УДК 544.35.032.72

К 90-летию со дня рождения А.В. Суворова

ВЫСОКОТЕМПЕРАТУРНОЕ МАСС-СПЕКТРОМЕТРИЧЕСКОЕ ИССЛЕДОВАНИЕ СИСТЕМЫ TiO₂-Al₂O₃

© 2021 г. В. Л. Столярова^{*a*,*}, В. А. Ворожцов^{*a*,*b*}, Д. В. Шемчук^{*b*}, С. И. Лопатин^{*a*,*b*}, О. А. Богданов^{*b*}

^a Санкт-Петербургский государственный университет, Университетская наб. 7–9, Санкт-Петербург, 199034 Россия ^b Институт химии силикатов имени И.В.Гребенщикова Российской академии наук, Санкт-Петербург, 199034 Россия *e-mail: v.stolyarova@spbu.ru

> Поступило в Редакцию 31 мая 2021 г. После доработки 31 мая 2021 г. Принято к печати 23 июня 2021 г.

Представлены результаты изучения испарения и термодинамических свойств системы $TiO_2-Al_2O_3$ в интервале температур 2250–2710 К методом высокотемпературной масс-спектрометрии. Идентифицирован состав пара, определены парциальные давления пара TiO_2 , TiO и Al над исследованными образцами в указанном температурном интервале. Определены активности компонентов и избыточная энергия Гиббса в расплаве системы $TiO_2-Al_2O_3$ при 2345 К, свидетельствующие о незначительных отклонениях от идеальности.

Ключевые слова: термодинамические свойства, испарение, система оксид титана-оксид алюминия, высокотемпературная масс-спектрометрия

DOI: 10.31857/S0044460X21100115

Широкое применение люминесцентных материалов предъявляет новые требования к комплексу их физико-химических свойств. Среди них одно из наиболее актуальных - термостойкость люминофоров, применяющихся в мощных источниках света – прожекторах, фарах для автомобилей и железнодорожного транспорта, а также в авиатехнике. Именно для этих приложений в последние годы разрабатываются стеклокристаллические или поликристаллические термостойкие люминесцентные [1, 2] и композиционные материалы [3]. При разработке стеклокерамики нового поколения с заданными люминесцентными свойствами добавление зародышеобразователей (TiO₂ наряду с Al₂O₃ [4-7]), например, в кордиеритовую керамику приводит к объемной кристаллизации и образованию материалов с мелкозернистой микроструктурой с повышенной прочностью и с характерным фиолетовым или синим цветом. Однако эксплуатация таких материалов при высоких температурах может лимитироваться, в частности, протеканием селективного испарения компонентов, приводящего к изменению физико-химических свойств стеклокерамики [8].

Согласно фазовой диаграмме [9] (рис. 1), в системе TiO_2 — Al_2O_3 было идентифицировано только одно термически прочное соединение Al_2TiO_5 , плавящееся конгруэнтно при 2133 К. Экспериментальных данных об испарении и термодинамических свойствах системы TiO_2 — Al_2O_3 при высоких температурах не найдено. Термическая устойчивость керамики, полученной на основе

Рис. 1. Фазовая диаграмма системы TiO₂-Al₂O₃[9].

Al₂TiO₅, была изучена ранее [10]. Температурная зависимость энергии Гиббса образования Al₂TiO₅ из оксидов рассчитана в температурном интервале 298–2174 K [11].

Испарение и термодинамические свойства индивидуальных оксидов титана и алюминия при высоких температурах изучались неоднократно, результаты систематизированы и детально обсуждаются в монографиях [12, 13]. Следует отметить, что парциальные давления молекулярных форм пара над TiO₂ и Al₂O₃ в изотермических условиях значительно различаются.

 Al_2O_3 испаряется конгруэнтно в виде атомарных алюминия и кислорода, а также AlO и Al_2O (1)–(3).

$$Al_2O_3(\mathbf{x}) = 2 Al(\mathbf{r}) + 3 O(\mathbf{r}), \tag{1}$$

$$Al_2O_3(\mathbf{x}) = 2 AlO(\mathbf{r}) + O(\mathbf{r}), \qquad (2)$$

$$Al_2O_3(\mathbf{x}) = Al_2O(\mathbf{r}) + 2 O(\mathbf{r}).$$
(3)

В температурном интервале 2340–2490 К при постоянной температуре соотношение парциаль-

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 91 № 10 2021

ных давлений молекулярных форм пара над Al_2O_3 остается постоянным вплоть до полного испарения образца. Температурные зависимости парциальных давлений газообразных Al, AlO и Al₂O могут быть представлены уравнениями (4)–(6) [14].

 $logp(Al) [\Pi a] = -(26777\pm1373)/T + (10.98\pm0.57), \quad (4)$ $logp(AlO) [\Pi a] = -(30446\pm1600)/T + (11.46\pm0.66), \quad (5)$ $logp(Al_2O) [\Pi a] = -(29796\pm2113)/T + (11.53\pm0.88). \quad (6)$

Диоксид титана в температурном интервале 1900–2100 К переходит в пар в виде TiO_2 , TiO и атомарного кислорода [15–18]. Частичная потеря кислорода приводит к изменению состава конденсированной фазы от $\text{TiO}_{2.000}$ до $\text{TiO}_{1.973}$ [19]. Указанное нарушение стехиометрии приводит к изменению соотношения парциальных давлений TiO_2 и TiO.

В температурном интервале 2000–2300 К зависимости (7, 8) [19] парциальных давлений оксидов титана над TiO₂ от температуры принято считать наиболее достоверными [12, 13].

СТОЛЯРОВА и др.

Образец	Синтез		РФлА			Синтез		РФлА			
	TiO ₂	Al ₂ O ₃	TiO ₂	Al ₂ O ₃	Ti	Al	0	Ti	Al	0	
1	25	75	25.4	74.6	5.56	33.33	61.11	7.08	24.95	67.96	
2	33	67	30.0	70.0	7.60	30.88	61.52	8.61	24.11	67.28	
3	50	50	42.8	57.2	12.50	25.00	62.50	11.76	18.88	69.05	

Таблица 1. Состав образцов 1–3 системы TiO₂-Al₂O₃, по результатам синтеза и согласно данным рентгенофлуоресцентного анализа (РФлА)^а

^а Содержание оксидов дано в мол%, элементов – в ат%.

Таблица 2. Результаты рентгенофазового анализа (РФА) исследуемых образцов 1–3 системы TiO₂–Al₂O₃, полученных на первом этапе синтеза при 1573 К и на втором заключительном этапе синтеза при 1873 К

Образец	Температура синтеза, К	Основные фазы, идентифицированные методом РФА	Визуальная характеристика полученного образца			
1	1573	Преобладающая фаза – Al ₂ O ₃ [20], второстепенная фаза – TiO ₂ [21], также присутствует фаза Al ₂ TiO ₅ [22]	Плотно спеченное керамическое тело с мелкой равномерной пористостью. Трудно измельчался в агатовой ступке. Образец разбивался на мелкие фракции в стальной форме			
	1873	Преобладающая фаза –Al ₂ O ₃ , второстепенная фаза –Al ₂ TiO ₅	Плотное керамическое тело с равномерной пористостью. Образец измельчался в агатовой ступке			
2	1573	Примерно одинаковое количество фаз TiO ₂ и Al ₂ O ₃ , фаза Al ₂ TiO ₅ присутствует в незначительных количествах	Плотно спеченное керамическое тело с мелкой равномерной пористостью. Образец трудно измельчался в агатовой ступке, был разбит на мелкие фракции в стальной форме.			
	1873	Преобладающая фаза – Al_2TiO5, второстепенная фаза – Al_2O3	Плотное керамическое тело с равномерной пористостью. Образец измельчался в агатовой ступке			
3	1573	Преобладающая фаза – TiO ₂ , второстепенная фаза – Al ₂ O ₃ , фаза Al ₂ TiO ₅ присутствует в незначительных количествах	Плотно спеченное керамическое тело с мелкой равномерной пористостью. Трудно измельчался в агатовой ступке. Образец разбивался на мелкие фракции в стальной форме			
	1873	Преобладающая фаза – Al ₂ TiO ₅	Плотное керамическое тело с равномерной пористостью. Образец измельчался в агатовой ступке			

 $logp(TiO_2) [\Pi a] = -25120/T + 10.54,$ (7) $logp(TiO) [\Pi a] = -25450/T + 10.96.$ (8)

Таким образом, информация о высокотемпературном описании системы $TiO_2-Al_2O_3$ носит весьма фрагментарный характер. В связи с этим, нами изучено испарение и определены термодинамические свойства системы $TiO_2-Al_2O_3$ при высоких температурах масс-спектрометрическим эффузионным методом Кнудсена. Образцы керамики 1–3 системы TiO_2 – Al_2O_3 (табл. 1) получены методом твердофазного синтеза. Идентификация полученных образцов выполнена методами рентгенофазового и рентгено-флуоресцентного анализа. Как следует из данных, приведенных в табл. 1 и 2, а также на рис. 2, основные фазы в образцах 1–3 – корунд Al_2O_3 [20], TiO_2 [21] и Al_2TiO_5 [22]. Как следует из данных табл. 2 и рис. 2, оптимальная температура синтеза образцов 1–3 составляет 1873 К.

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 91 № 10 2021

1560

Puc. 2. Дифрактограммы образцов 1–3 (табл. 1), полученных в системе TiO₂–Al₂O₃; β – корунд Al₂O₃ [20], ν – TiO₂ [21], σ – Al₂TiO₅ [22]; образцы синтезированы при 1573 K (a), при 1873 K (б). *1* – 25 мол% TiO₂, 75 мол% Al₂O₃; *2* – 33 мол% TiO₂, 67 мол% Al₂O₃; *3* – 50 мол% TiO₂, 50 мол% Al₂O₃.

Винтервале температур 2250-2710 К масс-спектрометрическим эффузионным методом Кнудсена изучено испарение и термодинамические свойства системы TiO₂-Al₂O₃. Для определения состава пара над рассматриваемой системой проведено полное изотермическое испарение соединения Al₂TiO₅ (образец **3**) и образцов **1**, **2** (25 и 33 мол% ТіО₂ соответственно). При 2250 К в масс-спектрах пара над образцами 1–3 и над индивидуальным оксидом титана были идентифицированы ионы TiO⁺ и TiO₂⁺. При повышении температуры до 2350 К в масс-спектре пара было отмечено появление ионов Al^+ , AlO^+ и Al_2O^+ . Интенсивность ионов WO₃⁺ и WO₂⁺ – продуктов взаимодействия исследуемых образцов с материалом камеры, изготовленной из вольфрама, - была на уровне фоновых сигналов в масс-спектре.

Все идентифицированные в масс-спектре пара над образцами системы $TiO_2-Al_2O_3$ ионы – это продукты прямой ионизации соответствующих газообразных молекулярных форм пара. Об этом свидетельствовали найденные величины энергий появления указанных ионов, в пределах погрешности измерений совпадающие со значениями энергий ионизации соответствующих молекул [23]. Измеренные энергии появления ионов (± 0.3 эВ): TiO_2^+ (10.3), TiO^+ (7.0), Al^+ (6.0), AlO^+ (9.6), Al_2O^+ (7.8).

На кривой эффективности ионизации TiO⁺ при величине энергии ионизации (14.5±0.3) эВ наблюдался перелом, свидетельствующий о том, что ионы TiO⁺ образуются как при прямой ионизации молекул TiO, так и при диссоциативной ионизации TiO₂. Для определения соотношения интенсивностей молекулярных ионов TiO⁺ и TiO₂⁺ величины соответствующих ионных токов найдены при ионизирующем напряжении, превышающем энергии ионизации на 3 эВ. Полученное соотношение было принято во внимание при расшифровке масс-спектров пара над образцами системы TiO₂–Al₂O₃.

Парциальные давления молекулярных форм пара над образцами **1–3** определяли методом сравнения ионных токов (9).

$$p_i = \frac{I_i^+ T_i \sigma_s \gamma_s}{I_s^+ T_s \sigma_i \gamma_i}.$$
(9)

Здесь p_i – парциальное давление молекулярной формы пара *i*, I_i^+ - интенсивность ионного тока, возникающего при ионизации соответствующей молекулярной формы пара, с поправкой на изотопное распределение, отн. ед., *T* – температура, К, σ_i – сечение ионизации, γ_i – коэффициент конверсии вторично-электронного умножителя, пропорциональный $1/\sqrt{M_i}$, где M_i – молекулярная масса рассматриваемой формы пара. Индексы *i* и *s* от-

Рис. 3. Зависимость парциальных давлений молекулярных форм пара над образцом **3** системы $TiO_2-Al_2O_3$, соответствующим соединению Al_2TiO_5 , от времени испарения и температуры. Цифры отвечают молекулярным формам пара: $1 - TiO_2$, 2 - TiO, 3 - Al, 4 - AlO, $5 - Al_2O$. Над кривыми указаны составы конденсированной фазы исследуемой системы, рассчитанные по методу полного изотермического испарения в соответствующие моменты времени при изотермических выдержках при 2345, 2500 и 2710 К.

носятся к изучаемому соединению и к стандарту давления соответственно.

В качестве внутреннего стандарта давления использовали золото, рекомендуемое ИЮПАК, [24]. Сечения ионизации атомов взяты из работы [25]. Сечения ионизации молекулярных форм пара, как правило, вычисляются по методу аддитивности. Экспериментально установлено [26], что метод аддитивности дает не всегда корректные результаты, поэтому при вычислении сечений ионизации атомов золота, титана и алюминия были приняты результаты, приведенные в работе [24]. При вычислении сечений ионизации TiO₂, TiO, AlO и Al₂O были использованы величины, рекомендованные в работах [25, 26]. В частности, согласно рекомендациям [25], $\sigma(TiO)/\sigma(Ti) = 0.85$, $\sigma(TiO_2)/\sigma(TiO) =$ 0.45, $\sigma(AlO)/\sigma(Al) = 0.65$, $\sigma(Al_2)/\sigma(Al) = 1.8$. Al₂O можно представить как монооксид Al₂. Тогда $\sigma(Al_2O)/\sigma(Al) = 1.17.$

Зависимости парциальных давлений молекулярных форм пара над образцом **3**, соответствующим соединению Al_2TiO_5 , от времени испарения при изотермических выдержках при 2345, 2500 и 2710 К приведены на рис. 3. Над кривыми указаны составы конденсированной фазы исследуемой системы, рассчитанные по методу полного изотермического испарения [27] в соответствующие моменты времени (табл. 3). Необходимо подчеркнуть, что значения парциальных давлений молекулярных форм пара над системой $TiO_2-Al_2O_3$, рассчитанные по изотерме испарения, в пределах погрешности соответствовали величинам, найденным при испарении исходных составов **1** и **2**, как следует из сопоставления результатов (табл. 3).

Активность диоксида титана в системе TiO₂-Al₂O₃ была определена методом дифференциальной масс-спектрометрии при использовании сдвоенной эффузионной камеры. В один отсек эф-

1		1								
Время испарения,	Состав пара, мол%		ΤV	<i>р</i> _{<i>i</i>} , Па					a _i	
МИН	TiO ₂	Al ₂ O ₃	<i>1</i> , K	TiO ₂	TiO	Al	AlO×10	Al ₂ O×10	TiO ₂	Al ₂ O ₃
0	0.50	0.50	2349	1.34	0.27	0.02	0.05	0.03	0.5	0.52
5	0.49	0.51	2349	1.15	0.23	0.03	0.09	0.06	0.49	0.52
10	0.49	0.51	2345	1.08	0.40	0.04	0.11	0.07	0.48	0.51
15	0.48	0.52	2346	1.00	0.42	0.05	0.11	0.07	0.44	0.52
20	0.48	0.52	2347	0.96	0.40	0.05	0.11	0.08	0.42	0.52
25	0.47	0.53	2346	0.93	0.39	0.05	0.11	0.09	0.41	0.52
30	0.47	0.53	2345	0.85	0.37	0.05	0.11	0.10	0.38	0.52
40	0.46	0.54	2352	0.86	0.38	0.05	0.11	0.12	0.35	0.52
50	0.44	0.56	2353	0.78	0.34	0.05	0.15	0.15	0.32	0.52
60	0.43	0.57	2353	0.86	0.42	0.05	0.15	0.12	0.35	0.52
70	0.42	0.8	2359	0.86	0.41	0.05	0.15	0.12	0.33	0.53
80	0.40	0.60	2359	0.82	0.36	0.05	0.15	0.12	0.31	0.58
100	0.37	0.63	2370	0.94	0.42	0.07	0.15	0.17	0.32	0.63
120	0.33	0.67	2367	0.86	0.42	0.07	0.15	0.18	0.30	0.67
а	0.33	0.67	2355	0.76	0.28	0.19	-	-	0.36	_
150	0.27	0.73	2368	0.71	0.35	0.07	0.15	0.19	0.25	0.72
а	0.25	0.75	2376	0.45	0.12	0.25	-	_	0.28	_
180	0.21	0.79	2372	0.53	0.24	0.07	0.15	0.20	0.18	0.77
200	0.17	0.83	2371	0.41	0.20	0.07	0.19	0.20	0.14	0.82
220	0.14	0.87	2362	0.34	0.17	0.07	0.18	0.20	0.12	0.86
240	0.10	0.90	2375	0.30	0.15	0.07	0.15	0.20	0.10	0.88
240	0.10	0.90	2477	0.78	0.43	0.27	0.93	1.03	0.09	0.91
245	0.08	0.92	2491	0.63	0.36	0.29	0.94	1.12	0.07	0.93
250	0.04	0.96	2499	0.51	0.29	0.27	0.94	1.13	0.05	0.94
260	0.04	0.96	2500	0.28	0.16	0.25	0.94	1.13	0.03	0.96
270	0.02	0.98	2489	0.16	0.08	0.26	0.94	1.12	0.02	0.98
285	0.01	0.99	2489	0.04	0.03	0.25	0.94	1.12	0.01	1.00
300	0	1.00	2491	0	0	0.21	0.81	1.04	0	1.00
300	0	1.00	2711	0	0	2.06	8.77	12.21		
305	0	1.00	2705	0	0	2.44	8.31	9.37		
310	0	1.00	2701	0	0	0	0	0		

Таблица 3. Парциальные давления молекулярных форм пара над образцом **3** системы TiO_2 – Al_2O_3 , соответствующим соединению Al_2TiO_5 , в зависимости от времени испарения при изотермических выдержках при 2345, 2500 и 2710 K, рассчитанные по методу полного изотермического испарения [27] в соответствующие моменты времени

^а Значения парциальных давлений молекулярных форм пара, определенные при испарении исходных образцов 1 и 2.

фузионной камеры загружали изучаемый образец, а во второй – образец сравнения, индивидуальный TiO₂. Величина активности диоксида титана $a(\text{TiO}_2)$ была найдена из соотношения (10).

$$a(\text{TiO}_2) = \frac{p(\text{TiO}_2)}{p^0(\text{TiO}_2)} = \frac{I(\text{TiO}_2^+)}{I^0(\text{TiO}_2^+)}.$$
 (10)

В уравнении (10) парциальное давление TiO₂ было заменено на пропорциональную ему величину произведения интенсивности на температуру (11).

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 91 № 10 2021

$$p_i = kI_i T, \tag{11}$$

где *k* – коэффициент чувствительности прибора.

Полученные активности TiO_2 в системе TiO_2 – Al₂O₃ при 2345 К были аппроксимированы уравнением (12) Редлиха–Кистера [28].

$$\ln \frac{a_{\text{TiO}_2}}{x_{\text{TiO}_2}} = x_{\text{Al}_2\text{O}_3}^2 [B + C(4x_{\text{TiO}_2} - 1) + D(x_{\text{TiO}_2} - x_{\text{Al}_2\text{O}_3})(5x_{\text{TiO}_2} - x_{\text{Al}_2\text{O}_3})].$$
(12)

Рис. 4. Зависимость активности TiO_2 и Al_2O_3 в системе TiO_2 – Al_2O_3 при 2345 К. $1 - TiO_2$, исходный состав образца 3; $2 - TiO_2$, исходный состав образца 2; $3 - TiO_2$, исходный состав образца 1; $4 - Al_2O_3$, рассчитано по уравнению Гиббса–Дюгема. Кривые соответствуют результатам аппроксимации по уравнению Редлиха–Кистера [28], уравнения (12) и (14).

Здесь *B*, *C* и *D* – аппроксимационные коэффициенты. В результате аппроксимации активности TiO₂ по уравнению (12) найдены коэффициенты $B = -0.276 \pm 0.047$ и *C* = -0.294 ± 0.084 . Попытка использования уравнения (12) с тремя аппроксимационными коэффициентами привела к получению коэффициента *D*, который статистически незначимо отличался от нуля. Результаты аппроксимации активности TiO₂ в системе TiO₂–Al₂O₃ при 2345 К по уравнению (12) приведены на рис. 4. Активность оксида алюминия в расплаве TiO₂–Al₂O₃ при 2345 К рассчитана по уравнению Гиббса–Дюгема (рис. 4).

Полученная концентрационная зависимость активности TiO_2 в системе TiO_2 – Al_2O_3 согласно уравнению (12) соответствует зависимостям (13), (14) избыточной энергии Гиббса и активности Al_2O_3 от концентрации в рассматриваемой системе при 2345 К.

$$\frac{\Delta G^{E}}{RT} = x_{\text{TiO}_{2}} x_{\text{Al}_{2}\text{O}_{3}} [B + C(x_{\text{TiO}_{2}} - x_{\text{Al}_{2}\text{O}_{3}})], \quad (13)$$

$$a_{Al_2O_3} = x_{Al_2O_3} \exp(x_{TiO_2}^2 [B + C(4x_{TiO_2} - 3)]).$$
 (14)

Рис. 5. Энергия Гиббса образования из оксидов (1) и избыточная энергии Гиббса (2) в системе TiO_2 -Al₂O₃ при 2345 К.

В уравнениях (13), (14) коэффициенты *В* и *С* соответствуют коэффициентам в уравнении (12): $B = -0.276 \pm 0.047$, $C = -0.294 \pm 0.084$. На рис. 5 приведены полученные величины избыточной энергии Гиббса и энергии Гиббса образования из оксидов в системе TiO₂-Al₂O₃ при 2345 К.

Измерение температурных зависимостей произведения интенсивности ионных токов TiO_2^+ и TiO^+ на температуру в температурном интервале 1925–2113 К в масс-спектре пара над Al_2TiO_5 , а также определение парциальных давлений оксидов титана позволило получить зависимости (15), (16) парциальных давлений TiO_2 и TiO от температуры.

$$\log p(\text{TiO}_2, \text{Pa}) = -\frac{30766 \pm 1983}{T} + (13.89 \pm 0.97), \quad (15)$$

$$\log p(\text{TiO}_2, \text{Pa}) = -\frac{31814 \pm 4229}{T} + (13.95 \pm 2.09). \quad (16)$$

Соотношение парциальных давлений TiO_2 и TiO в этом температурном интервале в среднем равно 7:3. Измерение температурной зависимости интенсивностей ионных токов TiO_2^+ и TiO^+ от температуры позволило определить энтальпию диссоциации алюмината титана (17), равную 776±

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 91 № 10 2021

75 кДж при средней температуре измерений 2019 К.

$$Al_{2}TiO_{5}(\kappa p.) = 0.7TiO_{2}(r) + 0.3TiO(r) + 0.3O(r) + Al_{2}O_{3}(\kappa p.).$$
(17)

Пересчитанная на температуру 298 К с использованием данных работ [29, 30] величина энтальпии реакции диссоциации алюмината титана (17), равная 810.2±78 кДж, позволила определить стандартную энтальпию образования алюмината титана (-2628±80 кДж/моль). Эта величина хорошо согласуется с приведенной в справочнике [30] (-2628.8 кДж/моль) и в монографии [31] (-2635.5 кДж/моль).

Таким образом, нами впервые изучены процессы испарения и определены термодинамические свойства в системе TiO_2 – Al_2O_3 при высоких температурах. До 2350 К в паре над рассматриваемой системой преобладают молекулярные формы TiO_2 и TiO. Найденные активности компонентов и избыточная энергия Гиббса при 2345 К свидетельствуют о незначительных отрицательных отклонениях системы от идеального поведения.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Образцы системы TiO₂-Al₂O₃ были получены методом твердофазного синтеза. Исходные компоненты Al₂O₃ (Ч) и TiO₂ (ЧДА) смешивали 7 ч в среде изопропилового спирта в смесителе Turbula (100 мл) с использованием корундовых шаров (d 5 мм). Навеска шихты 10 г, масса шаров 30 г, масса спирта 15 г. Все компоненты, включая спирт и шары, занимали объем ~45-50 мл. После смешивания смесь сушили 16 ч в сушильном шкафу на воздухе при 318 К. Сухую смесь просеивали через сито (диаметр ячеек 0.315 мм) и прессовали на формах диаметром 14.55 и 24.88 мм. Образцы спекали 6.5 ч в печи с хромит-лантановыми нагревателями при 1573 К в открытых корундовых тиглях, от 293 до 1573 К нагревали в течение 3.5 ч. После спекания полученные образцы представляли собой твердые и плотно спеченные таблетки. Для того чтобы полученные образцы можно было растереть в агатовой ступке, их сначала раздавливали на гидравлическом прессе в стальной пресс-форме, а затем полученные куски размером не более 2 мм перетирали в агатовой ступке в течение 1 ч.

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 91 № 10 2021

В процессе перетирания порошки периодически просеивали через сито (диаметр ячеек 0.200 и 0.090 мм). Полученные порошки контролировали методами рентгено-флуоресцентного и рентгенофазового анализа.

После прохождения промежуточного контроля образцы 1–3 запрессовывали в форме диаметром 24.88 мм. Количество таблеток для каждого состава – 1 шт. После прессования составы помещали в корундовые тигли объемом 20 мл, которые помещались в печь с хромит-лантановыми нагревателями при 1023 К и выдерживали 6 ч при 1873 К. Образцы остывали 5 ч вместе с печью. Полученные образцы раздавливали в стальной форме и перетирали в агатовой ступке.

Идентификацию полученных образцов проводили методами рентгенофазового и рентгено-флуоресцентного анализа. Рентгенофазовый анализ исходных компонентов и полученных в результате синтеза порошков проводили на многофункциональном порошковом дифрактометре Rigaku SmartLab 3 в диапазоне углов 20 5-60° (Си K_{α} -излучение, Ni-фильтр, шаг 0.01°). Анализ дисперсности и морфологии порошков проводили с помощью СЭМ Tescan Vega 3SBH (Чехия); микрорентгеноспектральный анализ химического состава проводили с помощью рентгеновского энергодисперсионного микроанализатора Aztec X-Act Oxford Instruments (кремниевый дрейфовый детектор). Для достоверности расчета данных энергодисперсионного анализа площадь спектров составляла минимум 500000 импульсов.

Изучение состава пара и определение термодинамических свойств системы проводили методом высокотемпературной дифференциальной масс-спектрометрии на масс-спектрометре MC-1301 при ионизирующем напряжении 30 В. Образцы испаряли из сдвоенной эффузионной камеры Кнудсена, изготовленной из вольфрама. Соотношение площадей испарения и эффузии не менее 100:1. Для определения молекулярных предшественников ионов в масс-спектрах пара над исследуемой системой были определены величины энергий появления методом исчезающего ионного тока. Аппаратуру предварительно калибровали по давлению пара фторида кальция [29].

ИНФОРМАЦИЯ ОБ АВТОРАХ

Столярова Валентина Леонидовна, ORCID: https://orcid.org/0000-0001-7798-4405

Ворожцов Виктор Алексеевич, ORCID: https:// orcid.org/0000-0002-6931-1865

Шемчук Дарья Валерьевна, ORCID: https:// orcid.org/0000-0002-5288-865X

Лопатин Сергей Игоревич, ORCID: https://orcid. org/0000-0002-6060-5349

Богданов Олег Анатольевич, ORCID: https:// orcid.org/0000-0003-0209-4023

ФОНДОВАЯ ПОДДЕРЖКА

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований и Комитета по науке Министерства образования, науки, культуры и спорта Республики Армения (проект № 20-53-05013).

БЛАГОДАРНОСТЬ

Авторы выражают благодарность Криогенному отделу научного парка Санкт-Петербургского государственного университета за предоставление жидкого азота.

КОНФЛИКТ ИНТЕРЕСОВ

В.Л. Столярова и С.И. Лопатин являются членами редколлегии Журнала общей химии. Остальные авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Zhao Y., Xu H., Zhang X., Zhu G., Yan D., Yu A. // J. Eur. Ceram. Soc. 2015. Vol. 35. N 13. P. 3761. doi 10.1016/j. jeurceramsoc.2015.05.017
- Tian P., Peng Z., Du X., Zheng W., Yuan J. // Glass Phys. Chem. 2019. Vol. 45. N 3. P. 208. doi 10.1134/ S1087659619030143
- Sychev M.M., Shilova O.A., Matveichikova P.V., Khamova T.V., D'yachenko S.V., Zhernovoi A.I., Kopitsa G.P. // Glass Phys. Chem. 2019. Vol. 45. N 6. P. 513. doi 10.1134/S1087659619060233
- Shao H., Liang K., Zhou F., Wang G., Hu A. // Mater. Res. Bull. 2005. Vol. 40. N 3. P. 499. doi 10.1016/j. materresbull.2004.11.005
- Zdaniewski W. // J. Mater. Sci. 1973. Vol. 8. N 2. P. 192. doi 10.1007/BF00550667

- Wange P., Höche T., Rüssel C., Schnapp J.D. // J. Non-Cryst. Solids. 2002. Vol. 298. N 2–3. P. 137. doi 10.1016/S0022-3093(02)00950-X
- Hunger A., Carl G., Gebhardt A., Rüssel C. // J. Non-Cryst. Solids. 2008. Vol. 354. N 52–54. P. 5402. doi 10.1016/j.jnoncrysol.2008.09.001
- 8. *Stolyarova V.L., Semenov G.A.* Mass spectrometric study of the vaporization of oxide systems. Chichester: John Wiley, 1994. 434 p.
- Ilatovskaia M., Savinykh G., Fabrichnaya O. // J. Phase Equilibria Diffus. 2017. Vol. 38. N 3. P. 175. doi 10.1007/s11669-016-0509-4
- *Kim I.J.* // J. Ceram. Process. Res. 2010. Vol. 11. N 4. P. 411.
- Kaufman L. // Physica. B+C. 1988. Vol. 150. N 1–2.
 P. 99. doi 10.1016/0378-4363(88)90111-8
- 12. *Казенас Е.К., Цветков Ю.В.* Испарение оксидов. М.: Наука, 1997. 543 с.
- 13. *Казенас Е.К., Цветков Ю.В.* Термодинамика испарения оксидов. М.: Изд. ЛКИ, 2008. 480 с.
- 14. Бондарь В.В., Лопатин С.И., Столярова В.Л. // Неорг. матер. 2005. Т. 41. № 4. С 434; Bondar' V.V., Lopatin S.I., Stolyarova V.L. // Inorg. Mater. 2005. Vol. 41. N 4. P. 362. doi 10.1007/s10789-005-0138-5
- Gilles P.W., Carlson K.D., Franzen H.F., Wahlbeck P.G. // J. Chem. Phys. 1967. Vol. 46. N 7. P. 2461. doi 10.1063/1.1841070
- Gilles P.W., Franzen H.F., Duane Stone G., Wahlbeck P.G. // J. Chem. Phys. 1968. Vol. 48. N 5. P. 1938. doi 10.1063/1.1668994
- Gilles P.W., Hampson P.J., Wahlbeck P.G. // J. Chem. Phys. 1969. Vol. 50. N 2. P. 989. doi 10.1063/1.1671100
- Hampson P.J., Gilles P.W.// J. Chem. Phys. 1971. Vol. 55. N 8. P. 3708. doi 10.1063/1.1676654
- Семенов Г.А., Лопатин С.И., Кулигина Л.А. // Вестн. СПбГУ. Сер. 4 (физика, химия). 1994. Т. 1. Вып. 4. С. 46.
- Finger L.W., Hazen R.M. // J. Appl. Phys. 1978. Vol. 49. N 12. P. 5823. doi 10.1063/1.324598
- Meagher E.P., Lager G.A. // Can. Mineral. 1979. Vol. 17. N 1. P. 77.
- Morosin B., Lynch R.W. // Acta Crystallogr. (B). 1972.
 Vol. 28. N 4. P. 1040. doi 10.1107/S0567740872003681
- Lias S.G., Bartmess J.E., Liebman J.F., Holmes J.L., Levin R.D., Mallard W.G. // J. Phys. Chem. Ref. Data. 1988. Vol. 17. N Suppl. 1. P. 861.
- 24. *Paule R.C., Mandel J.* // Pure Appl. Chem. 1972. Vol. 31. N 3. P. 371. doi 10.1351/pac197231030371
- Mann J.B. // J. Chem. Phys. 1967. Vol. 46. N 5. P. 1646. doi 10.1063/1.1840917
- Drowart J., Chatillon C., Hastie J., Bonnell D. // Pure Appl. Chem. 2005. Vol. 77. N 4. P. 683. doi 10.1351/ pac200577040683

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 91 № 10 2021

ВЫСОКОТЕМПЕРАТУРНОЕ МАСС-СПЕКТРОМЕТРИЧЕСКОЕ ИССЛЕДОВАНИЕ 1567

- Sidorov L.N., Shol'ts V.B. // Int. J. Mass Spectrom. Ion. Phys. 1972. Vol. 8. N 5. P. 437. doi 10.1016/0020-7381(72)80014-7
- Redlich O., Kister A.T. // Ind. Eng. Chem.1948. Vol. 40. N 2. P. 345. doi 10.1021/ie50458a036
- 29. Термические константы веществ / Под ред. В.П. Глушко. М: Наука, 1978–1982.
- Barin I. Thermochemical Data of Pure Substances.
 Weinheim: VCH Verlagsgesellschaft mbH, 1995. 1885 p.
- Бабушкин В.И., Матвеев Г.М., Мчедлов-Петросян О.П. Термодинамика силикатов. М.: Стройиздат, 1986. 408 с.

High Temperature Mass Spectrometric Study of the TiO₂-Al₂O₃ System

V. L. Stolyarova^{*a*,*}, V. A. Vorozhtcov^{*a*,*b*}, D. V. Shemchuk^{*b*}, S. I. Lopatin^{*a*,*b*}, and O. A. Bogdanov^{*b*}

^a St. Petersburg State University, St. Petersburg, 199034 Russia ^b Institute of Silicate Chemistry of Russian Academy of Sciences, St. Petersburg, 199034 Russia *e-mail: v.stolyarova@spbu.ru

Received May 31, 2021; revised May 31, 2021; accepted June 23, 2021

The results of studying the vaporization processes and thermodynamic properties of the $TiO_2-Al_2O_3$ system in the temperature range 2250–2710 K using the high temperature mass spectrometric method were presented. Identification of the vapor composition over the system under the study and determination of the TiO_2 , TiO, and Al partial vapor pressures were carried out in the temperature range mentioned. The component activities and excess Gibbs energy were determined in the melts of the $TiO_2-Al_2O_3$ system at the temperature 2345 K evidencing insignificant deviations from the ideality in the system under the study.

Keywords: thermodynamic properties, vaporization, titanium oxide-alumina system, high temperature mass spectrometry