I) и кубического Ba₄Bi^{+3.00}O_{23.5} (J), образующих протяженную по составу (J0-76.5 мол% BiO_{1.5}) и по температуре (J0-710°C) двухфазную область при J0-2 = J1 кПа [J3], а также двухфазного образца шихтового состава (J3) с соотношением [J3]:[J3] = J4:5, полученного на воздухе медленным охлаждением расплава от J30 до J30°C.

Рентгенографически идентифицировать граничные фазы в двухфазных областях достаточно сложно [15], поскольку рефлексы $BaBiO_3$ (или кислорододефицитной фазы) и оксида $Ba_4Bi_{13}^{+3.00}O_{23.5}$ накладываются, но благодаря разным картинам электронной дифракции могут быть обнаружены [8, 9]. Картины рентгеновской дифракции, представленные на рис. 4, — яркое тому подтверждение. Медленное (2 град/ч) охлаждение расплавленного шихтового образца оксида $Ba_mBi_{m+n}O_y$ ([Ba]:[Bi] = 4:5) до 20°C приводит к образованию двухфазной мелкодоменной смеси. По данным рентгеновской дифракции, этот образец оксида является псевдокубическим (рис. 4, 2).

Результаты настоящей работы позволяют объяснить имеющиеся в литературе немногочисленные данные о валентном состоянии висмута в оксидах $Ba_m Bi_{m+n} O_y$, синтезированных в атмосфере кислорода. Рассчитанные из экспериментальных

данных [2] значения \overline{Bi} , равные 3.42, 3.62 и 3.68 соответственно для образцов оксидов с соотношениями [Ba]:[Bi] = 2:3, 3:4 и 4:5, отожженных при 550°C, не являются характеристикой индивидуальных фаз. В условиях синтеза при $p(O_2) =$ 101 кПа и T = 550°C эти значения $\overline{\text{Bi}}$ характерны для двухфазной смеси, состоящей из ВаВіО₃ и оксида с соотношением [Ba]:[Bi] = 4:11 (\overline{Bi} = 3.00) [8]. Расчет средней степени окисления висмута для трех шихтовых образцов с соотношениями [Ba]:[Bi] = 2:3, 3:4 и 4:5 дает значения \overline{Bi} = 3.47, 3.61 и 3.69 соответственно, хорошо согласующиеся (кроме первого) с экспериментально полученными [2]. Доли кислорода и Bi(V) только в одном из образцов $Ba_{2x}Bi_{2(1-x)}O_{3-x}$ (x = 0.262, [Ba]:[Bi] = 4:11) аномально завышены ($\overline{Bi} = 3.16$). Такая средняя степень окисления висмута характеризует двухфазные смеси, обогащенные барием, близкие по катионному составу к оксидам с соотношениями [Ва]:[Ві] = 4:9 и 1:2.

Данные настоящей работы подтверждают, что в области ликвидуса образцы оксидов системы Ba–Bi–O обеднены кислородом, что хорошо согласуется с полученными ранее результатами [2]. Для четырех образцов $Ba_{2x}Bi_{2(1-x)}O_{3-x}$ [x=0.262, [Ba]:[Bi] = 4:11; 0.363 (4:7), 0.389 (~5:8), 0.406 (2:3)] степени окисления \overline{Bi} = 3.01–3.02. В образцах оксидов, синтезированных на воздухе или в атмосфере сухого азота при 850–1000°C [2], находятся упорядоченные по катионам оксиды $Ba_mBi_{m+n}O_y$ [8]. Низкотемпературный (550°C) окислительный отжиг таких образцов приводит к спинодальному распаду оксидов $Ba_mBi_{m+n}O_y$ с образованием мелкодоменной смеси псевдокубических фаз (по данным рентгеновской дифракции [8, 16]).

Как показано выше, фаза с соотношением [Ba]:[Bi]=1:2 существует в субсолидусной области только при $p(O_2)=1$ кПа (рис. 1, 6) и не содержит Bi(V) ($\overline{Bi}=3.00$) в отличие от двухфазной смеси с соотношениями [Ba]:[Bi]=1:1 и 4:11 такого же валового состава, полученной при $p(O_2)=101$ кПа, для которой значение $\overline{Bi}=3.46$ [23% Bi(V)] [3]. Оксид $Ba(Bi^{5+}O_3)_2 \cdot 4H_2O$ [1] не может присутствовать на схемах фазовых соотношений при $p(O_2)=1-101$ кПа, поскольку независимо от парциального давления кислорода в обогащенной висмутом области системы Ba-Bi-O формируются фазы, практически не содержащие Bi(V). По всей вероятности, эта фаза может быть обнаружена при

 $p(O_2) >> 101$ кПа. Как показано ниже, высокое давление кислорода не гарантирует значительного повышения доли Bi(V).

Предпринята попытка получения сверхпроводящего «электрондопированного» оксида (Ba_{0.6}Bi_{0.4})BiO_{2.92} при высоком давлении кислорода [17] с катионными соотношениями [Ва]:[Ві] = 0.59:1.41, 0.43, 3:7. Доля кислорода (у), по данным иодометрического титрования, составила 2.92, $\overline{\text{Bi}}$ = 3.30 [15% Ві(V)], несмотря на достаточно высокое давление кислорода при окончательном отжиге $[6 \times 10^7 \, \text{Па} \, (600 \, \text{атм}), 400^{\circ} \text{C}]$. Полученный оксид не проявляет сверхпроводящих свойств, кристаллизуется в кубической структуре перовскита (параметр не приведен). По всей вероятности, как и в работе [2], получена мелкодоменная смесь псевдокубических оксидов $Ba_m Bi_{m+n} O_v$, по данным рентгеновской дифракции.

Таким образом, в индивидуальных перовскитоподобных оксидах $Ba_m Bi_{m+n} O_v$ отсутствует висмут со средней степенью окисления $\overline{\text{Bi}} > 3.06$. Доля кислорода в оксидах $Ba_m Bi_{m+n} O_v$, обусловленная величиной \overline{Bi} = 3.00–3.06, может считаться критической. В отличие от оксидов $Ba_m Bi_{m+n} O_v$ [8] низкотемпературных фаз, обогащенных кислородом и Bi(V), не обнаружено. Большинство оксидов Ва"Ві", О, стехиометричны по кислороду и представляют собой оксиды бария-висмута(III). Описанные в литературе образцы номинальных составов, соответствующих оксидам $Ba_m Bi_{m+n} O_v$, со средней степенью окисления $\overline{Bi} > 3.06$ представляют собой двухфазные смеси, состоящие из ВаВіОз и кислорододефицитных фаз гомологического ряда $Ba_{2n}Bi_{n+1}^{3+}Bi_{n-1}^{5+}O_{6n-1}$ (n=1, 2, ...): $BaBiO_{2.55}$, ${\rm BaBiO}_{2.83},\ {\rm BaBiO}_{2.88}\ [13,\ 14]$ – и соседней фазы того же ряда оксидов $Ba_m Bi_{m+n} O_v$, обогащенной висмутом. При $p(O_2) = 21-100$ кПа индивидуальные оксиды $Ba_m Bi_{m+n} O_v$, содержащие в значительном количестве Bi(V) или только Bi(V), не могут быть получены. Вероятно, оксиды $Ba_m Bi_{m+n} O_v$ имеют незначительную область гомогенности по кислороду, обусловленную смешанно-валентным состоянием висмута в пределах средней степени окисления $\overline{Bi} = 3.00-3.06$. Кислород незначительно растворяется в расплаве Ва-Ві-О, полученном в кислородсодержащей атмосфере, поскольку при кристаллизации закалкой можно получить оксиды с низкой долей Bi(V) ($\overline{Bi} = 3.02-3.06$). Фазы оксидов $\mathrm{Ba}_{m}\mathrm{Bi}_{m+n}\mathrm{O}_{v}$ со средней степенью окисления

 $\overline{\text{Bi}}$ = 3.00–3.01 формируются в атмосфере аргона, $p(\text{O}_2)$ =1 кПа, и существуют в интервале температур от области кристаллизации до комнатной.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Однофазные образцы оксидов $Ba_m Bi_{m+n} O_v$ синтезированы в атмосфере аргона, $p(O_2) = 1 \ \kappa \Pi a$, при последовательных отжигах шихты, состоящей из Ba(NO₃)₂ (XЧ) и оксида Bi₂O₃ (ОСЧ. 13-3), начиная от 600°С. Образец оксида с соотношением [Ba]:[Bi]= 4:13 получен при $p(O_2) = 21$ кПа. Закаленные образцы оксидов гомогенизировали измельчением и прессованием после каждого отжига с шагом 100 град по 24 ч. Температура окончательного отжига при твердофазном синтезе была ниже температуры плавления образца, определенной визуально, на ≈100-150°С. В ряде экспериментов образцы расплавляли при $p(O_2) = 1$ и 21 кПа и медленно (2-20 град/ч) охлаждали до заданной температуры. Полная характеристика синтезированных оксидов $Ba_m Bi_{m+n} O_v$, включая картины электронной дифракции в просвечивающем электронном микроскопе, представлены в работах [8, 9].

В синтезированных образцах методом иодометрического титрования [15] определяли среднюю степень окисления висмута \overline{Bi} .

Картины рентгеновской дифракции снимали при комнатной температуре на установке Siemens D-500 с излучением $CuK_{\alpha 1}$ и монохроматором. Параметры ячеек с погрешностью ± 0.002 Å рассчитывали методом профильного анализа.

БЛАГОДАРНОСТЬ

Автор выражает глубокую признательность О.Ф. Шахлевич (Институт физики твердого тела РАН), принявшей участие в выполнении рентгенофазового анализа.

ФОНДОВАЯ ПОДДЕРЖКА

Работа выполнена в рамках госзадания Института физики твердого тела РАН (№ 0032-2018-0005).

КОНФЛИКТ ИНТЕРЕСОВ

Автор заявляет об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Von Sholder R., H.Stobbe // Z. anorg. allg. Chem. 1941.
 Bd 247. H. 4. S. 392. doi 10.1002/zaac.19412470404
- Aurivillius B. // Ark. Kemi. Mineral. Geol. (A). 1943. Bd 16. N 17. P. 1.
- Von Sholder R., Ganter K.-W. // Z. anorg. allg. Chem. 1963. Bd 19. H. 5–6. S. 375. doi 10.1002/ zaac.19633190518
- Nakamura T., Kose S., Sata T. // J. Phys. Soc. Jap. 1971.
 Vol. 31. P. 1284. doi 10.1143/JPSJ.31.1284
- Takahashi T., Esaka T., Iwahara H. // J. Solid State Chem. 1976. Vol. 16. P. 317. doi 10.1016/0022-4596(76)90047-5
- Скориков В.М., Шевчук А.В., Неляпина Н.И. // ЖНХ. 1988. Т. 33. № 10. С. 2467.
- Cox D.E., Sleight A.W. // Acta Crystallogr. (B). 1979.
 Vol. 35. N 1. P. 1. doi 10.1107/S0567740879002417
- Клинкова Л.А., Николайчик В.И., Барковский Н.В., Федотов В.К. // ЖНХ. 1999. Т. 44. № 12. С. 2081; Klinkova L.A., Nikolaichik V.I., Barkovskii N.V., Fedotov V.K. // Russ. J. Inorg. Chem. 1999. Vol. 44. N 12. P. 1974.
- 9. Nikolaichik V.I., Amelinckx S., Klinkova L.A., Barkovskii N.V., Lebedev O.I., Van Tendeloo G. // J. Solid State Chem. 2002. Vol. 163. N 1. P. 44. doi 10.1006/jssc.2001.9362
- 10. Клинкова Л.А., Николайчик В.И., Барковский Н.В., Федотов В.К. // ЖНХ. 2006. Т. 51. № 7. С. 1201; Klinkova L.A., Nikolaichik V.I., Barkovskii N.V., Fedotov V.K. // Russ. J. Inorg. Chem. 2006. Vol. 51. N 7. P. 1122. doi 10.1134/ S0036023606070175
- 11. *Барковский Н.В.* // Зав. лаб. Диагностика материалов. 2019. Т. 85. № 8. С. 16. doi 10.26896/1028-6861-2019-85-8-16-28
- 12. Барковский Н.В. // ЖАХ. 2015. Т. 70. № 11. С. 1171; Barkovskii N.V. // J. Anal. Chem. 2015. Vol. 70. N 11. P. 1346. doi 10.1134/ S1061934815090048
- 13. Клинкова Л.А., Николайчик В.И., Барковский Н.В., Федотов В.К. // ЖНХ. 1997. Т. 42. № 6. С. 905; Klinkova L.A., Nikolaichik V.I., Barkovskii N.V., Fedotov V.K. // Russ. J. Inorg. Chem. 1997. Vol. 42. N 6. P. 810.
- Klinkova L.A., Nikolaichik V.I., Barkovskii N.V., Fedotov V.K. // J. Solid State Chem. 1999. Vol. 146. P. 439. doi 10.1006/jssc.1999.8390
- 15. *Барковский Н.В.* // ЖОХ. 2019. Т. 89. Вып. 2. С. 167. doi 10.1134/S0044460X1902001X; *Barkovskii N.V.* // Russ. J. Gen. Chem. 2019. Vol. 89. N 2. P. 173. doi 10.1134/S1070363219020014
- 16. *Клинкова Л.А., Барковский Н.В., Филатова М.В., Шевченко С.А.* // Сверхпроводимость. Физика, химия, техника. 1992. Т. 5. № 9. С. 1691.
- 17. *Imai Y., Kato M., Koike Y., Sleight A.W.* // Physica (C). 2003. Vol. 388–389. P. 449. doi 10.1016/S0921-4534(02)02572-8

164 БАРКОВСКИЙ

Role of Oxygen in the Formation of Perovskite-Like Oxides of Homologous Series $Ba_m Bi_{m+n} O_v$ (m = 1-9; n = 0-3, 5, 7, 9)

N. V. Barkovskii*

State Physics of the Russian Academy of Sciences, Chernogolovka, 142432 Russia *e-mail: barkov@issp.ac.ru

Received September 18, 2020; revised October 12, 2020; accepted October 17, 2020

The effect of synthesis conditions on the phase composition and valence state of bismuth in perovskite-like oxides of $Ba_m Bi_{m+n} O_y$ (m=1-9; n=0-3, 5, 7, 9) homologous series was studied by X-ray diffraction and chemical analyses. The oxides synthesized at $p(O_2)=1$ kPa almost do not contain Bi(V), are characterized by an average oxidation number of bismuth $\overline{Bi}=3.00-3.01$, and, consequently, are stoichiometric in oxygen content. These phases are thermodynamically stable from the crystallization region to 20° C. Under cooling below the solidus line, $Ba_m Bi_{m+n} O_y$ oxides are oxidized, as shown by an increase of $\overline{Bi}>3.06$. The final oxidation products at $\approx 700-20^{\circ}$ C are $BaBiO_3$ and $Ba_4 Bi_{13}^{+3.00} O_{23.5}$ oxides. Perovskite-like $Ba_m Bi_{m+n} O_y$ oxides with an average oxidation number $\overline{Bi}>3.06$ were not been found. At $p(O_2)=21-100$ kPa, one cannot obtain individual oxides of this series which contain a significant amount of Bi(V) or Bi(V) only.

Keywords: homologous series, Ba–Bi–O perovskite-like oxides, valence state, X-ray diffraction patterns, chemical analysis