УДК 546.185;546.593;547.53.024;548.312.2

СИНТЕЗ И СТРОЕНИЕ ДИЦИАНОДИГАЛОГЕНАУРАТОВ (4-ФТОРБЕНЗИЛ)ТРИФЕНИЛФОСФОНИЯ $[Ph_3PCH_2C_6H_4F-4][Au(CN)_2Hlg_2]$

© 2021 г. В. В. Шарутин^{а,*}, О. К. Шарутина^{*a*}, Н. М. Тарасова^{*a*}, О. С. Ельцов^{*b*}

^а Национальный исследовательский Южно-Уральский государственный университет, пр. Ленина 76, Челябинск, 454080 Россия ^b Уральский федеральный государственный университет, Екатеринбург, 620002 Россия *e-mail: vvsharutin@rambler.ru

> Поступило в Редакцию 2 августа 2021 г. После доработки 14 сентября 2021 г. Принято к печати 18 сентября 2021 г.

Дицианодигалогенаураты (4-фторбензил)трифенилфосфония [Ph₃PCH₂C₆H₄F-4][Au(CN)₂Hlg₂], Hlg = Cl, Br, I синтезированы из хлорида (4-фторбензил)трифенилфосфония и дицианодигалогенаурата калия в воде. Строение соединений охарактеризовано методами ИК, ¹H, ¹³C{¹H} и ¹⁹F{¹H} ЯМР спектроскопии, PCA и элементного анализа. Кристаллы полученных комплексов образованы тетраэдрическими катионами (4-фторбензил)трифенилфосфония и квадратными центросимметричными анионами [Au(CN)₂Hlg₂]⁻.

Ключевые слова: дицианодигалогенаураты калия, хлорид (4-фторбензил)трифенилфосфония, дицианодигалогенаураты (4-фторбензил)трифенилфосфония

DOI: 10.31857/S0044460X21110081

Комплексы дицианидов металлов могут использоваться при получении полупроводниковых, оптически- и магнитноактивных материалов [1–7], препаратов-метаболитов лекарств на основе Au(I) [8] и веществ, проявляющих люминесцентные свойства [4, 9–12]. Комплексы дицианодигалогеноауратов с различными катионами, также проявляющие подобные свойства [13–15], менее исследованы. Известно несколько цианидных комплексов Au(I) [16, 17] и цианодигалогенидных комплексов Au(III) с аммонийными катионами [18–21], информация о комплексах [Kat]⁺[Au(CN)₂Hlg₂]⁻ с элементоорганическими катионами присутствует лишь в двух работах [22, 23]. Нами впервые синтезированы и структурно охарактеризованы дицианодигалогенаураты (4-фторбензил)трифенилфосфония [Ph₃PCH₂C₆H₄F-4]· [Au(CN)₂ Hlg ₂], Hlg = Cl, Br, I. Комплексы **1–3** получены при смешивании водных растворов соответствующих солей (схема 1).

После удаления воды и кристаллизации вещества из смеси ацетонитрила и изопропилового спирта (3:10 по объему) получены прозрачные светло-желтые (1), темно-желтые (2) и краснокоричневые кристаллы (3). Выделенные кристаллы устойчивы на воздухе, хорошо растворяются в хлороформе, дихлорметане и ацетонитриле, плохо – в воде и спиртах при комнатной температуре.

Схема 1.

 $\begin{aligned} [Ph_3PCH_2C_6H_4F-4]Cl + K[Au(CN)_2 Hlg_2] &\rightarrow [Ph_3PCH_2C_6H_4F-4][Au(CN)_2 Hlg_2] + KCl \\ 1-3 \\ Hlg &= Cl (1), Br (2), I (3). \end{aligned}$

1716

Рис. 1. Общий вид молекулы комплекса 1 в кристалле.

В ИК спектрах соединений 1–3 наблюдаются полосы поглощения валентных колебаний С–F при 1227, 1227, 1221 см⁻¹ соответственно. Полосы поглощения при 1510, 1510 и 1508 см⁻¹ характеризуют валентные колебания углеродного скелета арильных колец. Валентным колебаниям связей С_{Ar}–H соответствуют полосы поглощения средней интенсивности при 3059, 3061, 3067 см⁻¹, а внеплоскостным деформационным колебаниям этих связей – высокоинтенсивные полосы при 741 и 688 (1), 741 и 689 (2), 745 и 685 см⁻¹ (3). При 2898, 2911 и 2955 см⁻¹ присутствуют полосы поглощения, которые можно отнести к валентным колебаниям метиленовых групп, а при 1436, 1437, 1435 см⁻¹ – полосы колебания связей Р–С_{Ar}.

Полосы поглощения цианогрупп органических и неорганических соединений из-за отсутствия значительного влияния окружения на колебания этих связей находятся в достаточно узком интервале (при 2200–2000 см⁻¹ [24]) и легко обнаруживаются в ИК спектрах. В спектрах дицианопроизводных Au(III) [23] наблюдается значительное снижение интенсивности этих полос по сравнению с дицианопроизводными Au(I) [16, 17, 25, 26]. В спектрах соединений **1–3** полосы цианогрупп имеют низкую интенсивность и располагаются при 2137, 2166 и 2160 см⁻¹ соответственно.

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 91 № 11 2021

Рис. 2. Общий вид молекулы комплекса 3 в кристалле.

Несмотря на похожее строение комплексов 1–3, состоящих из катионов 4-фторфенилметилтрифенилфосфония и двух типов кристаллографически независимых дицианодигалогенауратных анионов (рис. 1, 2), имеются существенные различия в их кристаллической структуре: соединения 1 и 2 кристаллизуются в триклинной сингонии, а комплекс 3 – в моноклинной. В кристаллах соединений 1 и 2 анионы первого типа располагаются на ребрах и по центру граней кристаллических ячеек, образуя водородные связи с катионами (рис. 3). В кристалле комплекса 3 наряду с указанными выше анионами присутствуют также анионы, располагающиеся в узлах кристаллической ячейки (рис. 4).

По данным РСА (табл. 1. 2), тетраэдрическая координация атомов фосфора в катионах несколько искажена. Углы СРС отклоняются от теоретического значения: 107.96(19)–111.11(19)° (1), 107.88(18)–111.09(19)° (2), 107.39(13)–111.63(13)° (3); длины связей Р–С_{Ph} [1.797(5)–1.803(4) Å (1), 1.784(4)–1.788(4) Å (2), 1.791(3)–1.801(3) Å (3)] близки между собой, как и расстояния Р–С_{Alk} [1.825(4) Å (1), 1.808(4) Å (2), 1.823(3) Å (3)]. Углы между связями С–Аи (180°) в анионах [Au(CN)₂Hlg₂][–] не отклоняются от линейной конфигурации. Расстояния Аu–С в центросимметричных анионах существенно не отличаются друг от 1718

ШАРУТИН и др.

Параметр	1	2	3
Формула	C ₂₇ H ₂₁ AuCl ₂ FN ₂ P	C ₂₇ H ₂₁ AuBr ₂ FN ₂ P	C ₂₇ H ₂₁ AuFI ₂ N ₂ P
M	691.29	780.21	874.19
Сингония	Триклинная	Триклинная	Моноклинная
Пространственная группа	<i>P</i> -1	<i>P</i> -1	$P2_{1}/c$
<i>a</i> , Å	10.003(15)	10.001(12)	15.935(4)
b, Å	11.132(15)	11.075(11)	9.384(2)
<i>c</i> , Å	13.370(15)	13.455(16)	19.456(6)
α, град	69.42(5)	68.57(4)	90.00
β, град	70.78(5)	70.65(6)	109.043(15)
ү, град	72.71(7)	74.21(4)	90.00
<i>V</i> , Å ³	1288(3)	1289(3)	2750.1(12)
Ζ	2	2	4
$d_{\rm выч,}$ г/см ³	1.782	2.010	2.111
μ, мм ⁻¹	6.006	8.892	7.677
<i>F</i> (000)	668.0	740.0	1624.0
Размер кристалла, мм ³	$0.2\times0.2\times0.18$	0.53 imes 0.34 imes 0.27	0.34 imes 0.25 imes 0.19
Область сбора данных по 20, град	6.52 - 55.76	6.18 - 69.96	5.9 - 67.6
Интервалы индексов отражений	$-13 \le h \le 13,$	$-16 \le h \le 16,$	$-24 \le h \le 24,$
	$-14 \le k \le 14,$	$-17 \le k \le 16,$	$-14 \le k \le 14,$
	$-17 \le l \le 17$	$-21 \le l \le 21$	$-30 \le l \le 30$
Измерено отражений	36720	71481	113141
Независимых отражений (R_{int})	6129 (0.0529)	11066 (0.0597)	10997 (0.0442)
Переменных уточнения	310	310	310
GOOF	1.030	1.005	1.085
R -Факторы по $F^2 > 2\sigma(F^2)$	$R_1 0.0284,$	$R_1 0.0424,$	$R_1 0.0337,$
	$wR_2 0.0543$	$wR_2 \ 0.0760$	$wR_2 0.0648$
<i>R</i> -Факторы по всем отражениям	$R_1 0.0584,$	$R_1 0.1024,$	$R_1 0.0699,$
	wR ₂ 0.0637	$wR_2 \ 0.0931$	$wR_2 \ 0.0745$
Остаточная электронная плотность $(max/min), e/Å^3$	0.65/-1.07	1.78/-2.03	0.57/-2.06

Таблица 1. Кристаллографические данные, параметры эксперимента и уточнения структуры комплексов 1–3

друга: 2.009(6), 2.205(9) Å (1), 2.005(6), 2.009(4) Å (2), 2.004(3), 2.006(4) Å (3) – и близки к сумме ковалентных радиусов атомов (2.05 Å [27]); длины связей Au–Hlg: 2.294(4), 2.307(3) Å (1), 2.401(3), 2.413(3) Å (2), 2.6086(5), 2.6262(8) Å (3).

Ассоциация анионов за счет контактов Au····Au и Au····Br····Au [13, 14] в кристаллах отсутствует, что, вероятно, объясняется большим объемом фосфорорганических катионов, исключающим возможность сближения анионов и образования из них полимерных цепей. По-видимому, по этой же причине отсутствуют контакты F····H в кристаллах комплексов 1, 3 и I····H в комплексе 3. В кристалле комплекса 2 существование контактов Вг…Н (2.83–2.96 Å) и Г…Н (2.63 Å), возможно, связано с особенностями его кристаллической упаковки. Слабые взаимодействия N…H–C между катионами и анионами [2.56–2.74 Å (1), 2.56– 2.71 Å (2), 2.56–2.64 Å (3)] и Cl…H–C [2.87–2.94 Å (1), Вг…H–C 2.83–2.96 Å (2)] с расстояниями, существенно меньшими суммы ван-дер-ваальсовых радиусов указанных атомов [28], формируют структуру комплексов в кристаллах.

Таким образом, в кристаллах дицианодигалогенауратных комплексов алкилтрифенилфосфония, полученных из хлорида (4-фторбензил)трифенил-

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 91 № 11 2021

Рис. 3. Вид кристаллической решетки комплекса 1 вдоль оси *а*.

Рис. 4. Вид кристаллической решетки комплекса **3** вдоль оси *а*.

фосфония и дицианодигалогенаурата калия в воде, дицианодигалогенауратные анионы мономерны, кристаллические структуры формируются при участии слабых водородных связей между катионами и анионами.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры записывали на ИК Фурье-спектрометре Shimadzu IR Affinity-1S; образцы готовили таблетированием с KBr (область поглощения 4000–400 см–¹). Спектры ЯМР ¹H, ¹⁹F, ¹³C снимали в ДМСО- d_6 на приборе Bruker AVANCE II, используя в качестве внутреннего стандарта тетраметилсилан и CFCl₃. Элементный анализ проводили на анализаторе Carlo Erba CHNS-O EA 1108. Температуры плавления определяли на приборе SMP 30.

Рентгеноструктурный анализ кристаллов соединений 1–3 проводили на автоматическом четырехкружном дифрактометре D8 QUEST Bruker (Мо K_{α} -излучение, λ 0.71073 Å, графитовый монохроматор). Сбор, редактирование данных и уточнение параметров элементарной ячейки, а также учет поглощения проведены по программам SMART и SAINT-Plus [29]. Все расчеты по определению и уточнению структуры выполнены по программам SHELXL/PC [30] и OLEX2 [31]. Структуры соединений **1–3** определены прямым методом и уточнены методом наименьших квадратов в анизотропном приближении для не водородных атомов.

Основные кристаллографические данные и результаты уточнения структур соединений **1–3** приведены в табл. 1, основные длины связей и валентные углы – в табл. 2. Полные таблицы координат атомов, длин связей и валентных углов депонированы в Кембриджском банке структурных данных [ССDС 1899757 (1), 1899749 (2) и 1899756 (3)].

Дихлордицианоаурат (4-фторбензил)трифенилфосфония (1). Раствор хлорида (4-фторбензил)трифенилфосфония (0.250 г, 0.614 ммоль) в 10 мл воды смешивали с 8 мл водного раствора дихлордицианоаурата калия (0.220 г, 0.614 ммоль). Растворитель декантировали через 24 ч, остаток кристаллизовали из смеси 3 мл ацетонитрила и 10 мл изопропилового спирта. Бесцветные кристаллы соединения 1 отфильтровывали и сушили на воздухе. Выход 0.338 г (80%), т. пл. 178°С. ИК

			5						
Связь	Длина, Å	Угол	ω, град	Связь	Длина, Å	Угол	ω, град		
1									
Au ¹ –Cl ¹	2.294(4)	Au ¹ Cl ¹ Au ^{1a}	180.0	P ¹ -C ²¹	1.803(4)	C ⁸ Au ² Cl ²	90.83(15)		
Au^1-C^7	2.010(7)	C ⁷ Au ¹ Cl ^{1a}	89.48(17)	P ¹ -C ¹¹	1.797(5)	C ⁸ Au ² C ^{8b}	180.0		
Au ² –Cl ²	2.307(3)	C ⁷ Au ¹ Cl ¹	90.52(17)	$F^{1}-C^{34}$	1.367(5)	F1C34C33	118.5(4)		
$Au^2 - C^8$	2.011(5)	$C^{7a}Au^1C^7$	180.0	$N^{1}-C^{7}$	1.135(7)	$N^1C^7Au^1$	179.5(6)		
$P^{1}-C^{1}$	1.800(4)	Cl ^{2b} Au ² Cl ²	180.0	$N^2 - C^8$	1.121(5)	$N^2C^8Au^2$	177.7(4)		
$P^{1}-C^{37}$	1.825(4)	C ⁸ Au ² Cl ^{2b}	89.17(15)						
Преобразования симметрии: $a_{1-x}, -v, 1-z; b_{2-x}, 1-v, -z$.									
1 1	1			2					
Au ¹ –Br ¹	2.413(3)	Br ¹ Au ¹ Br ^{1a}	179.999(1)	P ¹ -C ³⁷	1.809(4)	C ⁸ Au ² Br ²	90.69(16)		
Au^1-C^7	2.009(4)	C ⁷ Au ¹ Br ¹	89.31(14)	P^1-C^1	1.788(4)	C ⁸ Au ² Br ^{2b}	89.31(16)		
Au ² –Br ²	2.401(3)	$C^{7a}Au^{1}Br^{1}$	90.69(14)	F ¹ -C ³⁴	1.354(5)	F1C34C33	118.3(4)		
Au^2-C^8	2.005(6)	$C^{7a}Au^1C^7$	180.0	N^1-C^7	1.073(5)	$N^1C^7Au^1$	178.1(4)		
$P^1 - C^{21}$	1.784(4)	Br ^{2b} Au ² Br ²	180.000(4)	N ² -C ⁸	1.099(7)	$N^2C^8Au^2$	179.1(6)		
Преобразования симметрии: ${}^{a}2-x$, $1-y$, $-z$; ${}^{b}1-x$, $-y$, $1-z$.									
1 1	Ĩ			3					
Au^1-I^1	2.609(1)	$I^1Au^1I^{1a}$	180.0	$P^1 - C^{21}$	1.791(3)	$C^8Au^2I^2$	88.71(11)		
Au^1-C^7	2.004(3)	$C^{7a}Au^{1}I^{1}$	89.10(8)	$P^{1}-C^{1}$	1.801(3)	C ⁸ Au ² I ^{2b}	91.29(11)		
Au ² –I ²	2.626(1)	C ⁷ Au ¹ I ^{1a}	89.09(8)	P ¹ -C ³⁷	1.823(3)	C ^{8b} Au ² C ⁸	180.0(2)		
Au ² –I ^{2b}	2.626(1)	$C^7Au^1I^1$	90.90(8)	F ¹ -C ³⁴	1.363(4)	N ⁹ C ⁷ Au ¹	179.3(3)		
$Au^2 - C^8$	2.006(4)	$C^{7a}Au^1C^7$	180.00(16)	N ⁹ -C ⁷	1.131(4)	F1C34C33	119.0(3)		
$P^1 - C^{11}$	1.800(3)	I ^{2b} Au ² I ²	180.0	N ¹⁰ -C ⁸	1.131(5)	$N^{10}C^8Au^2$	179.6(4)		
Преобразования симметрии: ^а - <i>x</i> , 1- <i>y</i> , 1- <i>z</i> ; ^b 1- <i>x</i> , 1- <i>y</i> , 1- <i>z</i> .									

Таблица 2. Основные длины связей и валентные углы в комплексах 1-3

спектр, v, см⁻¹: 3059, 2940, 2897, 2137, 1599, 1510, 1435, 1317, 1227, 1163, 1107, 997, 856, 827, 741, 718, 689, 633, 552, 509, 476, 446. Спектр ЯМР ¹Н, δ, м. д.: 7.90 т (3H, Hⁿ, ³J 7.3 Гц), 7.74 т. д (6H, H^м, ³J 7.3, J_{HP} 3.3 Гц), 7.57 д. д (6Н, Н^o, J_{HP} 12.5, ³J 7.9 Гц), 6.98–6.94 м (4Н, Н^{о,м}, CH₂PhF-4), 4.71 д (2H, CH₂, $J_{\rm HP}$ 13.9 Гц). Спектр ЯМР ¹³С{¹H}, $\delta_{\rm C}$, м. д.: 163.0 д. д (С³⁴, *J*_{CF} 250.8, *J*_{CP} 4.0 Гц), 135.8 д (C⁴, C¹⁴, C²⁴, J_{CP} 3.4 Гц), 134.2 д (C³, C⁵, C¹³, C¹⁵, С²³, С²⁵, *J*_{СР} 9.7 Гц), 132.98 д. д (С³², С³⁶, *J* 8.3, *J* 5.3 Гц), 130.7 д (С², С⁶, С¹², С¹⁶, С²², С²⁶, J_{CP} 12.5 Гц), 122.0 д. д (С³³, С³⁵, *J* 8.3, *J* 3.4 Гц), 116.8 д (С¹, С¹¹, С²¹, *J* 86.2), 116.6 д ([Au(CN)₂Cl₂]⁻, *J* 3.2 Гц), 116.5 д ([Au(CN)₂Cl₂]⁻, J 3.3 Гц), 104.5 (С³¹), 31.7 д (С³⁷, *J*_{CP} 74.3 Гц). Спектр ЯМР ³¹Р{¹H}, б_Р м. д.: 22.2 д (Ј 6.4 Гц). Найдено, %: С 46.78; Н 3.11. С₂₇Н₂₁AuCl₂FN₂P. Вычислено, %: С 46.87; Н 3.04.

Соединения 2, 3 синтезировали аналогично.

Дибромдицианоаурат (4-фторбензил)трифенилфосфония (2). Выход 83%, желтые кристаллы, т. пл. 174°С. ИК спектр, v, см⁻¹: 3061, 2949,

2911, 2166, 1601, 1585, 1510, 1483, 1437, 1404, 1339, 1319, 1227, 1192, 1159, 1138, 1109, 1018, 997, 843, 764, 748, 740, 718, 689, 554, 513, 492, 478, 441, 424. Спектр ЯМР ¹Н, б, м. д.: 7.96–7.88 м (3Н, Н^{*n*}), 7.77 т. д (6Н, Н^м, *J* 7.8, *J*_{HP} 3.5 Гц), 7.72–7.64 м (6Н, H°), 7.14-7.08 м (2Н, Н^м, CH₂PhF-4), 7.04-6.97 м (2H, H^o, CH₂PhF-4), 5.16 д (2H, CH₂, J_{HP} 15.4 Гц). Спектр ЯМР ¹³С{¹H}, б_с, м. д.: 162.4 д. д (С³⁴, *J*_{CF} 245.9, *J*_{CP} 4.3 Гц), 135.7 д (C⁴, C¹⁴, C²⁴, *J*_{CP} 3.0 Гц), 134.5 д (C³, C⁵, C¹³, C¹⁵, C²³, C²⁵, J_{CP} 9.8 Гц), 133.27 д.д (С³², С³⁶, *J* 8.4, *J* 5.3 Гц), 130.7 д (С², С⁶, С¹², С¹⁶, С²², С²⁶, *J*_{СР} 12.4 Гц), 124.5 д. д (С³³, С³⁵, *J* 8.4, Ј 3.1 Гц), 118.1 д (С¹, С¹¹, С²¹, J_{СР} 85.6 Гц), 116.4 д ([Au(CN)₂Br₂]⁻, *J* 3.2 Гц), 116.3 д ([Au(CN)₂Br₂]⁻, Ј 3.1 Гц), 110.0 (С³¹), 27.79 д (С³⁷, *J*_{CP} 47.3 Гц). Спектр ЯМР ¹⁹F{¹H}, б_F, м. д.: -113.04÷-113.13 м. Найдено, %: С 41.37; Н 2.74. С₂₇Н₂₁AuBr₂FN₂P. Вычислено, %: С 41.53; Н 2.69.

Дииоддицианоаурат (4-фторбензил)трифенилфосфония (3). Выход 79%, красно-коричневые кристаллы, т. пл. 154°С. ИК спектр, v, см⁻¹:

3053, 2955, 2940, 2160, 1508, 1485, 1435, 1406, 1221, 1157, 1109, 1088, 997, 841, 829, 716, 685, 509, 501, 444. Спектр ЯМР ¹Н, б, м. д.: 7.93–7.87 м (3H, Hⁿ), 7.77–7.72 м (6H, H^м), 7.59–7.55 м (6H, Н°), 7.00–6.94 м (4Н, Н^{о,м} в CH₂PhF-4), 4.72 д (2Н, CH₂, *J*_{HP} 13.9 Гц). Спектр ЯМР ¹³С{¹H}, δ_C, м. д.: 163.02 д. д (С³⁴, J_{CF} 250.8, J_{CP} 4.4 Гц), 135.83 д (C⁴, C¹⁴, C²⁴, *J*_{CP} 3.2 Гц), 134.12 д (C³, C⁵, C¹³, C¹⁵, С²³, С²⁵, *J*_{СР} 9.5 Гц), 132.92 д. д (С³², С³⁶, *J* 8.3, *J* 5.4 Гц), 130.72 д (С², С⁶, С¹², С¹⁶, С²², С²⁶, J_{СР} 12.6 Гц), 122.00 д. д (С³³, С³⁵, *J* 8.5, *J* 3.5 Гц), 116.78 д (С¹, С¹¹, С²¹, *J*_{CP} 86.1 Гц), 116.63 д ([Au(CN)₂I₂]⁻, Ј 3.3 Гц), 116.48 д ([Au(CN)₂I₂]⁻, J 2.5 Гц), 104.54 (С³¹), 30.65 д (С³⁷, J_{СР} 49.1 Гц). Спектр ЯМР ³¹Р{¹H}, б_р, м. д.: 22.17 д (*J* 6.3 Гц). Спектр ЯМР ¹⁹ F {¹ H}, б_г, м. д.: -111.09÷-111.18 м. Найдено, %: С 36.95; Н 2.38. С₂₇Н₂₁АиFI₂N₂P. Вычислено, %: С 37.06; H 2.40.

ИНФОРМАЦИЯ ОБ АВТОРАХ

Шарутин Владимир Викторович, ORCID: https://orcid.org/0000-0003-2582-4893.

Тарасова Наталья Михайловна, ORCID: https:// orcid.org/0000-0003-1272-9731.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Xiaobo L., Patterson H. // Materials. 2013. Vol. 6. P. 2595. doi 10.3390/ma6072595
- Dechambenoit P., Ferlay S., Kyritsakas N., Hosseini M.W. // Cryst. Eng. Commun. 2011. Vol. 13. P. 1922. doi 10.1039/C0CE00607F
- Hill J.A., Thompson A.L., Goodwin A.L. // J. Am. Chem. Soc. 2018. Vol. 138. P. 5886. doi 10.1021/jacs.5b13446
- Assefaa Z., Haireb R.G., Sykorac R.E. // J. Solid State Chem. 2008. Vol. 181. P. 382. doi 10.1016/j. jssc.2007.11.036
- Brown M.L., Ovens J.S., Leznoff D.B. // Dalton Trans. 2017. Vol. 46. P. 7169. doi 10.1039/C7DT00942A
- Chorazy S., Wyczesany M., Sieklucka B. // Molecules. 2017. Vol. 22. P. 1902. doi 10.3390/molecules22111902
- Shaw C.F. // Chem. Rev. 1999. Vol. 99. N 9. P. 2589. doi 10.1021/cr9804310

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 91 № 11 2021

- Rawashdeh-Omary M.A., Omary M.A., Patterson H.H. // J. Am. Chem. Soc. 2000. Vol. 122. N 42. P. 10371. doi 10.1021/ja001545w
- Rawashdeh-Omary M.A., Omary M.A., Shankle G.E., Patterson H.H.// J. Phys. Chem. (B). 2000. Vol. 104. N 26. P. 6143. doi 10.1021/jp000563x
- Colis J.C.F., Larochelle C., Ferna'ndez E.J., Lópezde-Luzuriaga J.M., Monge M., Laguna A., Tripp C., Patterson H. // J. Phys. Chem. (B). 2005. Vol. 109. N 10. P. 4317. doi 10.1021/jp045868g
- Assefaa Z., Kalachnikova K., Hairec R.G., Sykora R.E. // J. Solid State Chem. 2007. Vol. 180. P. 3121. doi 10.1016/j.jssc.2007.08.032
- Roberts R.J., Le D., Leznoff D.B. // Inorg. Chem. 2017. Vol. 56. N 14. P. 7948. doi 10.1021/acs. inorgchem.7b00735
- Ovens J.S., Leznoff D.B. // Dalton Trans. 2011. Vol. 40. P. 4140. doi 10.1039/c0dt01772h
- Ovens J.S., Truong K.N., Leznof D.B. // Dalton Trans. 2012. Vol. 41. P. 1345. doi 10.1039/c1dt11741f
- Ovens J.S., Leznoff D.B. // Chem. Mater. 2015. Vol. 27. N 5. P. 1465. doi 10.1021/cm502998w
- Шарутин В.В., Шарутина О.К., Попкова М.А. // ЖНХ. 2019. Т. 64. № 6. С. 607; Sharutin V.V., Sharutina O.K., Popkova M.A.// Russ. J. Inorg. Chem. 2019. Vol. 64. 6. P. 729. doi 10.1134/S0036023619060147
- Шарутин В.В., Попкова Н.М., Тарасова Н.М. // Вестн. ЮУрГУ. Сер. Химия. 2018. Т. 10. № 1. С. 55; Sharutin V.V., Popkova M.A., Tarasova N.M. // Bull. South Ural State University. Ser. Chemistry. 2018. Vol. 10. N 1. P. 55. doi 10.14529/chem180107
- Ovens J.S., Geisheimer A.R., Bokov A.A., Ye Z.-G., Leznoff D.B. // Inorg. Chem. 2010. Vol. 49. P. 9609. doi 10.1021/ic101357y
- Pitteri B., Bortoluzzi M., Bertolasi V. // Transition Met. Chem. 2008. Vol. 33. P. 649. doi 10.1007/s11243-008-9092-9
- Marangoni G., Pitteri B., Bertolasi V., Ferretti V., Gilli G. // J. Chem. Soc. Dalton Trans. 1987. N 1. P. 2235. doi 10.1039/DT9870002235
- Ovens J.S., Truong K.N., Leznoff D.B. // Inorg. Chim. Acta. 2013. Vol. 403. P. 127. doi 10.1016/j. ica.2013.02.011
- Сенчурин В.В. // Вестн. ЮУрГУ. Сер. Химия. 2019. Т. 11. № 3. С 50; Senchurin V.S. // Bull. South Ural State University. Ser. Chemistry. 2019. Vol. 11. N 3. P. 50. doi 10.14529/chem190306
- Шарутин В.В., Шарутина О.К., Тарасова Н.М., Ефремов А.Н. // ЖНХ. 2020. Т. 65. № 2. С. 171; Sharutin V.V., Sharutina O.K., Tarasova N.M., Efre-

mov A.N. // Russ. J. Inorg. Chem. 2020. Vol. 65. N 2. P. 169. doi 10.1134/S0036023620020151

- 24. *Преч Э., Бюльманн Ф., Аффольтер К.* Определение строения органических соединений. М.: Мир, 2006. 440 с.
- Jones L. // Inorg. Chem. 1964. Vol. 3. N 11. P. 1581. doi 10.1021/ic50021a024
- 26. Shorrock C.J., Jong H., Batchelor R.J., Leznoff D.B. // Inorg. Chem. 2003. Vol. 42. P. 3917. doi 10.1021/ ic034144
- Cordero B., G'omez V., Platero-Prats A.E., Revés M., Echeverría J., Cremades E., Barragan F., Alvarez S. // Dalton Trans. 2008. P. 2832. doi 10.1039/b801115j

- Mantina M., Chamberlin A.C., Valero R., Cramer C.J., Truhlar D.G. // J. Phys. Chem. (A). 2009. Vol. 113. P. 5806. doi 10.1021/jp8111556
- Bruker (1998). SMART and SAINT-Plus. Versions 5.0. Data Collection and Processing Software for the SMART System. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (1998). SHELXTL/PC. Versions 5.10. An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dolomanov O.V., Bourhis L.J., Gildea R.J., Howard J.A. K., Puschmann H. // J. Appl. Cryst. 2009. Vol. 42. P. 339. doi 10.1107/S0021889808042726

Synthesis and Structure of (4-Fluorobenzyl)triphenylphosphonium Dicyanodihaloaurates [Ph₃PCH₂C₆H₄F-4][Au(CN)₂Hlg₂]

V. V. Sharutin^{*a*,*}, O. K. Sharutina^{*a*}, N. M. Tarasova^{*a*}, and O. S. El'tsov^{*b*}

^aSouth Ural State University (National Research University), Chelyabinsk, 454080 Russia ^b Ural Federal University named after the First President of Russia B.N. Yeltsin, Ekaterinburg, 20002 Russia *e-mail: vvsharutin@rambler.ru

Received August 2, 2021; revised September 14, 2021; accepted September 18, 2021

(4-Fluorobenzyl)triphenylphosphonium dicyanodihaloaurates [Ph₃PCH₂C₆H₄F-4][Au(CN)₂Hlg₂], Hlg = Cl, Br, I, were synthesized from (4-fluorobenzyl)triphenylphosphonium chloride and potassium dicyanodihaloaurate in water. Structure of the compounds was characterized by IR, ¹H, ¹³C {¹H} and ¹⁹F {¹H} NMR spectroscopy, elemental analysis and X-ray structural analysis. According to X-ray diffraction data, complexes obtained contain tetrahedral (4-fluorobenzyl)triphenylphosphonium cations and two types of square centrosymmetric [Au(CN)₂Hlg₂][–] anions.

Keywords: potassium dicyanodihaloaurates, (4-fluorobenzyl)triphenylphosphonium chloride, (4-fluorobenzyl) triphenylphosphonium dicyanodihaloaurates

1722