УДК 544.35.032.72

ПАРООБРАЗОВАНИЕ И ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА СИСТЕМЫ CeO₂-TiO₂-ZrO₂

© 2021 г. С. И. Лопатин^{*a,b,**}, С. М. Шугуров^{*a*}, О. Ю. Курапова^{*a,c*}

^а Санкт-Петербургский государственный университет, Университетская наб. 7/9, Санкт-Петербург, 199034 Россия ^b Институт химии силикатов имени И. В. Гребенцикова Российской академии наук, Санкт-Петербург, 199034 Россия ^c Санкт-Петербургский политехнический университет Петра Великого, Санкт-Петербург, 195251 Россия *e-mail: sergeylopatin2009@yandex.ru

> Поступило в Редакцию 9 июня 2021 г. После доработки 29 июня 2021 г. Принято к печати 3 июля 2021 г.

Изучены процессы испарения системы TiO₂–CeO₂–ZrO₂ методом высокотемпературной масс-спектрометрии. Найденные активности TiO₂ и CeO₂ при 2250 К свидетельствуют о положительном отклонении от идеальных величин для TiO₂ и об увеличении коэффициента активности CeO₂ по сравнению с бинарной системой CeO₂–ZrO₂.

Ключевые слова: термодинамические свойства, испарение, система оксид титана-оксид церия, высокотемпературная масс-спектрометрия

DOI: 10.31857/S0044460X21100127

Твердые растворы на основе диоксида циркония, стабилизированного оксидами редкоземельных элементов, – перспективные материалы для получения термобарьерных покрытий, применяемых при конструировании реактивных двигателей и газовых турбин [1–3]. Керамическое покрытие обычно состоит из оксида циркония, стабилизированного 4–6 мол% оксида иттрия (Y–Zr). Такой состав обладает очень низкой термической проводимостью и остается стабильным при номинальных рабочих температурах ~1573 К. Однако многократное повторение циклов нагревание–охлаждение, особенно в присутствии водяных паров, приводит к разрушению тетрагональной фазы, что сопровождается появлением трещин в покрытии.

Одновременное замещение Zr⁴⁺ двумя ионами с большим и меньшим радиусом по сравнению с ионом циркония (например, Ti⁴⁺, Ta⁵⁺, Nb⁵⁺, Ce⁴⁺ [4–6]) может значительно улучшить характеристики термобарьерного покрытия, особенно сопротивление тепловому удару. Совместное введение диоксидов циркония TiO₂ и CeO₂ не приводит к образованию анионных вакансий, однако способствует увеличению степени тетрагональности - соотношения параметров с/а тетрагональной ячейки [7, 8]. Для керамик на основе твердых растворов $(Ce_{0.15}Ti_r)Zr_{0.85-r}O_7$ (x = 0.05, 0.10, 0.15) был получен более высокий, по сравнению с покрытием Y-Zr, коэффициент термического расширения при значительно улучшенных механических свойствах и трещиностойкости [9]. Фазовая стабильность трехкомпонентных керамик оказалась сравнима с покрытием Y-Zr при 1573 К. Введение дополнительного компонента в систему CeO₂-ZrO₂ может значительно улучшить высокотемпературные характеристики покрытия за счет уменьшения летучести компонентов твердого раствора.

Согласно литературным данным [10, 11], характер парообразования диоксидов титана, церия и циркония значительно различаются. Диоксид титана в температурном интервале 1900–2100 К переходит в пар в виде TiO_2 , TiO и атомарного кислорода. Область гомогенности конденсированной фазы при изотермической выдержке изменяется от $\text{TiO}_{2.000}$ до $\text{TiO}_{1.973}$ за счет частичной потери кислорода, и соотношение парциальных давлений $p(\text{TiO}_2)/p(\text{TiO})$ уменьшается. Диоксид церия переходит в пар в температурном интервале 2000–2300 К преимущественно в виде CeO₂. Доля CeO в паре не превышает 3–4% [12]. Диоксид циркония испаряется при температурах 2700–2800 К в виде ZrO и ZrO₂ [10, 11].

Характер парообразования и термодинамические свойства систем CeO_2 -ZrO₂, CeO_2 -Y₂O₃ и CeO_2 -Y₂O₃-ZrO₂ изучены при 2150 K [12, 13]. Во всех вышеперечисленных системах в пар в первую очередь переходит диоксид церия. Эти системы характеризуется значительным отрицательным отклонением всех компонентов от идеальности.

Нами изучено парообразование и определены термодинамические характеристики системы из трех оксидов TiO_2 – CeO_2 – ZrO_2 в двух составах: с добавкой 5 и 10 мол% диоксида титана. Данная система характеризуется наиболее широкой областью тетрагональных твердых растворов, согласно экспериментальной фазовой диаграмме [8], по сравнению с аналогичными трехкомпонентными системами, и имеет потенциальное практическое применение в качестве термобарьерного покрытия [7–9].

Синтез и идентификация образцов 5 TiO₂-9 CeO₂-86 ZrO₂ и 10 TiO₂-18 CeO₂-72 ZrO₂ (соотношение оксидов в мол%) подробно описаны [14, 15]. В масс-спектрах пара над изученными образцами, начиная от температуры 2100 К, фиксировались пики ионов TiO^+ , TiO^+_2 , CeO^+ и CeO^+_2 с энергиями появления 7.0, 10.2, 5.5 и 9.7 эВ (±0.3). Анализ масс-спектров пара, величины энергий появления ионов в масс-спектре и сравнение их с энергиями ионизации соответствующих молекул [16] свидетельствуют о том, что пар над изученными образцами в интервале температур 2100-2150 К состоит из смеси TiO, TiO₂, CeO, CeO₂ и атомарного кислорода. Диоксид циркония в указанном температурном интервале в пар не переходит и накапливается в конденсированной фазе. В масс-спектре пара над образцами ионные токи Zr⁺, ZrO⁺ и ZrO₂⁺ фиксировались только после повышения температуры до 2700 К. При этой температуре интенсивность ионов церия и титана снижалась до уровня фона. В связи с этим активность диоксида циркония методом высокотемпературной дифференциальной масс-спектрометрии экспериментально определить невозможно.

Величины активностей и коэффициентов активности компонентов конденсированной фазы определяли по уравнениям (1)–(4).

$$a(\operatorname{TiO}_{2}) = \frac{p(\operatorname{TiO}_{2})}{p^{0}(\operatorname{TiO}_{2})} = \frac{I(\operatorname{TiO}_{2}^{+})}{I^{0}(\operatorname{TiO}_{2}^{+})},$$
(1)

$$a(\operatorname{CeO}_2) = \frac{p(\operatorname{CeO}_2)}{p^0(\operatorname{CeO}_2)} = \frac{I(\operatorname{CeO}_2^+)}{I^0(\operatorname{CeO}_2^+)},$$
(2)

$$\gamma = \frac{a_i}{x_i},\tag{3}$$

$$p = kIT. (4)$$

Здесь a – активность, γ – коэффициент активности, x_i – мольная доля *i*-того компонента, p – парциальное давление, I – интенсивность ионного тока. В уравнениях (1) и (2) парциальные давления оксидов титана и церия заменены на пропорциональные им величины интенсивностей ионных токов согласно уравнению (4); k – коэффициент чувствительности прибора, T – температура, К. Индекс «0» соответствует парциальным давлениям TiO₂ и CeO₂ над соответствующими индивидуальными оксидами.

При определении активностей диоксидов титана и церия в конденсированной фазе первоначально в качестве стандартов использовали индивидуальные TiO_2 и CeO_2 , попеременно загружаемые в сравнительную ячейку эффузионной камеры. В течение достаточно длительного времени интенсивность ионного тока CeO_2^+ в масс-спектре пара над индивидуальным диоксидом церия при постоянной температуре оставалась постоянной, что давало возможность корректно определять активность CeO_2 .

В масс-спектре индивидуального диоксида титана наблюдалось быстрое уменьшение соотношения интенсивностей TiO₂⁺/TiO⁺, что не позволяло

Состав образца, мол. доля			a_i		γ_i	
TiO ₂	CeO ₂	ZrO ₂	TiO ₂	CeO ₂	TiO ₂	CeO ₂
0.10	0.18	0.72	0.12	0.053	1.2	0.29
_	0.18	0.82	_	0.020 ^a	_	0.11 ^a
0.05	0.09	0.86	0.16	0.024	3.2	0.27
	0.09	0.91	_	0.010 ^a	_	0.11 ^a

Таблица 1. Зависимости активностей и коэффициентов активности диоксидов титана и церия в конденсированной фазе систем TiO₂–CeO₂–ZrO₂ и CeO₂–ZrO₂ при 2250 К

^а Данные из работы [6].

получить удовлетворительную воспроизводимость экспериментальных данных и приводило к завышению величин *a*(TiO₂). Причины уменьшения парциального давления TiO₂ при испарении диоксида титана изучены в работах [17-22]. В качестве стандарта активности диоксида титана в конденсированной фазе применили конгруэнтно испаряющийся оксид титана Ті₃O₅ [18, 22]. Парциальное давление TiO_2 над оксидом Ti_3O_5 сохраняется постоянным вплоть до полного испарения. Правомерность использования Ti₃O₅ в качестве стандарта активности TiO₂ подтверждена сравнительным испарением оксидов TiO₂ и Ti₃O₅ из сдвоенной однотемпературной эффузионной камеры Кнудсена. В одну из ячеек помещали достаточно большое количество TiO₂, а в другую – Ti₃O₅. Интенсивность ионного тока TiO₂⁺ в масс-спектре пара над диоксидом титана оставалась постоянной в течение 20-30 мин. В этот промежуток времени измеряли отношение величин ионных токов TiO₂⁺/TiO₂⁺ в масс-спектрах пара над TiO₂ и Ti₃O₅. В температурном интервале 2060-2160 К это отношение составило 2.0±0.1. При определении активности TiO₂ в изученных образцах и при использовании Ті₃О₅ в качестве стандарта в уравнение (1) вносили соответствующую поправку. Полученные результаты представлены в табл. 1.

Из данных табл. 1 видно, что величины активности диоксида церия в системе TiO_2 -CeO₂-ZrO₂ характеризуются отрицательным отклонением от идеальных, а диоксида титана – положительным. Введение в систему CeO₂-ZrO₂ диоксида титана значительно повышает величины активности и коэффициента активности CeO₂ по сравнению с бинарной системой при одинаковой мольной доле CeO₂. Это приводит к повышению как парциаль-

ного давления CeO_2 , так и общего давления пара над системой TiO_2 – CeO_2 – ZrO_2 и ухудшает термическую устойчивость системы CeO_2 – ZrO_2 . Поскольку поведение бинарных систем TiO_2 – CeO_2 и TiO_2 – ZrO_2 при высокой температуре не изучено, то проследить характер и степень отклонения величин активности от идеальных для диоксида титана невозможно.

Причина положительного отклонения активности диоксида титана от идеальной и увеличения величины активности диоксида церия в системе TiO_2 – CeO_2 – ZrO_2 может быть связана с различием кислотно-основных свойств компонентов, образующих систему. Кислотно-основные свойства оксидов можно охарактеризовать количественно, используя величины электроотрицательности. Вычислением электроотрицательности титана, церия, циркония и кислорода по Малликену [23], а также определением электроотрицательности диоксидов титана, церия и циркония по методу, предложенному в работе [24], получены величины (эВ): 6.23 (TiO₂), 6.05 (CeO₂) и 6.24 (ZrO₂).

Существенное различие кислотно-основных свойств оксидов, как правило, приводит к увеличению термической устойчивости систем, образованных этими оксидами. В данном случае, величины электроотрицательности различаются между собой незначительно, что не позволяет сделать вывод о наличии сильного кислотно-основного взаимодействия между оксидами, образующими систему, что подтверждается и фазовыми диаграммами бинарных систем CeO_2 – ZrO_2 , TiO_2 – CeO_2 и TiO_2 – ZrO_2 [25]. Термически устойчивые химические соединения существуют только в системе TiO_2 – ZrO_2 . В системах CeO_2 – ZrO_2 , и TiO_2 – CeO_2

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 91 № 10 2021

присутствуют твердые растворы различных модификаций. Конкуренция между оксидами TiO₂ и ZrO₂, обладающими практически одинаковыми кислотно-основными свойствами, приводит к ослаблению межмолекулярного взаимодействия между CeO_2 и TiO_2 , а также CeO_2 –ZrO₂, и к увеличению активности CeO₂ и TiO₂ в конденсированной фазе. Бинарные системы BaO-SiO₂ [26] и CaO-SiO₂ [27] характеризуются отрицательным отклонением всех компонентов от идеальных величин. Введение в эти системы ТіО₂ приводит к инверсии отклонения активности оксида кремния от идеального значения [28-30]. Величины активности диоксида титана также характеризуются положительными отклонениями от идеальных. Одна из вероятных причин положительного отклонения от идеальной активности TiO₂ и увеличения коэффициента активности СеО2 по сравнению с отрицательным отклонением в бинарной системе CeO₂-ZrO₂ - наличие участков несмешиваемости системы CeO₂-TiO₂-ZrO₂ в температурном интервале 2100-2200 К.

В заключение необходимо отметить, что несмотря уменьшение термической устойчивости системы при 2100–2200 К, связанное с введением в систему CeO₂–ZrO₂ диоксида титана, можно надеяться на высокую фазовую и механическую стабильность изученных керамик при рабочих температурах покрытий порядка 1500–1600 К.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Работа выполнена методом высокотемпературной дифференциальной масс-спектрометрии на масс-спектрометре МС-1301 при ионизирующем напряжении 30 В. Испарение образцов производили из сдвоенной однотемпературной камеры Кнудсена, изготовленной из вольфрама. Нагрев камеры с образцом осуществлялся электронной бомбардировкой, температуру измеряли оптическим пирометром ЭОП-66 с точностью ±10°С в температурном интервале 1900-2200 К. При измерениях термодинамической активности компонентов конденсированной фазы в одну из секций сдвоенной камеры загружали изучаемый образец, а во вторую, сравнительную, - попеременно индивидуальные оксиды TiO₂ и CeO₂. Аппаратуру калибровали измерением давления паров фторида

ствия Лопатин Сергей Игоревич ORCID https://orcid.

справочными данными [30].

org/0000-0002-6060-5349

кальция и сравнением полученных значений со

ИНФОРМАЦИЯ ОБ АВТОРАХ

Шугуров Сергей Михайлович ORCID https:// orcid.org/0000-0002-3075-7229

Курапова Ольга Юрьевна ORCID https://orcid. org/0000-0002-7148-7755

БЛАГОДАРНОСТЬ

Авторы выражают благодарность сотрудникам Криогенного отдела Научного парка Санкт-Петербургского государственного университета за предоставление жидкого азота.

ФОНДОВАЯ ПОДДЕРЖКА

Работа выполнена при поддержке Министерства науки и высшего образования РФ (государственное задание 0784-2020-0027).

КОНФЛИКТ ИНТЕРЕСОВ

С.И. Лопатин является членом редколлегии Журнала общей химии. Остальные авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Padture N.P., Gell M., Jordan E.H. // Science. 2002. Vol. 296. P. 280. doi 10.1126/science.1068609
- Hardwicke C.U., Lau Y.C. // J. Therm. Spray Technol. 2013. Vol. 22. N 5. P. 564. doi 10.1007/s11666-013-9904-0
- Cao X.Q., Vassen R., Stöver D. // J. Eur. Ceram. Soc. 2004. Vol. 24. P. 1. doi 10.1016/S0955-2219(03)00129-8
- Zhao M., Pan W. // Acta Mater. 2013. Vol. 61. P. 5496. doi 10.1016/j.actamat.2013.05.038
- Ping L., Chen I.W., Penner-Hahn J.E. // J. Am. Ceram. Soc. 1994. Vol. 77. P. 1289. doi 10.1111/j.1151-2916.1994.tb05404.x
- Meng Z., Ren X., Wei P. // J. Am. Ceram. Soc. 2014. Vol. 97. P. 1566. doi 10.1111/jace.12886
- Rehner H.H., Preda M. // Keram. Z. 1998. Vol. 50. P. 180.
- Krogstad J.A., Lepple M., Levi C.G. // Surf. Coat. Technol. 2013. Vol. 221. P. 44.

- Wang J., Sun J., Jing Q., Liu B., Zhang H., Yongsheng Y., Yuan J., Dong S., Zhou X., Cao X. // J. Eur. Ceram. Soc. 2018. Vol. 38. P. 2841.
- Казенас Е.К., Цветков Ю.В. Испарение оксидов. М.: Наука, 1997. 543 с.
- 11. Казенас Е.К., Цветков Ю.В. Термодинамика испарения оксидов. М.: ЛКИ, 2008. 480 с.
- Kurapova O.Y., Shugurov S.M., Vasil'eva E.A., Konakov V.G., Lopatin S.I. // J. Alloys Compd. 2019. Vol. 776. P. 194. doi 10.1016/j.jallcom.2018.10.265
- Kurapova O.Y., Shugurov S.M., Vasil'eva E.A., Savelev D.A., Konakov V.G., Lopatin S.I. // Ceram. Intern. 2021. Vol. 47. N 8. P. 11072. doi 10.1016/j. ceramint.2020.12.230
- Kurapova O.Yu., Glukharev A.G., Borisova A.S., Golubev S.N., Konakov V.G. // Mater. Chem. Phys. 2020. Vol. 242. N 112547. doi 10.1016/j. matchemphys.2019.122547
- Kurapova O.Yu., Golubev S.N., Glukharev A.G., Konakov V.G. // Refract. Industr. Ceram. 2020. Vol. 61. N 1. P. 112. doi 10.1007/s11148-020-00440-0
- Lias S.G., Bartmess J.E., Liebman J.F., Holmes J.L., Levin R. D., Mallard W.G. // J. Phys. Chem. Ref. Data. 1988. Vol. 17. Suppl. 1. P. 1.
- Gilles P.W., Carlson K.D., Fransen H.F., Wahlbeck P.G. // J. Chem. Phys. 1967. Vol. 46. N 7. P. 2461. doi 10.1063/1.1841070
- Wahlbeck P.G., Gilles P.W. // J. Chem. Phys. 1967. Vol. 46. N 7. P. 2465. doi 10.1063/1.1841071
- Gilles P.W., Fransen H.F., Stone G. D., Wahlbeck P.G. // J. Chem. Phys. 1968. Vol. 48. N 5. P. 1938. doi 10.1063/1.1668994
- Gilles P.W., Hampson P.J., Wahlbeck P.G. // J. Chem. Phys. 1969. Vol. 50. N 2. P. 989. doi 10.1063/1.1671100

- Hampson P.J., Gilles P.W. // J. Chem. Phys. 1971.
 Vol. 55. N 8. P. 3712. doi 10.1063/1.1676654
- Лопатин С.И., Шугуров С.М., Тюрнина З.Г., Тюрнина Н.Г. // Физика и химия стекла. 2021. Т. 47.
 № 1. С. 50; Lopatin S.I., Shugurov S.M., Tyurnina Z.G., Tyurnina N.G. // Glass Phys. Chem. 2021. Vol. 47. N 1. P. 38. doi 10.1134/S1087659621010077
- 23. Mulliken R.S. // J. Chem. Phys. 1934. Vol. 2. P. 782.
- 24. *Витинг Л.М.* Высокотемпературные растворы-расплавы. М.: Изд/ Московск. унив., 1991. 221 с.
- Барзаковский В.П., Курцева Н.Н., Лапин В.В., Торопов Н.А. Диаграммы состояния силикатных систем. Справочник. Л.: Наука, 1969. Вып. 1. 822 с.
- Тюрнина З.Г., Лопатин С.И., Шугуров С.М., Столярова В.Л. // ЖОХ. 2006. Т. 76. Вып. С. 1588; Tyurnina Z.G., Lopatin S.I., Shugurov S.M., Stolyarova V.L. // Rus. J. Gen. Chem. 2006. Vol. 76. N 10. P. 1522. doi 10.1134/S1070363206100021
- Лопатин С.И., Шугуров С.М., Столярова В.Л., Тюрнина Н.Г. // ЖОХ. 2006. Т. 76. Вып. 12. С. 1966; Lopatin S.I., Shugurov S.M., Stolyarova V.L., Tyurnina N.G. // Russ. J. Gen. Chem. 2006. Vol. 76. N 12. P. 1878. doi 10.1134/S1070363206120073
- Stolyarova, V.L., Shornikov, S.I., Ivanov, G.G., Shultz, M.M. // J. Electrochem. Soc. 1991. Vol. 138. N 12. P. 3710. doi 10.1149/1.2085485
- Столярова В.Л., Лопатин С.И. // Физика и химия стекла. 2005. Т. 31. № 2. С. 179. Stolyarova V.L., Lopatin S.I. // Glass Phys. Chem. 2005. Vol. 31. N 2. P. 132. doi 10.1007/s10720-005-0034-8
- Stolyarova V.L., Lopatin S.I., Plotnikov E.N. // Phys. Chem. Glasses. 2005. Vol. 46. N 2. P. 119.

Vaporization and Thermodynamic Properties of the CeO₂-TiO₂-ZrO₂ System

S. I. Lopatin^{*a,b,**}, S. M. Shugurov^{*a*}, and O. Yu. Kurapova^{*a,c*}

^a St. Petersburg State University, St. Petersburg, 199034 Russia
 ^b Institute of Silicate Chemistry of the Russian Academy of Sciences, St. Petersburg, 199034 Russia
 ^c Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 195251 Russia
 *e-mail: sergeylopatin2009@yandex.ru

Received June 9, 2021; revised June 9, 2021; accepted July 3, 2021

The evaporation processes of the TiO_2 – CeO_2 – ZrO_2 system were studied by high-temperature mass spectrometry. The values of TiO_2 and CeO_2 activities at a temperature of 2250 K were determined, indicating a positive deviation from the ideal behavior of TiO_2 activity and an increase in the activity coefficient of CeO_2 in comparison with the binary system CeO_2 – ZrO_2 .

Keywords: thermodynamic properties, evaporation, titanium oxide-zirconium oxide system, high-temperature mass spectrometry