УДК 547.794.2

СИНТЕЗ

(1,2,3-ТИАДИАЗОЛ-4-ИЛ)(МЕТОКСИ)ФЕНИЛАМИНОВ И ОСНОВАНИЙ ШИФФА С САЛИЦИЛОВЫМ АЛЬДЕГИДОМ НА ИХ ОСНОВЕ

© 2021 г. Д. Ю. Матузко, Л. М. Певзнер*, М. Л. Петров, А. И. Поняев

Санкт-Петербургский государственный технологический институт (технический университет), Московский пр. 26, Санкт-Петербург, 190013 Россия *e-mail: pevzner lm@list.ru

> Поступило в Редакцию 27 августа 2021 г. После доработки 27 августа 2021 г. Принято к печати 18 сентября 2021 г.

Разработаны методы синтеза 4-(3-нитро-4-метоксифенил)-, 4-(2,5-диметокси-3-нитрофенил)- и 4-(2,5-диметокси-4-нитрофенил)-1,2,3-тиадиазолов и изучено их восстановление до аминов цинком и уксусной кислотой в изопропиловом спирте. На основе полученных аминов и салицилового альдегида синтезированы основания Шиффа, проявляющие люминесцирующую способность.

Ключевые слова: 4-фенил-1,2,3-тиадиазолы, нитрование, восстановление, салициловый альдегид, основания Шиффа

DOI: 10.31857/S0044460X21110056

Основания Шиффа на основе салицилового альдегида проявляют высокую антибактериальную [1–3], противогрибковую [1, 2] и противовирусную активность [1], в связи с чем данные соединения интенсивно изучаются в последнее время. Кроме того, многие из них являются люминофорами [3, 4], имеющими очень узкую полосу испускания при возбуждении видимым светом [4], причем максимум в спектре люминесценции находится вблизи физиологического окна (700-800 нм), что очень важно для иммунохимического анализа и фотодинамической терапии. В качестве аминокомпоненты помимо ароматических аминов широко используются гетероциклические [3, 4], среди них производные 1,3,4-тиадиазолов [5]. В то же время, основания Шиффа на основе замещенных 4-(аминофенил)-1,2,3-тиадиазолов до настоящего времени неизвестны. Вместе с тем большой интерес представляют производные 4-(4-гидрок-

сифенил)-1,2,3-тиадиазола [6] в связи с проявляемой ими биологической активностью, причем основным направлением исследований является поиск подходящей группы для защиты и модификации фенольной ОН-группы.

В связи с этим целью настоящей работы явилась разработка синтетического подхода к защищенным по кислороду производным 4-(гидроксиаминофенил)- и 4-(дигидроксиаминофенил)-1,2,3-тиадиазола и получение оснований Шиффа на их основе. На первом этапе работы в качестве исходного соединения был выбран 4-(4-гидроксифенил)-1,2,3-тиадиазол 1. Нитрование его азотной кислотой (d 1.5 г/мл) в среде уксусной кислоты происходило с выделением тепла. Температуру реакционной массы регулировали скоростью подачи азотной кислоты и внешним охлаждением и поддерживали не выше 32° С. 4-(3-Нитро-4-гидроксифенил)-1,2,3-тиадиазол 2 был выделен с выходом

Схема 1.

OH
$$NO_{2}$$

$$NO_{3}$$

$$NO_{4}$$

$$NO_{5}$$

$$NO_{7}$$

$$NO_{8}$$

$$NO_{1}$$

$$NO_{2}$$

$$NO_{2}$$

$$NO_{2}$$

$$NO_{3}$$

$$NO_{4}$$

$$NO_{5}$$

$$NO_{5}$$

$$NO_{6}$$

$$NO_{7}$$

$$NO_{8}$$

$$NO_{9}$$

$$NO_{1}$$

$$NO_{2}$$

$$NO_{2}$$

$$NO_{3}$$

$$NO_{4}$$

$$NO_{5}$$

$$NO_{5}$$

$$NO_{6}$$

$$NO_{7}$$

$$NO_{8}$$

$$NO_{9}$$

$$NO_{1}$$

$$NO_{1}$$

$$NO_{2}$$

$$NO_{2}$$

$$NO_{3}$$

$$NO_{4}$$

$$NO_{5}$$

$$NO_{7}$$

$$NO_{8}$$

$$NO_{9}$$

$$NO_{1}$$

$$NO_{1}$$

$$NO_{1}$$

$$NO_{2}$$

$$NO_{3}$$

$$NO_{4}$$

$$NO_{5}$$

$$NO_{7}$$

$$NO_{8}$$

$$NO_{9}$$

$$NO_{9}$$

$$NO_{1}$$

$$NO_{1}$$

$$NO_{1}$$

$$NO_{2}$$

$$NO_{1}$$

$$NO_{2}$$

$$NO_{3}$$

$$NO_{4}$$

$$NO_{5}$$

$$NO_{7}$$

$$NO_{8}$$

$$NO_{9}$$

$$NO_{9}$$

$$NO_{1}$$

$$NO_{1}$$

$$NO_{1}$$

$$NO_{2}$$

$$NO_{1}$$

$$NO_{2}$$

$$NO_{1}$$

$$NO_{2}$$

$$NO_{3}$$

$$NO_{4}$$

$$NO_{5}$$

$$NO_{7}$$

$$NO_{8}$$

$$NO_{9}$$

Схема 2.

OH
$$\frac{H_2N-NHCO_2Et}{p\text{-TSA}}$$
 OH $\frac{SOCl_2}{OH}$ OH $\frac{HNO_3}{AcOH}$ OH $\frac{N}{NHCO_2Et}$ S-N $\frac{N}{S-N}$ $\frac{N}{S-N}$

92% (схема 1). В его спектре ЯМР 1 Н наблюдалось три сигнала ароматических протонов при 7.28 (1H, H 5 , $J_{\rm HH}$ 8.4 Γ ц), 8.28 (1H, H 6 , $J_{\rm HH}$ 8.4, 2.0 Γ ц), и 8.61 м. д. (1H, H 2 , $J_{\rm HH}$ 2.0 Γ ц), что однозначно доказывало вхождение нитрогруппы в положение 3 фенильного кольца. Синглет протона Н 5 тиадиазола располагался при 9.61 м. д., а сигнал гидроксильного протона — при 11.44 м. д.

Поскольку 1,2,3-тиадиазольное кольцо чувствительно к действию оснований, получение метилового эфира фенола 3 проводили в условиях межфазного катализа в системе хлороформ—вода. В качестве метилирующего агента использовали диметилсульфат, бромид бензилтриэтиламмония (ТЕВА-Вг) служил катализатором межфазного переноса. В качестве основания использовали гидроксид калия в виде 0.6 н. водного раствора. Реакцию проводили в течение 6 ч при комнатной температуре, выход 4-(3-нитро-4-метоксифенил)-1,2,3-тиадиазола составил 85% (схема 1). В спектре ЯМР ¹Н полученного соединения исчезал сигнал гидроксильного протона и появлялся син-

глет протонов метоксильной группы при 4.07 м. д. Сигнал соответствующего ядра углерода наблюдался при 56.90 м. д.

Следующим шагом стала разработка методов синтеза 4-(2,5-диметокси-3-нитрофенил)- и 4-(2,5-диметокси-4-нитрофенил)-1,2,3-тиадиазолов. Исходя из известного 2-гидрокси-5-метоксиацетофенона 4 взаимодействием с карбэтоксигидразином был синтезирован соответствующий карбэтоксигидразон 5 (схема 2). Реакцию проводили в бензоле в присутствии *п*-толуолсульфокислоты с азеотропной отгонкой воды. Целевой продукт был выделен с выходом 70%. Методика синтеза и спектральные характеристики вещества 5 подробно рассмотрены в Экспериментальной части. Далее это соединение было введено в реакцию с избытком хлористого тионила с целью образования 1,2,3-тиадиазольного кольца. Процесс проводили при кипячении до прекращения выделения газа. Оказалось, что помимо протекания реакции Хурда-Мори происходит хлорирование бензольного кольца по положениям 3 и 6. Положение

Схема 3.

атомов хлора было установлено с помощью спектроскопии ЯМР HMQC и HMBC. 4-(2-Гидрокси-3,6-дихлор-5-метоксифенил)тиадиазол **6** был выделен с выходом 69% (схема 2).

Взаимодействие тиадиазола 6 с азотной кислотой (д 1.5 г/мл) изучали в среде уксусной кислоты. Оказалось, что при температурах ниже 60°C признаков протекания реакции не наблюдалось. При 60°С начиналось небольшое выделение нитрозных газов. Реакционную массу выдерживали 3 ч при этой температуре до завершения выделения газа и выливали на лед. Продукт реакции был выделен в виде желтоватых сильно электризующихся кристаллов с т. разл. 151°C. В его спектре ЯМР 1 Н (ДМСО- d_{6}) наблюдалось два синглета при 7.69 (1H) и 9.38 м. д. (1H, H⁵-тиадиазол). Сигналы протонов метоксильной группы и фенольного фрагмента отсутствовали. В спектре ЯМР ¹³С наблюдались сигналы ядер углерода тиадиазольного кольца при 135.11 (\mathbb{C}^5) и 151.90 м. д. (\mathbb{C}^4), а также сигналы при 176.41 и 177.68 м. д., характерные для карбонильных групп хинона. Окончательно принадлежность сигналов была установлена с помощью двумерной спектроскопии НМОС и НМВС. На основании полученных данных продукту реакции была приписана структура 2-(1,2,3-тиадиазол-4-ил)-3,6-дихлор-1,4-бензохинона 7. Состав продукта был подтвержден с помощью масс-спектрометрии высокого разрешения (ESI).

Было решено изменить последовательность стадий и исходить из описанного 2-гидрокси-3-нитро-5-метоксиацетофенона **8** [7]. Первой стадией синтеза стало метилирование фенольной ОН-группы. Реакцию проводили в условиях межфазного катализа в системе хлороформ—0.6 н. гидроксид калия, в качестве метилирующего агента выступал

диметилсульфат, а катализатором межфазного переноса служил ТЕВА-Вг (схема 3). Диметиловый эфир 9 был выделен с выходом 73%. Взаимодействием с карбэтоксигидразином в присутствии n-толуолсульфокислоты он был превращен в карбэтоксигидразон 10, существующий в виде смеси син- и анти-изомеров в соотношении 0.2:1. Отнесение сигналов изомеров было сделано на основании литературных данных по химическим сдвигам сигналов протонов метильных групп фрагмента CH₃C=N [8–10]. Сигнал *анти*-изомера, у которого метильная группа имеет цис-расположение по отношению к амидному фрагменту относительно связи С=N, всегда находится в более сильном поле, чем сигнал метильной группы син-изомера. Целевой продукт был выделен с выходом 72%. Подробности эксперимента и отнесение сигналов приведены в Экспериментальной части.

Кипячением с избытком хлористого тионила карбэтоксигидразон **10** был превращен в 4-(2,5-диметокси-3-нитрофенил)-1,2,3-тиадиазол **11** с выходом 97% (схема 3). Дублеты протонов бензольного кольца наблюдались при 7.45 (1H, H^6 , J_{HH} 3.2 Γ ц) и 8.16 м. д. (1H, H^4 , J_{HH} 3.2 Γ ц), а сигнал протона H^5 тиадиазола располагался при 9.20 м. д.

Следущим этапом работы стала разработка метода синтеза 4-(2,5-диметокси-4-нитрофенил)-1,2,3-тиадиазола 12. Исходным соединением послужил 2,5-диметоксиацетофенон 13. Действием карбэтоксигидразина аналогично предыдущим синтезам он был превращен в карбэтоксигидразон 14 (схема 4). Целевой продукт был выделен с выходом 96%. В спектрах ЯМР ¹Н и ¹³С соединения 14 присутствует один набор сигналов, что свидетельствует об отсутствии спектрально различимых изомеров. Кипячением с хлористым ти-

Cxema 4. $O \longrightarrow PTSA$ $O \longrightarrow PTSA$

онилом карбэтоксигидразон **14** был превращен в 4-(2,5-диметоксифенил)-1,2,3-тиадиазол **15** с выходом 86% (схема 4). Хлорирования бензольного кольца не наблюдалось. Спектральные характеристики соединения **15** приведены в Экспериментальной части.

Нитрование тиадиазола **15** проводили азотной кислотой (*d* 1.5 г/мл) в среде ледяной уксусной кислоты при температуре 22–29°С. Реакция протекала в течение 3 ч. В спектре ЯМР ¹Н (CDCl₃) продукта реакции наблюдалось два синглета ароматических протонов при 7.64 и 8.41 м. д. Отсутствие взаимодействия между ними доказывает, что они находятся в *пара*-положении относительно друг друга и, следовательно, нитрогруппа вступает в положение 4. Строение полученного продукта реакции было подтверждено также данными двумерной спектроскопии НМQС и НМВС, на основании которых ему была приписана структура **12**. Выход целевого продукта составил 82%.

Образование 4-нитро-изомера в данном случае можно объяснить, приняв во внимание перенос электронной плотности от метоксильной группы в положении 2 на 1,2,3-тиадиазольное кольцо, обладающее акцепторными свойствами. В результате этого эффекта активация положения 3 2-метоксигруппой оказывается меньше, чем активация положения 4 5-метоксигруппой, которая с 1,2,3-тиадиазольным фрагментом не сопряжена. Такое перераспределение электронной плотности позволяет понять вступление нитрогруппы в *пара*-положение к электронно-акцепторному заместителю, которое, с формальной точки зрения, должно быть более дезактивировано, чем *мета*-положение.

Нитросоединения **3**, **11** и **12** были восстановлены до соответствующих аминов **16–18** действием

шинка и уксусной кислоты в изопропиловом спирте (схема 5). Мольное соотношение нитросоединение-цинк-уксусная кислота составляло во всех случаях 1:5:20, но характер протекания реакции существенно отличался. Так, нитросоединение 3 реагировал с цинком и уксусной кислотой только при нагревании до 50-55°C, восстановление заканчивалось в течение 1.5 ч. Выход 4-(3-амино-4-метоксифенил)-1,2,3-тиадиазола 16 составлял 63%. Нитрофенилтиадиазол 11 реагировал с цинком и уксусной кислотой с выделением тепла, температура реакционной смеси поднималась до 35°C, но для завершения реакции требовалось нагревание до 45-50°C в течение 2.5 ч. В ходе реакции затрагивается тиадиазольное кольцо, отмечается выделение сероводорода. Выход амина 17 составил всего 15%. Нитросоединение 12 восстанавливается значительно легче. Выделение тепла в ходе реакции настолько значительно, что температура реакционной смеси поднимается до 43°C. Восстановление завершается в течение 3 ч, дополнительного нагревания не требовалось. Амин 18 был выделен с выходом 42%. Физико-химические и спектральные характеристики полученных продуктов приведены в Экспериментальной части.

Таким образом, оказывается, что чем больше донорных заместителей присутствует в бензольном кольце фенилтиадиазолов, тем легче протекает восстановление. Вместе с тем, при этом заметным образом понижается устойчивость 1,2,3-тиадиазольного кольца к действию восстановителя.

Исходя из полученных аминов, по реакции с салициловым альдегидом были получены основания Шиффа 19–21. Реакцию аминов 16 и 18 с салициловым альдегидом поводили в бензоле при кипячении в присутствии каталитических количеств

п-толуолсульфокислоты (схема 6). Выделяющуюся воду отделяли с помощью азеотропной сушки с ловушкой Дина—Старка. В случае соединения **16** процесс заканчивался в течение 3 ч. Целевой азометин **19** был выделен с выходом 81%. Амин **18**

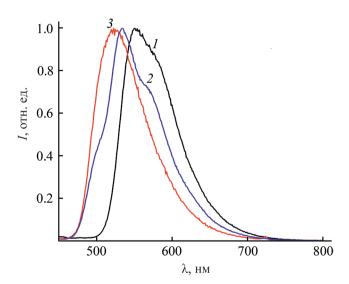
реагировал с салициловым альдегидом медленнее, выделение воды заканчивалось после кипячения в течение 8 ч. Азометин 21 был получен с выходом 63%. Амин 17 оказался совершенно нерастворим в бензоле. Его реакцию с салициловым альдегидом проводили в этаноле в присутствии каталитического количества *п*-толуолсульфокислоты при комнатной температуре в течение 4 сут. Выход азометина 20 был равен 57%. Методики синтеза и параметры спектров ЯМР полученных соединений приведены в Экспериментальной части.

В спектрах ЯМР ¹Н и ¹³С азометина **20** присутствуют два набора сигналов протонов и атомов углерода в соотношении 2.5:1. Видимо, это соединение существует в виде смеси *син-* и *анти-*форм, однако определить принадлежность наборов сигналов той или иной форме не удалось.

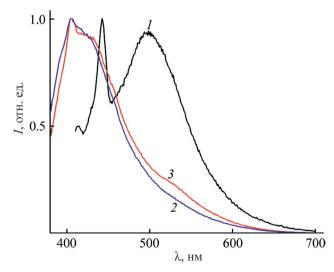
Азометины 19–21 являются люминофорами. Нами зарегистрированы их спектры люминесценции и возбуждения в порошке и в растворе хлористого метилена в концентрациях 10^{-4} и 10^{-5} моль/л. Фотофизические характеристики люминофоров приведены в табл. 1.

Сравнение спектров люминесценции азометинов **19–21** в порошке и в растворах обнаруживает существенные различия. Так, для азометина **19** в порошке спектр люминесценции имеет максимум при 553 нм и неявно выраженное плечо при 603 нм (рис. 1). В спектре раствора в хлористом метилене при концентрации 10^{-4} моль/л для этого вещества регистрируются полосы испускания с максимумами при 414, 442 и 498 нм (рис 2). При переходе к раствору с концентрацией 10^{-5} моль/л происходит гипсохромный сдвиг максимумов полос испускания до 405, 442 и 478 нм (рис. 3). Во всех случаях

Таблица 1. Фотофизические характеристики 1,2,3-тиадиазолов 19–21


18

№	Порошок		Раствор в CH ₂ Cl ₂			
			с×10 ⁻⁴ , моль/л		$c \times 10^{-5}$, моль/л	
	λ _{em} , нм ^a	$\Phi_{\rm s},\%$	$\lambda_{\rm em}$, нм a	$\Phi_{\rm s}$, %	λ _{em} , нм ^a	Φ _s , %
19	553, 603 пл (400)	1.50	414, 442, 458, 552 пл (390)	2.48	405, 436, 478 пл (360)	5.17
20	505, 534. 574 пл (400)	1.40	406, 429, 465 пл (360)	0.41	405, 433, 515 пл (360)	0.39
21	526, 576 пл (400)	0.30	406, 430, 486 пл (360)	3.17	404, 433, 476, 511, 530 пл (360)	3.28


^а В скобках указана длина волны возбуждения, нм.

интенсивность излучения убывает по экспоненте. Квантовый выход люминесценции для порошкообразного образца составляет 1.50, а при переходе к растворам он увеличивается до 2.48 и 5.17 соответственно при уменьшении концентрации соединения **19** от 10^{-4} до 10^{-5} моль/л.

Как видно из табл. 1, аналогичные изменения спектров люминесценции регистрируются и для азометинов 20 и 21. Сравнение с аналогичным спектром азометина 19 в порошке (рис. 1) показывает, что длинноволновые полосы испускания при введении дополнительного донорного заместите-

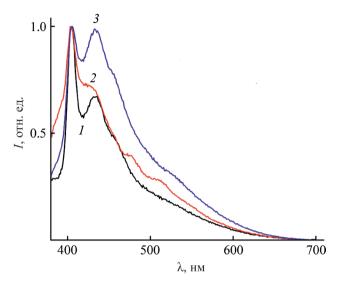


Рис. 1. Спектры люминесценции азометинов 19-21 (1-3) в порошке. Длина волны возбуждения -400 нм.

Рис. 2. Спектры люминесценции азометинов **19–21** (1–3) в хлористом метилене (c 10⁻⁴ моль/л, длина волны возбуждения – 390 нм).

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 91 № 11 2021

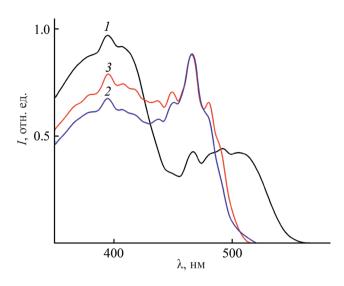
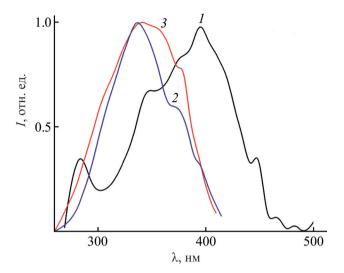
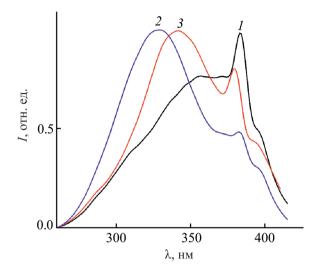


Рис. 3. Спектры люминесценции азометинов **19–21** (*1–3*) в хлористом метилене (c 10^{–5} моль/л, длина волны возбуждения – 360 нм).

ля претерпевают гипсохромный сдвиг. Квантовый выход люминесценции в порошке для азометина **20** составляет 1.4, а при переходе к растворам он составляет 0.41 и 0.39 при уменьшении концентрации соединения **20** от 10⁻⁴ до 10⁻⁵ моль/л соответственно. Таким образом, азометины **19** и **20** в порошкообразном состоянии имеют близкий квантовый выход люминесценции, тогда как в растворе квантовый выход для соединения **20** на порядок ниже, чем для азометина **19**.

Спектр люминесценции азометина **21** в порошке имеет две полосы испускания при 526 и 576 нм. В хлористом метилене при концентрации 10^{-4} моль/л регистрируются полосы испускания с $\lambda_{\rm max}$ 406, 430 и 486 нм. При концентрации 10^{-5} моль/л первые две полосы становятся более выраженными и имеют $\lambda_{\rm max}$ 404 и 433 нм, тогда как максимум последней сдвигается гипсохромно до 476 нм (рис. 1–3). Квантовый выход люминесценции в порошке составляет 0.30, а при переходе к растворам он возрастает на порядок до 3.17 и 3.28 при уменьшении концентрации соединения **21** от 10^{-4} до 10^{-5} моль/л соответственно.


На рис. 4–6 представлены спектры возбуждения азометинов **19–21** в порошке и в хлористом метилене. Положение максимумов возбуждения в коротковолновой части спектров возбуждения


Рис. 4. Спектры возбуждения азометинов **19–21** (*1–3*) в порошке. Длины волны люминесценции 433 (**19**), 435 (**20**) и 430 нм (**21**).

порошков азометинов 19–21 сходно, хотя интенсивность возбуждения для соединения 19 значительно выше (рис. 4). У этого соединения также появляется дополнительная полоса возбуждения в длинноволновой части спектра.

В растворах хлористого метилена (рис. 5, 6) картина спектров возбуждения сильно отличается от наблюдаемой в порошке и меняется с ростом разбавления. При концентрации 10^{-4} моль/л максимальная интенсивность возбуждения для соединений 20 и 21 отмечается около 330 нм. В спектре возбуждения азометина 19 в этой области также отмечается локальный максимум, однако область наибольшей интенсивности возбуждения располагается около 420 нм. При концентрации 10-5 моль/л максимумы всех полос возбуждения сдвигаются гипсохромно. При этом сильнее всего эффект наблюдается для азометина 20. Наблюдавшаяся в более концентрированном растворе полоса возбуждения в районе 380 нм превращается в полосу с явно выраженным максимумом, причем для соединения 19 он становится наиболее интенсивным. В спектре возбуждения этого азометина в концентрации 10-5 моль/л также исчезают все полосы возбуждения, расположенные в более концентрированном растворе далее 400 нм.

Рис. 5. Спектры возбуждения азометинов **19–21** в хлористом метилене (l–3) (c 10^{-4} моль/л). Длины волны люминесценции 433 (**19**), 435 (**20**) и 430 нм (**21**).

Рис. 6. Спектры возбуждения азометинов **19–21** (*1–3*) в хлористом метилене (c 10⁻⁵ моль/л). Длины волны люминесценции 435 (**19**), 435 (**20**) и 430 нм (**21**).

Таким образом, рассмотрение спектров люминесценции и возбуждения азометинов 19-21 показывает, что их характер определяется структурными особенностями изучаемых соединений. Вид спектров люминесценции определяется числом метоксильных групп, а не их расположением в бензольном кольце. При этом оказывается неважным, в пара- или в мета-положении относительно азометинового фрагмента находится 1,2,3-тиадиазольный цикл. В случае соединения 19 спектры возбуждения (рис. 4-6) обнаруживают наиболее длинноволновое поглощение. Поэтому для этого соединения в наибольшей степени выражена реабсорбция квантов испускания и искажение вследствие этого регистрируемых спектров люминесценции (рис. 2, 3).

Квантовый выход люминесценции в порошке близок для азометинов 19 и 20, а в случае азометина 21 он в 4–5 раз ниже. В растворах хлористого метилена для соединения 21 наблюдается резкий рост квантового выхода люминесценции, а у соединения 20 он снижается (табл. 1). Квантовый выход люминесценции определяется степенью сопряжения вдоль всей молекулы и растет по мере усиления донорно-акцепторного взаимодействия заместителей. На степень сопряжения гетероциклического и азометинового фрагментов

оказывает влияние возможность образования квазиароматического шестичленного цикла с участием атома азота азометинового фрагмента и водородной связи. Такой цикл у соединения 19 может образовываться в растворах за счет водородной связи от гидроксильной группы, а у соединения у 21 – за счет водорода орто-метоксигруппы. Этим, по-видимому, объясняется 10-кратный рост квантового выхода люминесценции у соединения 21 при переходе от порошка к растворам (табл. 1). В твердом состоянии для этого соединения квазиароматический шестичленный цикл не может реализоваться из-за жесткости матрицы, а в жидких растворах при комнатной температуре он образуется за счет конформационной подвижности орто-метоксигруппы. Наличие шестичленного цикла в молекуле уплощает ее структуру в растворах, что усиливает степень сопряжения фрагментов молекулы. Как следствие этого резко возрастает квантовый выход люминесценции соединения 21 в растворах. У соединения 20 возможности образования шестичленного цикла нет. Кроме того, это соединение существует в растворах в смеси син- и анти- изомеров, что уменьшает жесткость молекулы и, как следствие, приводит к снижению квантового выхода люминесценции у этого соединения в растворах.

Таким образом, разработан способ синтеза азометинов, содержащих 1,2,3-тиадиазольный фрагмент в разных положениях бензольного кольца относительно азометиновой группы. Эти соединения люминесцируют, но их фотофизическое поведение достаточно сложно и требует более детальных исследований.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н, и ¹³С получали на приборе Bruker AVANCE-400 (400.13 и 100.16 МГц соответственно). Масс-спектры (ESI) получали на приборе Bruker MicrOTOF. Спектры люминесценции записывали на приборе Fliorolog-3 (Horiba Jobin Yvon) при комнатной температуре. Квантовые выходы люминесценции определяли на том же приборе прямым измерением с помощью интегрирующей сферы. Для измерений времени жизни возбужденного состояния в качестве источника возбуждения использовали источник NanoLED (Horiba Jobin Yvon, длительность импульса — 1.1 нс, частота повторения — 50 кГц).

4-(3-Нитро-4-гидроксифенил)-1,2,3-тиади**азол (2).** К суспензии 12.44 г 4-(4-гидроксифенил)-1,2,3-тиадиазола 1 в 150 мл уксусной кислоты прибавляли по каплям при перемешивании 7.3 мл азотной кислоты (d 1.5 г/мл) при охлаждении водой, поддерживая температуру не выше 32°С. Твердая фаза растворялась, а затем выпадал оранжевый осадок. Реакционную массу перемешивали при комнатной температуре 1 ч, затем выливали в 250 мл ледяной воды и оставляли на ночь. На следующий день отфильтровывали осадок, промывали водой до нейтральной реакции и сушили на воздухе до постоянной массы. Выход 14.42 г (92%), т. пл. 198°С. Спектр ЯМР ¹Н (ДМСО- d_6), δ , м. д.: 7.28 д (1H, H⁵-фенил, J_{HH} 8.4 Γ ц), 8.28 д. д (1H, H 6 -фенил, $J_{\rm HH}$ 8.4, 2.0 Γ ц), 8.61 д (1H, H²-фенил, $J_{\rm HH}$ 2.0 Гц), 9.61 с (1H, H⁵-тиадиазол), 11.44 с (1H, OH). Спектр ЯМР 13 С (ДМСО- d_6), $\delta_{\rm C}$, м. д.: 120.38 (С⁵-фенил), 122.54 (С¹-фенил), 124.03 (С²-фенил), 133.31 (С⁵-тиадиазол), 133.88 $(C^6$ -фенил), 137.81 $(C^3$ -фенил), 153.06 $(C^4$ -тиадиазол), 160.32 (С⁴-фенил).

4-(3-Нитро-4-метоксифенил)-1,2,3-тиадиа- 30л (3). К смеси 6.84 г 4-(3-нитро-4-гидроксифенил)-1,2,3-тиадиазола **2**, 3.3 г бромида триэтилбен-

зиламмония (TEBA-Br), 6 мл свежеперегнанного диметилсульфата и 60 мл хлороформа прибавляли при интенсивном перемешивании раствор 1.9 г гидроксида калия в 30 мл воды. Полученную смесь перемешивали 6 ч при комнатной температуре, затем отделяли водную фазу. Органическую фазу промывали (2×30 мл) 0.6 н. раствором гидроокиси калия и 30 мл воды, затем сушили сульфатом натрия и упаривали. Выход 6.12 г (85%), т. пл. 148°C. Спектр ЯМР ¹H (CDCl₃), δ , м. д.: 4.07 с (3H, CH₃O), 7.26 д (1H, H⁵-фенил, $J_{\rm HH}$ 8.8 Гц), 8.31 д. д (1H, H^{6} -фенил, J_{HH} 8.8, 2.2 Гц), 8.50 д (1H, H^{2} -фенил, $J_{\rm HH}$ 2.2 Гц), 8.79 с (1H, H⁵-тиадиазол). Спектр ЯМР ¹³C (CDCl₃), δ_C, м. д.: 56.90 (CH₃O), 114.10 (C⁵-фенил), 123.57 (C^1 -фенил), 124.48 (C^2 -фенил), 130.37 $(C^6$ -фенил), 132.96 $(C^5$ -тиадиазол), 139.81 $(C^3$ -фенил), 153.06 (\mathbb{C}^4 -тиадиазол), 160.24 (\mathbb{C}^4 -фенил).

Карбэтоксигидразон 2-гидрокси-5-метоксиацетофенона (5). Смесь 2.83 г 2-гидрокси-5-метоксиацетофенона 4, 1.86 г карбэтоксигидразина, 0.3 г п-толуолсульфокислоты и 30 мл бензола кипятили при перемешивании с ловушкой Дина-Старка до прекращения отделения воды в течение 5 ч. После этого отгоняли бензол, остаток затирали с водой. Образовавшиеся кристаллы отфильтровывали, промывали водой и сушили на воздухе до постоянной массы. Выход 3.03 г (70%), т. пл. 167°С. Спектр ЯМР ¹Н (ДМСО-*d*₆), δ, м. д.: 1.39 уш. т (3H, CH₃-эфир, $J_{\rm HH}$ 7.0 Гц), 2.27 с (3H, CH₃), 3.80 с (3H, CH₃O), 4.35 уш. к (2H, CH₂O, J_{HH} 7.0 Гц), 6.87 д. д (1H, H⁴, $J_{\rm HH}$ 8.8, 2.8 Гц), 6.94 д (1H, H⁵, J_{HH} 8.8 Гц), 6.96 д (1H, H⁶, J_{HH} 2.8 Гц), 9.03уш. с (1H, NH), 12.04 уш. с (1H, OH). Спектр ЯМР ¹³С (ДМСО- d_6), δ_C , м. д.: 12.22 (СН₃), 14.47 (СН₃эфир), 55.98 (СН₃О), 62.73 уш. с (СН₂О), 112.84 $(C^3$ -фенил), 116.74 (C^6 -фенил), 118.29 (C^4 -фенил), 122.38 (С¹-фенил), 149.49 уш. с (С=N), 151.11 уш. с (NHC=O), 152.79 (C^5 -фенил), 154.34 (C^2 -фенил).

4-(2-Гидрокси-3,6-дихлор-5-метоксифенил)- тиадиазол (6). Карбэтоксигидразон 2-гидрокси-5-метоксиацетофенона **5** (3.03 г) смешивали с 15 мл хлористого тионила и кипятили 3 ч до прекращения выделения газа. После этого отгоняли хлористый тионил, остаток затирали с водой и перекристаллизовывали из водного этанола. Выход 2.31 г (69%), белые кристаллы, т. пл. 141°C. Спектр ЯМР 1 Н (ДМСО- d_{6}), δ , м. д.: 3.88 с (3H, CH₃O), 7.44 с (1H, H⁴-фенил), 9.40 с (1H, H⁵-тиадиазол),

9.41 уш. с (1H, OH). Спектр ЯМР 13 С (ДМСО- d_6), $\delta_{\rm C}$, м. д.: 57.44 (СН $_3$ О), 115.24 (С 3 -фенил), 121.13 (С 6 -фенил), 121.44 (С 4 -фенил), 122.31 (С 1 -фенил), 139.58 (С 5 -тиадиазол), 147.77 (С 5 -фенил), 149.01 (С 2 -фенил), 155.16 (С 4 -тиадиазол).

2-(1,2,3-Тиадиазол-4-ил)-3,5-дихлорбен**зохинон** (7). К суспензии 2.34 г 4-(2-гидрокси-3,6-дихлор-5-метоксифенил)тиадиазола 6 в 30 мл уксусной кислоты прибавляли по каплям 1.4 мл азотной кислоты (d 1.5 г/мл). Реакционную массу нагревали до 60°C и выдерживали 3 ч при этой температуре, после чего выливали на 100 г измельченного льда. На следующий день отфильтровывали образовавшийся осадок и сушили на воздухе до постоянной массы. Выход 1.35 г (61%), т. разл. 151°C. Спектр ЯМР ¹Н (ДМСО-*d*₆), б, м. д.: 7.69 с (1H, H^5 -хинон), 9.38 с (1H, H^5 -тиадиазол). Спектр ЯМР 13 С (ДМСО- d_6), δ_C , м. д.: 133.87 $(C^5$ -хинон), 135.11 $(C^5$ -тиадиазол), 142.20 $(C^3$ хинон), 142.48 (C^6 -хинон), 143.68 (C^2 -хинон), 151.90 (С⁴-тиадиазол), 176.41 (С⁴-хинон), 177.68 (C¹-хинон). Macc-спектр (ESI), m/z: 282,9113 [M + $Na]^+$ (вычислено для $C_8H_2Cl_2N_2O_2S$: 282.9106).

2,5-Диметокси-3-нитроацетофенон (9). раствору 3.65 г 2-гидрокси-3-нитро-5-метоксиацетофенона 8 и 3.2 мл диметилсульфата в 60 мл хлороформа прибавляли при перемешивании 1.85 г бромида триэтилбензиламмония и раствор 1.05 г гидроксида калия в 30 мл воды. Полученную смесь кипятили при интенсивном перемешивании 8 ч, затем отделяли водный слой. Органический слой промывали 0.6 М. раствором гидроксида калия $(2\times25 \text{ мл})$, 25 мл воды, 25 мл раствора NaCl, сушили сульфатом натрия и отгоняли хлороформ. Выход 2.83 г (73%), т. пл. 53°С. Спектр ЯМР ¹Н (CDCl₃), δ , м. д.: 2.65 с (3H, CH₃-кетон), 3.85 с (3H, CH₃O⁵), 3.87 c <math>(3H, CH₃O²), 7.23 д (1H, H⁶фенил, $J_{\rm HH}$ 3.2 Гц), 7.44 д (1H, H⁶-фенил, $J_{\rm HH}$ 3.2 Гц). Спектр ЯМР 13 С (CDCl₃), $\delta_{\rm C}$, м. д.: 30.53 $(CH_3-KETOH)$, 56.24 (CH_3O^5) , 64.27 (CH_3O^2) , 113.49 (С⁴-фенил), 119.11 (С⁶-фенил), 136.55 (С¹фенил), 144.72 (C^3 -фенил), 145.86 (C^2 -фенил), 155.15 (С⁵-фенил), 198.52 (С=О).

Карбэтоксигидразон 2,5-диметокси-3-нитроацетофенона (10). Смесь 2.83 г 2,5-диметокси-3-нитроацетофенона 9, 1.30 г карбэтоксигидразина, 0.20 г n-толуолсульфокислоты и 40 мл бензола кипятили 5 ч при интенсивном перемешивании

с ловушкой Дина-Старка до прекращения отделения воды. Полученную смесь упаривали, остаток затирали с водой. Образовавшиеся кристаллы отфильтровывали, промывали водой и сушили на воздухе до постоянной массы. Выход 3.49 г (72%). т. пл. 134°С. В хлороформе соединение существует в виде смеси син- и анти-изомеров в соотношении 0.2:1. Спектр ЯМР ¹H (CDCl₃), δ, м. д.: общие сигналы, 1.36 т (3H, CH₃-этил, $J_{\rm HH}$ 7.2 Гц), 4.30 к (2H, CH₂O-этил, $J_{\rm HH}$ 7.2 Гц); анти-изомер, 2.25 с (3H,CH₃-гидразон), 3.81 с (3H, CH₃O²), 3.85 с (3H, ${
m CH_3O^5}$), 7.24 д (1H, H⁶-фенил, $J_{
m HH}$ 3.2 Γ ц), 7.35 д (1H, H⁴-фенил, $J_{\rm HH}$ 3.2 Γ ц), 8.03 уш. с (1H, NH); *син*-изомер, 2.36 c (3H,CH₃-гидразон), 3.82 c (3H, CH_3O^2), 3.87 с (3H, CH_3O^5), 6.88 д (1H, H^6 -фенил, $J_{\rm HH}$ 3.2 Гц), 7.40 д (1H, H⁴-фенил, $J_{\rm HH}$ 3.2 Гц), 7.70 уш. с (1H, NH). Спектр ЯМР ¹³С (CDCl₃), $\delta_{\rm C}$, м. д.: общие сигналы, 14.57 (CH₃-этил), 15.75 (CH₃гидразон), 62.31 уш. с (CH₂O-этил), 63.34 (CH₃O²), 136.82 (С¹-фенил), 144.34 (С³-фенил), 145.82(C²-фенил), 147.50 (C=N),153.75 уш. с (C=O); анти-изомер, 56.17 (CH_3O^5), 110.40 (C^4 -фенил), 120.50 (C^6 -фенил), 155.17 (C^5 -фенил); *син*-изомер, 56.30 (CH₃O⁵), 110.64 (С⁴-фенил), 118.85 (С⁶фенил), 155.94 (С⁵-фенил).

4-(2,5-Диметокси-3-нитрофенил)-1,2,3-тиадиазол (11). Карбэтоксигидразон 2,5-диметокси-3-нитроацетофенона 10 (3.49 г) растворяли при перемешивании в 30 мл хлористого тионила и постепенно нагревали. Выделение газа начиналось при 30°C (температура бани) и заканчивалось в течение 1.5 ч при достижении температуры бани 80°С. Реакционную массу перемешивали еще 30 мин при этой температуре, затем отгоняли хлористый тионил, остаток затирали с водой. Выпавшие кристаллы отфильтровывали, промывали водой и сушили на воздухе до постоянной массы. Выход 2.90 г (97%), светло-желтые кристаллы, т. пл. 135°C. Спектр ЯМР ¹H (CDCl₃), δ, м. д.: 3.76 c (3H, CH₃O⁵), 3.94 c (3H, CH₃O²), 7.45 д (1H, H⁶-фенил, J_{HH} 3.2 Гц), 8.16 д (1H, H⁴-фенил, $J_{\rm HH\text{-}MeTa}$ 3.2 Гц), 9.20 с (1H, H 5 -тиадиазол). Спектр ЯМР ¹³С (CDCl₃), δ_C, м. д.: 56.29 (CH₃O⁵), 62.42 (CH₃O²), 111.43 (C⁴-фенил), 120.20 (C⁶-фенил), 127.81 (C^1 -фенил), 135.11 (C^5 -тиадиазол), 144.40 $(C^3$ -фенил), 144.97 $(C^2$ -фенил), 155.68 $(C^5$ -фенил), 156.50 (С⁴-тиадиазол).

Карбэтоксигидразон 2,5-диметоксиацетофенона (14). Смесь 2.05 г 2,5-диметоксиацетофенона

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 91 № 11 2021

13. 1.3 г карбэтоксигидразина, 0.2 г n-толуолсульфокислоты и 40 мл бензола кипятили 3 ч при перемешивании с ловушкой Дина-Старка до прекращения отделения воды. После этого бензол отгоняли, остаток растворяли в 40 мл хлороформа, промывали водой, раствором NaCl и сушили сульфатом натрия. Хлороформ отгоняли, остаток выдерживали в вакууме (1 мм рт. ст.) 1 ч при комнатной температуре. Выход 2.90 г (96%). Спектр ЯМР ¹H (CDCl₃), б, м. д.: 1.32 т (3H, CH₃-эфир, J_{HH} 7.0 Гц), 2.25 с (3H, CH₃-гидразон), 3.75 с (6H, CH₃O), 4.28 к (2H, CH_2O -эфир, J_{HH} 7.0 Γ ц), 6.60 с (1H, NH), 6.79 д (1H, H³-фенил, $J_{\rm HH}$ 8.8 Гц), 6.84 д. д (1H, H⁴-фенил, $J_{\rm HH}$ 8.8, 3.2 Γ ц), 6.98 д (1H, H⁶-фенил, $J_{\rm HH}$ 3.2 Гц). Спектр ЯМР 13 С (CDCl₃), $\delta_{\rm C}$, м. д.: 14.57 (СН₃-эфир), 14.59 (СН₃-эфир), 16.50 (СН₃-гидразон), 55.81 (CH₃O⁵), 56.11(CH₃O²), 61.90 уш. с (CH₂O-эфир), 112.32(С³-фенил), 113.00 (С⁴фенил), 113.47 (C^4 -фенил), 114.88 (C^6 -фенил), $115.58(C^6$ -фенил), 123.57 (C^1 -фенил), 149.46(C=N), 151.64 $(C^2$ -фенил), 153.54 $(C^5$ -фенил), 154.03 (C=O).

4-(2,5-Диметоксифенил)-1,2,3-тиадиазол (15). Карбэтоксигидразон 2,5-диметоксиацетофенона 14 (2.74 г) растворяли в 30 мл хлористого тионила и постепенно нагревали при перемешивании. При 65°C начиналось активное выделение газа. Смесь перемешивали при 65-70°C до полного выделения газа, затем нагревали в течение 10 мин при 80°C, охлаждали и отгоняли хлористый тионил. Остаток разлагали 25 мл воды, органическую фазу экстрагировали хлороформом (2×15 мл), промывали полученный экстракт водой $(2\times10 \text{ мл})$, бикарбонатом натрия (10 мл насыщенного раствора) и раствором NaCl (15 мл). Полученный раствор сушили сульфатом натрия, отгоняли хлороформ, остаток выдерживали в вакууме (1 мм рт. ст.) 1 ч при комнатной температуре. Выход 1.97 г (86%), т. пл. 32°С. Спектр ЯМР ¹H (CDCl₃), δ, м. д.: 3.88 c (3H, CH₃O⁵), 3.94 c (3H, CH₃O²), 6.99– 7.00 м (2H, $H^{3,4}$ -фенил), 8.12 с (1H, H^6 -фенил), 9.12с (1H, H⁵-тиадиазол). Спектр ЯМР 13 С (CDCl₃), $\delta_{\rm C}$, м. д.: 55.93 (CH₃O⁵), 56.07 (CH₃O²), 112.64 (С³-фенил), 114.65 (С⁴-фенил), 116.46 (С⁶-фенил), 120.12 $(C^1$ -фенил), 133.67 $(C^5$ -тиадиазол), 150.71 $(C^5$ фенил), 153.84 (C^2 -фенил), 158.41 (C^4 -тиадиазол).

4-(2,5-Диметокси-4-нитрофенил)-1,2,3-тиа- диазол (12). К раствору 1.97 г **4-**(2,5-диметоксифе-

нил)-1,2,3-тиадиазола 15 в 22 мл ледяной уксусной кислоты прибавляли по каплям при перемешивании 1.2 мл азотной кислоты (d 1.5 г/мл). Температура реакционной массы поднималась до 29°C и начиналось выделение осадка. Полученную смесь перемешивали 3 ч, затем выливали в 70 мл воды. На следующий день отфильтровывали выделившийся осадок, промывали его водой до нейтральной реакции и сушили на воздухе до постоянной массы. Выход 1.94 г (82%), оранжевый порошок, т. пл. 119–120°С. Спектр ЯМР ¹Н (CDCl₃), δ, м. д.: 4.04 c (3H, CH₃O²), 4.07 c (3H, CH₃O²), 7.64 c (1H, H^3 -фенил), 8.41 с (1H, H^6 -фенил), 9.30 с (1H, H^5 -тиадиазол). Спектр ЯМР 13 С (CDCl₃), δ_C , м. д.: 56.53 (CH₂O²), 57.19 (CH₂O⁵), 108.95 (C³-фенил), 115.65 $(C^6$ -фенил), 125.36 $(C^1$ -фенил), 136.06 $(C^5$ -тиадиазол), 138.78 (С⁴-фенил), 147.77 (С⁵-фенил), 149.39 $(C^2$ -фенил), 156.38 (C^4 -тиадиазол).

4-(3-Амино-4-метоксифенил)-1,2,3-тиадиа-**30л (16).** К суспензии 3.45 г 4-(3-нитро-4-метоксифенил)-1,2,3-тиадиазола 3 в 82 мл изопропилового спирта прибавляли 17.9 мл уксусной кислоты, затем небольшими порциями при перемешивании прибавляли 4.80 г цинка. После окончания прибавления реакционную массу перемешивали 1.5 ч при 50-52°C, отфильтровывали осадок, промывали его изопропиловым спиртом и полученный раствор упаривали. Остаток растворяли в 30 мл хлороформа, промывали 5%-ной соляной кислотой (3× 10 мл), экстракт подщелачивали карбонатом натрия до рН 9-10. Выпавшее масло после недолгого затирания закристаллизовывалось. Полученный осадок отфильтровывали, промывали 5 мл воды и сушили на воздухе до постоянной массы. Выход 1.90 г (63%), т. пл. 115°С. Спектр ЯМР ¹Н (CDCl₃), б, м. д.: 3.92 уш. c (5H, CH₃O, NH₂), 6.89 д (1H, H^5 -фенил, J_{HH} 8.4 Гц), 7.40 д. д (1H, H^6 -фенил, J_{HH} 8.4, 2.0 Гц), 7.46 д (1H, H²-фенил, $J_{\rm HH}$ 2.0 Гц), 8.49 с (1H, H^5 -тиадиазол). Спектр ЯМР ¹³С (CDCl₃), $\delta_{\rm C}$, м. д.: 55.62 (CH₃O), 110.62 (С⁵-фенил), 113.77 $(C^2$ -фенил), 117.82 $(C^6$ -фенил), 123.81 $(C^1$ -фенил), 128.54 (С⁵-тиадиазол), 136.70 (С³-фенил), 148.27 $(C^4$ -тиадиазол), 163.12 $(C^4$ -фенил).

4-(2,5-Диметокси-3-аминофенил)-1,2,3-тиадиазол (17). К суспензии 2.90 г 4-(2,5-диметокси-3-нитрофенил)-1,2,3-тиадиазола **11** в 60 мл изопропилового спирта при интенсивном перемешивании прибавляли 3.5 г цинка, затем 13 мл

уксусной кислоты. Наблюдалось выделение тепла, температура реакционной массы поднималась до 35°С. После прекращения экзотермической реакции реакционную массу нагревали при перемешивании при 45-50°C 2.5 ч, затем охлаждали до комнатной температуры. Осадок отфильтровывали, фильтрат упаривали. Остаток растворяли в 30 мл хлороформа, фильтровали и промывали 5%-ной соляной кислотой (3×10 мл). Кислотную вытяжку подщелачивали до рН 9-10, осадок выдерживали при комнатной температуре 30 мин и отфильтровывали. При сушке на воздухе он расплывается, а потом образует комки, не имеющие четкой температуры плавления и разлагающиеся при 101°C. Выход 0.38 г (15%). Спектр ЯМР 1 Н (ДМСО- d_{6}), δ, м. д.: 3.52 c (3H, CH₃O²), 3.73 c (3H, CH₃O⁵), 5.22 уш. с (2H, NH₂), 6.42 д (1H, H⁴-фенил, $J_{\rm HH}$ 3.2 Гц), 6.91 д (1H, H⁶-фенил, $J_{\rm HH}$ 3.2 Гц), 9.39 с (1H, H^5 -тиадиазол). Спектр ЯМР 13 С (ДМСО- d_6), δ_C, м. д.: 55.51 (CH₃O²), 59.36 (CH₃O⁵), 101.56 $(C^4$ -фенил), 102.19 $(C^6$ -фенил), 124.39 $(C^1$ -фенил), 135.69 (С⁵-тиадиазол), 138.28 (С³-фенил), 143.62 $(C^2$ -фенил), 156.62 (C^4 -тиадиазол),158.63 (C^5 -фенил).

4-(2.5-Диметокси-4-аминофенил)-1.2.3-тиалиазол (18). К суспензии 4-(2.5-диметокси-4-нитрофенил)-1,2,3-тиадиазола 12 (3.00 г) в 63 мл изопропилового спирта добавляли 3.65 г цинкового порошка и при перемешивании приливали небольшими порциями 13.6 мл ледяной уксусной кислоты. Температура реакционной смеси поднималась до 43°C. Реакционную массу перемешивали 3 ч, при этом ее окраска изменялась с оранжевой на светло-коричневую. После удаления солей цинка, фильтрат упаривали досуха, остаток растворяли в 30 мл хлороформа, фильтровали, промывали 5%-ной соляной кислотой. Кислотную вытяжку фильтровали, фильтрат подщелачивали карбонатом калия до рН 9-10. Выделившееся масло при затирании закристаллизовывалось. Образовавшийся осадок отфильтровывали, промывали водой и сушили на воздухе до постоянной массы. Выход 1.12 г (42%), светло-коричневый порошок, т. пл. 103°C. Спектр ЯМР ¹H (CDCl₃), δ, м. д.: 3.91 с (3H, CH₃O⁵), 3.96 с (3H, CH₃O⁵), 4.12 уш. с (2H, NH₂), 6.47 с (1H, H³-фенил), 8.03 с (1H, H⁶-фенил), 8.92 с (1H, H^5 -тиадиазол). Спектр ЯМР ¹³С (CDCl₃), $\delta_{\rm C}$, M. д.: 55.96 (CH₃O⁵), 56.20 (CH₃O²), 98.91 (C³фенил), 104.66 (C^1 -фенил), 112.66 (C^6 -фенил), 130.67 (C^5 -тиадиазол), 138.28 (C^4 -фенил), 141.37 (C^5 -фенил), 151.62 (C^2 -фенил), 159.26 (C^4 -тиадиазол).

4-[3-(2-Гидроксибензилиден)амино-4-метоксифенил]-1,2,3-тиадиазол (19). К суспензии 0.78 г 4-(3-амино-4-метоксифенил)-1,2,3-тиадиазола 16 в 25 мл бензола прибавляли при перемешивании 0.39 мл салицилового альдегида и 0.25 г п-толуолсульфокислоты. Полученную смесь кипятили 3 ч с ловушкой Дина-Старка до прекращения отделения воды, отфильтровывали образовавшийся осадок и перекристаллизовывали его из этанола. Выход 0.95 г (81%), желто-оранжевые кристаллы, т. пл. 135°С. Спектр ЯМР ¹Н (CDCl₃), б, м. д.: 3.98 c (3H, CH₃), 6.96 уш. д. д (1H, H⁵салицил, $J_{\rm HH}$ 8.0, 8.4 Гц), 7.12 д (1H, H 5 -фенил, $J_{\rm HH}$ 8.2 Гц), 7.39 уш. д (1H, H⁶-фенил, $J_{\rm HH}$ 8.2 Гц), 7.43 уш. д. д (1H, H⁴-салицил, $J_{\rm HH}$ 8.0, 8.4 Γ ц), 7.90 уш. д (1H, H⁶-салицил, $J_{\rm HH}$ 8.4 Γ ц), 7.96 уш. д (1H, H^3 -фенил, J_{HH} 8.0 Гц), 7.99 уш. с (1H, H^2 -фенил), 8.62 c (1H, =CH), 8.83 c (1H, H⁵-тиадиазол), 13.71 с (1H, OH). Спектр ЯМР 13 С (CDCl $_{3}$), δ_{C} , м. д.: 56.07 (CH₃), 112.24 (С⁵-фенил), 117.45 (С²-фенил), 118.75 (С¹-салицил), 118.97 (С³-салицил), 119.87 $(C^5$ -салицил), 123.88 $(C^1$ -фенил), 126.70 $(C^6$ -фенил), 120.99 (C^5 -тиадиазол), 132.25 (C^6 -салицил), 133.29 (C^4 -салицил), 137.77 (C^3 -фенил), 153.89 $(C^4$ -тиадиазол), 161.63 (=CH), 162.22 (C^2 -салицил), 162.98 (С⁴-фенил).

4-[2,5-(Диметокси)-3-(2-гидроксибензилиден)аминофенил]-1,2,3-тиадиазол (20). К суспензии 0.28 г 4-(2,5-диметокси-3-аминофенил)-1,2,3-тиадиазола 17 в 15 мл этанола прибавляли 0.15 мл салицилового альдегида и 0.05 г п-толуолсульфокислоты, полученную смесь перемешивали 4 сут. Оранжевый осадок отфильтровывали, промывали этанолом и сушили на воздухе до постоянной массы. Выход 0.23 г (57%), оранжевый порошок, т. пл. 232°С (разл.). В растворе существует в виде двух форм в соотношении 2.5:1. Спектр ЯМР 1 H (CDCl₃), δ_{C} , м. д.: 7.427.50 м (H⁴ основного изомера, Н^{4,6} минорного изомера), 13.37 с (1H, OH); основной изомер, 3.47 с (3H, CH₃O⁵), 3.73 с (3H, CH₃O²), 6.02 уш. с (1H, H⁶-фенил), 6.69т (1H, H⁵-салицил, $J_{\rm H\ H}^{4.5}=J_{\rm H\ H}^{5.6}=7.0$ Гц), 7.13 д (1H, H³-салицил, $J_{\rm H~H}^{3}$ 8.4 Γ ц), 7.15 д (1H, H⁶салицил, $J_{\rm H}^{5}$ 6 7.0 Гц), 7.73 уш. с (1H, H²-фенил), 8.23 с (1H, CH=), 8.33 с (1H, H⁵-тиадиазол); минорный изомер, 3.73 с (3H, CH₃O⁵), 3.93 с (3H, CH₃O²),

6.88 уш. с (1H, H⁶-фенил), 6.99 т (1H, H⁵-салицил, $J_{\rm H~H}^{-4.5} = J_{\rm H~H}^{-5.6} = 7.2~\Gamma$ ц), 7.07 д (1H, H³-салицил, $J_{\rm H}^{3}$ 4 8.4 Гц), 7.89 уш. с (1H, H²-фенил), 8.74 с (1H, CH=), 9.22 с (1H, H⁵-тиадиазол). Спектр ЯМР ¹³С $(CDCl_3)$, δ_C , м. д.: основной изомер, 55.66 (CH_3O^5) , 61.52 (CH₃O²), 107.21 (С⁴-фенил), 111.58 (С²фенил), 114.64 (С³-салицил), 119.25 (С¹-салицил), 124.43 (С 1 -фенил), 125.01 (С 5 -салицил), 132.55 $(C^6$ -салицил). 134.00 $(C^4$ -салицил). 136.22 $(C^5$ тиадиазол), 142.43 (C^3 -фенил), 143.59 (C^2 -фенил), 157.03 (C^5 -фенил), 157.06 (C^4 -тиадиазол), 163.91 $(C^2$ -салицил), 167.45 (=CH); минорный изомер, 55.98 (CH₂O⁵), 61.06 (CH₂O²), 107.49 (С⁴-фенил), 111.24 (С²-фенил), 117.43 (С³-салицил), 119.15 $(C^1$ -салицил). 124.43 $(C^1$ -фенил). 125.74 $(C^5$ салицил), 133.73 (C^6 -салицил), 134.16 (C^4 салицил), 136.22 (C^5 -тиадиазол), 142.43 (C^3 -фенил), 143.84 (C^2 -фенил), 156.56 (C^5 -фенил), 157.06 $(C^4$ -тиадиазол), 161.42 (C^2 -салицил), 173.42 (=CH).

4-[2,5-(Диметокси)-4-(2-гидроксибензилиден)аминофенил]-1,2,3-тиадиазол (21). К смеси 1.00 г 4-(2,5-диметокси-4-аминофенил)-1,2,3-тиадиазола 18, 0.10 г *п*-толуолсульфокислоты и 20 мл бензола прибавляли при интенсивном перемешивании 0.5 мл салицилового альдегида и полученную смесь кипятили при перемешивании с ловушкой Дина-Старка до прекращения отделения воды 8 ч. Осадок отфильтровывали и перекристаллизовывали из этанола. Выход 0.91 г (63%), желтый порошок, т. пл. 255°С. Спектр ЯМР ¹Н (CDCl₃), δ, м. д.: 3.54 c (3H, CH₃O⁵), 3.58 c (3H, CH₃O²), 6.43 с (1H, H³-фенил), 6.62 т (1H, H⁵-салицил, $J_{\rm HH}$ 7.6 Гц), 6.99 д (1H, H³-салицил, $J_{\rm HH}$ 8.4 Гц), 7.20 д (1H, H⁶-салицил, $J_{\rm HH}$ 7.6 Гц), 7.37 д. д (1H, H⁴-салицил, $J_{\rm H}{}^3_{\rm H}{}^4$ 8.4, $J_{\rm H}{}^4_{\rm H}{}^5$ 7.6 Гц), 7.99 с (1H, H⁶фенил), 8.35 c (1H, =CH), 9.04 c (H⁵-тиадиазол), 13.64 уш. с (1H, OH). Спектр ЯМР ¹³С (CDCl₃), $\delta_{\rm C}$, M. д.: 55.66 (CH₃O⁵), 56.04 (CH₃O²), 104.60 (C³фенил), 112.18 (C^6 -фенил), 114.53 (C^3 -салицил), 117.49 (С¹-фенил), 118.72 (С¹-салицил), 124.03 $(C^5$ -салицил), 133.54 $(C^5$ -тиадиазол), $(C^6$ -салицил), 136.54 $(C^4$ -салицил), 138.54 $(C^4$ -фенил), 145.48 (C^5 -фенил), 150.91 (C^2 -фенил), 157.82 $(C^4$ -тиадиазол), 168.92 (C^2 -салицил), 172.89 (=CH).

ИНФОРМАЦИЯ ОБ АВТОРАХ

Певзнер Леонид Маркович, ORCID: https://orcid.org/0000-0002-1678-2524

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 91 № 11 2021

Петров Михаил Львович, ORCID: https://orcid.org/0000-0001-8666-282X

Поняев Александр Иванович, ORCID: https://orcid.org/0000-0002-1562-2510

БЛАГОЛАРНОСТИ

Авторы выражают благодарность М.А. Кинжалову и Э.В. Соколовой (Санкт-Петербургский государственный университет) за помощь в съемке и интерпретации спектров люминесценции и возбуждения.

ФОНДОВАЯ ПОДДЕРЖКА

Работа выполнена в рамках государственного задания Министерства науки и высшего образования России № 785.00Х6019 с использованием оборудования инжинирингового центра Санкт-Петербургского государственного технологического института (технического университета) и при поддержке Российского фонда фундаментальных исследований (грант № 19-08-1232). Измерение фотофизических параметров произведено в Ресурсном центре Санкт-Петербургского государственного университета «Оптические и лазерные методы исследования вещества».

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- da Silva C.M., da Silva D.L., Modolo L.V., Alves R.B., Resende M.A., Martins C.V.B., Fatima A. // J. Adv. Res. 2011. Vol. 2. N 1. P. 1. doi 10.1016/j.jare.2010.05.004
- Krarky M., Dzurkova M., Janousek J., Konecna K., Treitnar F., Stolarikova J., Vinsova J. // Molecules. 2017. Vol. 22. P. 1573. doi 10.3390/molecules22091573
- Surabhi A.K., Pradeepkumar K. // J. Appl. Chem. 2016.
 Vol. 9. N 11. P. 11. doi 10.9790/5736-0911031118
- 4. Thorat B.R., Kanat P., Khandekar D., Lele S., Mustapha M., Savant S., Jadhav R., Kolekar S., Yamgar R., Atram R.G. // J. Chem. Pharm. Res. 2011. Vol. 3. N 6. P. 1109.
- Dilmaghani K.A., Jazani N.H., Nasuhi Pur F., Shokoufeh N., Ghadiri F., Fakhraee F.M. // Chem. Heterocycl. Compd. 2012. Vol. 48. N 2. P. 362. doi 10.1007/S10593-012-0998-y

- Minkkila A., Myllymaki M.J., Saario S.M., Castillo-Melendez J.A., Koskinen A.M.P., Fowler C.J., Leppanen J., Nevalainen T. // Eur. J. Med. Chem. 2009. Vol. 44. P. 2994. doi 10.1016/j.ejmech.2009.01.007
- Cushman M., Zhu H., Geahlen R.L., Krakert A.J. // J. Med. Chem. 1994. Vol. 37. P. 3353. doi 10.1021/ jm00046a020
- 8. *Karabatsos G.R., Taller R.A.* // J. Am. Chem. Soc. 1963. Vol. 85. N 22. P. 3624. doi 10.1021/ja00905a020
- Karabatsos G.R., Taller R.A., Vane F.M. // J. Am. Chem. Soc. 1963. Vol. 85. N 15. P. 2327. doi 10.1021/ ja00898a033
- Karabatsos G.R., Vane F.M., Taller R.A., Hsi N. // J. Am. Chem. Soc. 1964. Vol. 86. N 16. P. 3351. doi 10.1021/ ja01070a029

Synthesis of (1,2,3-Thiadiazol-4-yl)(methoxy)phenylamines and Shiff Bases with Salicylaldehyde

D. Yu. Matuzko, L. M. Pevzner*, M. L. Petrov, and A. I. Ponyaev

St. Petersburg State Institute of Technology (Technical University), St. Petersburg, 190013 Russia *e-mail: pevzner lm@list.ru

Received August 27, 2021; revised August 27, 2021; accepted September 18, 2021

Methods for the synthesis of 4-(3-nitro-4-methoxyphenyl)-, 4-(2,5-dimethoxy-3-nitrophenyl)- and 4-(2,5-dimethoxy-4-nitrophenyl)-1,2,3-thiadiazoles and their reduction to amines with zinc and acetic acid in isopropyl alcohol was studied. On the basis of the obtained amines and salicylic aldehyde, Schiff bases exhibiting a luminescent ability were synthesized.

Keywords: 4-phenyl-1,2,3-thiadiazoles, nitration, reduction, salicylic aldehyde, Schiff bases