УДК 547.1

К 100-летию со дня рождения М.Г. Воронкова

ВЗАИМОДЕЙСТВИЕ ЗАМЕЩЕННЫХ КАЛИЕВЫХ СОЛЕЙ ЭЛЕМЕНТОВ 14 ГРУППЫ С 1-ХЛОРМЕТИЛСИЛАТРАНОМ: ЗАМЕЩЕНИЕ ИЛИ ПЕРЕГРУППИРОВКА?

© 2021 г. К. В. Зайцев*, Ю. Ф. Опруненко

Московский государственный университет имени М. В. Ломоносова, Ленинские горы 1/3, Москва, 119991 Россия *e-mail: zaitsev@org.chem.msu.ru

> Поступило в Редакцию 4 марта 2021 г. После доработки 4 марта 2021 г. Принято к печати 23 марта 2021 г.

В реакции элементоорганических анионов элементов 14 группы $[(Me_3Si)_3E]^-$ (E = Si, Ge), генерируемых *in situ*, с CICH₂Si(OCH₂CH₂)₃N получены продукты замещения (Me₃Si)₃ECH₂Si(OCH₂CH₂)₃N. Продуктов перегруппировки с расширением циклов не обнаружено. Структура полученных соединений установлена на основании данных мультиядерной спектроскопии ЯМР.

Ключевые слова: силатран, суперсилил-анион, германийорганические соединения, производные элементов 14 группы, олигоорганотетреланы, связь элемент—элемент

DOI: 10.31857/S0044460X21120052

Одно из основных направлений исследования элементов 14 группы – изучение гиперкоординированных производных [1], т. е. соединений, в которых координационное число центрального атома E (E = Si, Ge, Sn, Pb) увеличено за счет связывания с донорным атомом. Отдельный класс таких соединений представляют производные триэтаноламина – атраны [2]. Определяющий вклад в развитие химии силатранов XSi(OCH₂CH₂)₃N внесли исследования, выполненные под руководством М.Г. Воронкова [3, 4]. Интерес к изучению замещенных силатранов [5] обусловлен как фундаментальными вопросами (исследование трансаннулярной связи Х…Si←N), так и развитием методов элементоорганического синтеза [6, 7], а также возможностью прикладного использования подобных соединений [8-10].

В продолжение исследований олигоорганотетреланов (органических соединений элементов 14 группы со связями элемент–элемент) [11–14], в том числе гиперкоординированных производных [15–17], нами проведены реакции между ClCH₂Si(OCH₂CH₂)₃N и элементоорганическими анионами элементов 14 группы с целью получения продукта перегруппировки с расширенным (шестичленным) циклом и связью E–Si (E = Si, Ge), т. е. 2-карба-3-оксагомосилатранов **A**, наряду с продуктом замещения **Б** (схема 1).

Известны редкие случаи селективного синтеза продуктов перегруппировки **B** (схема 1) с шестичленным циклом. Подобная перегруппировка наблюдается в реакции с сильными нуклеофилами, например, со стерически загруженными алкоголятами щелочных металлов [18, 19]; при взаимодействии с амидами [20] наряду с перегруппированными получены и обычные продукты замещения. В реакцию с *t*-BuOK вступает замещенный силатран ClCH₂Si(OCH₂CH₂)₂(OCHPhCHPh)N, причем перегруппировке подвергается незамещенное полукольцо атранового остова [21]. Боль-

шинство остальных нуклеофилов (замещенные тиолаты [22], гидразины [23]) при взаимодействии с ClCH₂Si(OCH₂CH₂)₃N образуют продукт замещения NuCH₂Si(OCH₂CH₂)₃N (с азотными нуклеофилами получаются четвертичные аммониевые соли).

Реакцию ClCH₂Si(OCH₂CH₂)₃N с элементоорганическими анионами проводили в 2 стадии. На первой стадии генерировали in situ соответствующие анионы, связанные с ионом калия, $[(Me_3Si)_3EK]$ (E = Si, Ge; в случае кремния – суперсилил-анион), при обработке доступных (Me₃Si)₄E трет-бутилатом калия в ТГФ или в толуоле с добавлением 18-краун-6-эфира. Как известно, атомы калия координируются молекулами ТГФ или 18-краун-6-эфиром [24, 25], и в ряде случаев реакционная способность анионов различается [17]. На второй стадии полученные анионы вводили во взаимодействие с ClCH₂Si(OCH₂CH₂)₃N, реакцию проводили при кипячении (схема 2). Во всех случаях с хорошими выходами (58-67%) региоселективно получены продукты замещения атома хлора – (Me₃Si)₃ECH₂Si(OCH₂CH₂)₃N 1 и 2. Снижение выхода (до 28%) при использовании 18-краун-6-эфира связано с необходимостью отделения последнего от продукта реакции. Образования продуктов перегруппировки А (схема 1) не наблюдалось.

Продукт перегруппировки с расширенным циклом может быть получен дву-ΜЯ альтернативными путями. Во-первых, при образовании катиона-интермедиата [⁺CH₂Si(OCH₂CH₂)₃N], который перегруппировывается в [$^+Si(OCH_2CH_2)_2(CH_2OCH_2CH_2)N$] и

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 91 № 12 2021

затем реагирует с нуклеофиолом; во-вторых, при образовании интермедиата с дополнительным связыванием между атомами Si и нуклеофилом [Nu···Si^{VI}(CH₂Cl)(OCH₂CH₂)₃N] [20] (синхронный механизм). Невозможность образования таких интермедиатов при взаимодействии [(Me₃Si)₃EK] с ClCH₂Si(OCH₂CH₂)₃N объясняется как сильными нуклеофильными свойствами анионов, связанных с ионом калия, так и их значительными размерами, препятствующими координации по атому кремния. В результате, реакция с [(Me₃Si)₃EK] протекает по стандартному механизму замещения S_N2. Таким образом, можно сделать вывод, что протекание перегруппировки наблюдается при взаимодействии ClCH₂Si(OCH₂CH₂)₃N с сильными стерически незагруженными нуклеофилами.

Единственный описанный в литературе метод синтеза родственных соединений $R_3SiCH_2Si(OCH_2CH_2)_3N$ (R= Me, Ph) состоит во взаимодействии R_3SiCl с ClCH₂Si(OCH₂CH₂)₃N в присутствии магния [26]; аналогичные соединения германия неизвестны. Исследованная нами реакция – удобный вариант получения подобных производных, учитывая доступность реагентов, при строгом контроле синтеза.

Структура соединений **1** и **2** установлена по данным спектроскопии ЯМР (табл. 1), состав подтвержден элементным анализом. В спектрах ЯМР наблюдаются характеристичные сигналы атранового остова (симметрия $C_{3\nu}$; ср. соединения **A1** [27], **Б1** [26, 28], **B1** [23], [29], Γ [30], \mathcal{A} [31], табл. 1) и триметилсилильных групп (ср. соединения Γ [30], \mathcal{A} [31], **E** [32], табл. 1), при этом сиг-

налы метиленовой группы ECH₂Si (E = Si, Ge) заметно сдвинуты в сильное поле (ср. Соединения **Б** [26, 28], **B** [29], **E** [32], **Ж** [33], табл. 1).

Таким образом, взаимодействие сольватированных анионов элементов 14 группы $[(Me_3Si)_3E]^-$ (E = Si, Ge) с 1-хлорметилсилатраном ClCH₂Si(OCH₂CH₂)₃N селективно приводит к замещению атома Cl и получению атранов (Me₃Si)₃ECH₂Si(OCH₂CH₂)₃N без перегруппировки.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Все операции с элементоорганическими производными проводили в атмосфере сухого аргона с использованием стандартной техники Шленка. Растворители очищали по стандартным методикам. Тетрагидрофуран выдерживали над гидроксидом калия, затем кипятили и перегоняли над металлическим натрием в присутствии бензофенона. Толуол и гексан кипятили, а затем перегоняли над металлическим натрием. CDCl₃ кипятили в атмосфере аргона и перегоняли над CaH₂. Большинство коммерчески доступных (Merck, Acros, Aldrich) исходных реактивов использовали без дополнительной очистки. Исходные соединения элементов 14 группы синтезированы по известным методикам: (Me₃Si)₄Ge [34], (Me₃Si)₄Si [35].

Спектры ЯМР ¹Н (400.130 МГц), ¹³С (100.613 МГц), ²⁹Si (79.495 МГц) регистрировали при комнатной температуре на спектрометрах

Bruker Avance 400 или Agilent 400 MR. Растворители и внутренние стандарты (остаточные протоны) [36] – CDCl₃; химические сдвиги указаны относительно Me₄Si. Элементный анализ выполняли в Лаборатории органического микроанализа химического факультета Московского государственного университета на приборе HeraeusVarioElementar4.

(2,8,9-Триокса-5-аза-1-силабицикло[3.3.3]ундекан-1-ил)метилтрис(триметилсилил)силан (1). Соединение $[(Me_3Si)_3SiK \cdot THF]$ получали *in situ* по известной методике [37]. К раствору (Me_3Si)_4Si (0.30 г, 0.94 ммоль) в ТГФ (20 мл) добавляли *t*-BuOK (0.11 г, 0.98 ммоль, 1.05 экв.). Реакционную смесь перемешивали 4 ч и использовали полученный раствор $[(Me_3Si)_3SiK \cdot THF]$ далее без дополнительной обработки.

К раствору $[(Me_3Si)_3SiK \cdot THF]$ добавляли по каплям раствор ClCH₂Si(OCH₂CH₂)₃N (0.21 г, 0.94 ммоль) в TГФ (20 мл) и кипятили 8 ч. После охлаждения все летучие компоненты удаляли в вакууме, остаток перекристаллизовывали из минимального количества гексана. Выход 0.27 г (67%), белые кристаллы. Найдено, %: С 44.22; Н 9.59; N 3.07. С₁₆H₄₁NO₃Si₅. Вычислено, %: С 44.08; Н 9.48; N 3.21.

(2,8,9-Триокса-5-аза-1-силабицикло[3.3.3]ундекан-1-ил)метилтрис(триметилсилил)герман (2). *а.* Соединение [(Me₃Si)₃GeK·THF] получали *in situ* по методике [25]. К раствору

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 91 № 12 2021

ственных производных ^а				
Соединение	δ _H , м. д.	δ _C , м. д.	δ _{Si} , м. д.	Ссылка
(Me ₃ Si) ₃ SiCH ₂ Si(OCH ₂ CH ₂) ₃ N (1)	3.68 уш. с (6H, ОСН ₂), 2.73	57.91 (OCH ₂),	-12.3	Данная
	уш. с (6H, NCH ₂), 0.10 с	50.83 (NCH ₂),	$[Si(\underline{Si}Me_3)_3],$	работа
	[27H, Si(SiMe ₃) ₃], -0.34 c	$1.02 [Si(SiMe_3)_3],$	-62.7 (SiO ₃),	
	(2H, SiCH ₂ Si)	-10.57 (SiCH ₂ Si)	-84.9	
			$[\underline{Si}(SiMe_3)_3]$	
(Me ₃ Si) ₃ GeCH ₂ Si(OCH ₂ CH ₂) ₃ N (2)	3.60 т (6Н, ОСН ₂ , ³ <i>J</i> _{НН}	58.09 (OCH ₂),	-6.4	Данная
	5.9 Гц) 2.67 т (6H, NCH ₂ ,	50.97 (NCH ₂),	$[Si(\underline{Si}Me_3)_3],$	работа
	³ <i>J</i> _{HH} 5.9 Гц), 0.08 с [27Н,	$1.58 [Si(SiMe_3)_3],$	-60.5 (SiO ₃)	
	Si(SiMe ₃) ₃], -0.30 c (2H,	-10.42 (GeCH ₂ Si)		
	GeCH ₂ Si)			
$MeSi(OCH_2CH_2)_3N(A1)$	3.86 (6H, OCH ₂), 2.90 (6H,		-95.4 (SiO ₃)	[27]
	NCH ₂)			
Me ₃ SiCH ₂ Si(OCH ₂ CH ₂) ₃ N (b1)	3.71 т (6H, OCH ₂), 2.76	58.81 (OCH ₂),	-0.20	[26, 28]
	т (6H, NCH ₂), -0.28 (2H,	52.05 (NCH ₂),	$[Si(\underline{Si}Me_3)_3],$	
	SiCH ₂ Si)	2.95 (SiCH ₂ Si)	-60.84 (SiO ₃)	
ClCH ₂ Si(OCH ₂ CH ₂) ₃ N (B1)	3.86 т (6H, OCH ₂), 2.90	57.4 (OCH ₂), 51.2	-79.7 (SiO ₃)	[29]
	т (6H, NCH ₂), 2.65 (2H,	(NCH ₂), 31.1	-77.2 (SiO ₂)	[23]
	CH ₂ Cl)	(CH ₂ Cl)	//.2 (5103)	[23]
$(Me_3Si)_3SiSi(OCH_2CH_2)_3N(\Gamma)$	3.65 т (6H, ОСН ₂), 2.72 т	58.56 (OCH ₂),	-9.9	[30]
	(6H, NCH ₂), 0.15 c [27H,	52.15 (NCH ₂),	$[Si(\underline{Si}Me_3)_3],$	
	Si(SiMe ₃) ₃]	$2.20 [Si(SiMe_3)_3]$	-52.6 (SiO ₃),	
			-133.9	

58.56 (OCH₂),

52.16 (NCH₂),

 $2.80 [Ge(SiMe_3)_3]$

 $[Si(SiMe_3)_3], -8.3$

1.6 (SiMe₃), 1.3

(SiCH₂Si)

5.8 (SiCH₂Si)

Таблица 1. Данные спектроскопии ЯМР для соединений (Me₃Si)₃ECH₂Si(OCH₂CH₂)₃N [E = Si (1); E = Ge (2)] и родственных произво

3.67 т (6Н, ОСН₂), 2.73 т

(6H, NCH₂), 0.19 c [27H,

0.24 c [27H, Si(SiMe₃)₃],

0.11 (c, 9H, SiMe₃), -0.10 c

 $Ge(SiMe_3)_3$]

(2H, SiCH₂Si)

^а Приведены в CDCl₃, если не указано иное.

(Me₃Si)₃GeSi(OCH₂CH₂)₃N (Д)

 $(Me_3Si)_3SiCH_2SiMe_3 (E)^6$

(t-BuO)₃SiCH₂SiMe₃ (**Ж**)

^б Приведены в С₆D₆.

(Me₃Si)₄Ge (0.50 г, 1.37 ммоль) в ТГФ (30 мл) добавляли t-BuOK (0.16 г, 1.44 ммоль, 1.05 экв.). Реакционную смесь перемешивали 4 ч и полученный раствор [(Me₃Si)₃GeK·THF] использовали далее без дополнительной обработки.

К раствору [(Me₃Si)₃GeK·THF] в ТГФ добавляли по каплям раствор ClCH₂Si(OCH₂CH₂)₃N (0.31 г, 1.37 ммоль) в ТГФ (20 мл) и кипятили 8 ч. После охлаждения реакционную смесь фильтровали, летучие компоненты удаляли в вакууме, остаток кристаллизовали из минимального количества смеси гексан-толуол, 2:1. Выход 0.38 г (58%), белые кристаллы.

 $[Si(SiMe_3)_3]$

 $[Si(SiMe_3)_3],$

-53.2 (SiO₃)

1.8 (SiMe₃),

 $[Si(\underline{SiMe_3})_3],$ -85.1 $[\underline{Si}(SiMe_3)_3]$

-0.4 (SiMe₃),

-61.2 (SiO₃)

[31]

[32]

[33]

-5.6

-12.9

б. Соединение [(Me₃Si)₃GeK·(18-crown-6)] получали in situ по известной методике [25]. К раствору (Me₃Si)₄Ge (0.50 г, 1.37 ммоль) в толуоле (30 мл) добавляли 18-краун-6-эфир (0.36 г, 1.37 ммоль), *t*-BuOK (0.16 г, 1.44 ммоль, 1.05 экв.).

Реакционную смесь перемешивали 4 ч и использовали полученный раствор [(Me₃Si)₃GeK· (18-crown-6)] далее без дополнительной обработки.

[(Me₃Si)₃GeK· К полученному раствору добавляли (18-crown-6)] В толуоле ClCH₂Si(OCH₂CH₂)₃N (0.31 г, 1.37 ммоль) и кипятили 8 ч. После охлаждения реакционную смесь фильтровали, летучие компоненты удаляли в вакууме, остаток кристаллизовали дважды из минимального количества толуола. Выход 0.18 г (28%), белый порошок. Найдено, %: С 40.21; Н 8.44; N 3.11. С₁₆Н₄₁GeNO₃Si₄. Вычислено, %: С 40.00; Н 8.60; N 2.92.

ИНФОРМАЦИЯ ОБ АВТОРАХ

Зайцев Кирилл Владимирович, ORCID: https:// orcid.org/0000-0003-3106-8692

ФОНДОВАЯ ПОДДЕРЖКА

Регистрация спектров ЯМР проведена при поддержке Программы развития Московского государственного университета им. М.В. Ломоносова.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

ДОПОЛНИТЕЛЬНЫЕ МАТЕРИАЛЫ

Дополнительные материалы для этой статьи доступны по doi 10.31857/S0044460X21120052 для авторизованных пользователей.

СПИСОК ЛИТЕРАТУРЫ

- Kano N. In: Organosilicon Compounds / Ed. V.Ya. Lee. London: Elsevier Inc. 2017. Ch. 11. P. 645. doi 10.1016/ B978-0-12-801981-8.00011-3
- Verkade J.G. // Coord. Chem. Rev. 1994. Vol. 137. P. 233. doi 10.1016/0010-8545(94)03007-d
- Voronkov M.G., Dyakov V.M., Kirpichenko S.V. // J. Organomet. Chem. 1982. Vol. 233. P. 1. doi 10.1016/ S0022-328X(00)86939-9
- Pestunovich V., Kirpichenko S., Voronkov M. In: The Chemistry of Organic Silicon Compounds / Eds Z. Rappoport, Y. Apeloig. Chichester: Wiley, 2003. P. 1447. doi 10.1002/0470857250.ch24
- Puri J.K., Singh R., Chahal V.K. // Chem. Soc. Rev. 2011. Vol. 40. P. 1791. doi 10.1039/b925899j

- Yamamoto Y., Matsubara H., Murakami K., Yorimitsu H., Osuka A. // Chem. Asian J. 2015. Vol. 10. P. 219. doi 10.1002/asia.201402595
- Vladislav S., Hurley J.J.M., Adler M.J. // Eur. J. Org. Chem. 2016. Vol. 2016. P. 2207. doi 10.1002/ ejoc.201501599
- Singh G., Arora A., Mangat S.S., Rani S., Kaur H., Goyal K., Sehgal R., Maurya I.K., Tewari R., Choquesillo-Lazarte D., Sahoo S., Kaur N. // Eur. J. Med. Chem. 2016. Vol. 108. P. 287. doi 10.1016/j. ejmech.2015.11.029
- Singh G., Arora A., Kalra P., Maurya I.K., Ruize C.E., Estebanc M.A., Sinha S., Goyal K., Sehgal R. // Bioorg. Med. Chem. 2019. Vol. 27. P. 188. doi https://doi. org/10.1016/j.bmc.2018.11.038
- Adamovich S.N., Kondrashov E.V., Ushakov I.A., Shatokhina N.S., Oborina E.N., Vashchenko A.V., Belovezhets L.A., Rozentsveig I.B., Verpoort F. // Appl. Organomet. Chem. 2020. Vol. 34. P. e5976. doi 10.1002/ aoc.5976
- Zaitsev K.V., Lam K., Poleshchuk O.K., Kuz 'mina L.G., Churakov A.V. // Dalton Trans. 2018. Vol. 47. P. 5431. doi 10.1039/C8DT00256H
- Zaitsev K.V., Lam K., Poleshchuk O.K., Bezzubov S.I., Churakov A.V. // Eur. J. Inorg. Chem. 2019. P. 2750. doi 10.1002/ejic.201900316
- Zaitsev K.V., Gloriozov I.P., Oprunenko Y.F., Churakov A.V. // Inorg. Chem. Commun. 2019. Vol. 109. P. 107571. doi 10.1016/j.inoche.2019.107571
- Zaitsev K.V., Poleshchuk O.K. // Monatsh. Chem. 2019. Vol. 150. P. 1773. doi 10.1007/s00706-019-02495-3
- Zaitsev K.V., Churakov A.V., Poleshchuk O.K., Oprunenko Y.F., Zaitseva G.S., Karlov S.S. // Dalton Trans. 2014. Vol. 43. P. 6605. doi 10.1039/c3dt53523a
- Zaitsev K.V., Kapranov A.A., Oprunenko Y.F., Churakov A.V., Howard J.A.K., Tarasevich B.N., Karlov S.S., Zaitseva G.S. // J. Organomet. Chem. 2012. Vol. 700. P. 207. doi 10.1016/j.jorganchem.2011.11.021
- Aghazadeh Meshgi M., Zaitsev K.V., Vener M.V., Churakov A.V., Baumgartner J., Marschner C. // ACS Omega. 2018. Vol. 3. P. 10317. doi 10.1021/ acsomega.8b01402
- Schraml J., Krapivin A.M., Luzin A.P., Kilesso V.M., Pestunovich V.A. // Collect. Czech. Chem. Commun. 1984. Vol. 49. P. 2897. doi 10.1135/cccc19842897
- Килессо В.М., Копков В.И., Шашков А.С., Степаненко Б.Н. // Изв. АН СССР. Сер. хим. 1986. С. 1404; Kilesso V.M., Kopkov V.I., Shashkov A.S., Stepanenko B.N. // Bull. Acad. Sci. USSR, Divis. Chem. Sci. 1986. Vol. 35. P. 1276. doi 10.1007/BF00956615
- 20. Лазарева Н.Ф., Лазарев И.М. // ЖОрХ. 2008. Т. 44. С. 1564; Lazareva N.F., Lazarev I.M. // Russ.

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 91 № 12 2021

J. Org. Chem. 2008. Vol. 44. P. 1543. doi 10.1134/ S1070428008100254

- Karlov S.S., Selina A.A., Chernyshova E.S., Oprunenko Y.F., Merkulov A.A., Tafeenko V.A., Churakov A.V., Howard J.A.K., Zaitseva G.S. // Inorg. Chim. Acta. 2007. Vol. 360. P. 563. doi https://doi.org/10.1016/j. ica.2006.07.109
- 22. Воронков М.Г., Сорокин М.С., Дьяков В.М. // ЖОХ. 1979. Т. 49. С. 605.
- Сорокин М.С., Воронков М.Г. // ЖОХ. 2005. Т. 76. С. 915; Sorokin M.S., Voronkov M.G. // Russ. J. Gen. Chem. 2005. Vol. 75. P. 862. doi 10.1007/s11176-005-0335-6
- Hlina J., Zitz R., Wagner H., Stella F., Baumgartner J., Marschner C. // Inorg. Chim. Acta. 2014. Vol. 422. P. 120. doi 10.1016/j.ica.2014.07.005
- Fischer J., Baumgartner J., Marschner C. // Organometallics. 2005. Vol. 24. P. 1263. doi 10.1021/ om0491894
- Gevorgyan V., Borisova L., Lukevics E. // J. Organomet. Chem. 1991. Vol. 418. P. C21. doi 10.1016/0022-328X(91)86373-X
- Voronkov M.G., Baryshok V.P., Petukhov L.P., Rakhlin V.I., Mirskov R.G., Pestunovich V.A. // J. Organomet. Chem. 1988. Vol. 358. P. 39. doi 10.1016/0022-328X(88)87069-4
- Gevorgyan V., Borisova L., Vjater A., Popelis J., Belyakov S., Lukevics E. // J. Organomet. Chem. 1994. Vol. 482. P. 73. doi 10.1016/0022-328X(94)88186-3

- 29. Bellama J.M., Nies J.D., Ben-Zvi N. // Magn. Reson. Chem. 1986. Vol. 24. P. 748. doi 10.1002/ mrc.1260240903
- Aghazadeh Meshgi M., Baumgartner J., Marschner C. // Organometallics. 2015. Vol. 34. P. 3721. doi 10.1021/ acs.organomet.5b00404
- Aghazadeh Meshgi M., Baumgartner J., Jouikov V.V., Marschner C. // Organometallics. 2017. Vol. 36. P. 342. doi 10.1021/acs.organomet.6b00786
- Wallner A., Hlina J., Wagner H., Baumgartner J., Marschner C. // Organometallics. 2011. Vol. 30. P. 3930. doi 10.1021/om1011159
- Monin E.A., Bykova I.A., Nosova V.M., Kisin A.V., Philippov A.M., Storozhenko P.A. // Inorg. Chim. Acta. 2020. Vol. 507. P. 119555. doi 10.1016/j. ica.2020.119555
- Brook A.G., Abdesaken F., Söllradl H. // J. Organomet. Chem. 1986. Vol. 299. P. 9. doi 10.1016/0022-328X(86)84028-1
- Gilman H., Smith C.L. // J. Organomet. Chem. 1967.
 Vol. 8. P. 245. doi 10.1016/S0022-328X(00)91037-4
- Fulmer G.R., Miller A.J.M., Sherden N.H., Gottlieb H.E., Nudelman A., Stoltz B.M., Bercaw J.E., Goldberg K.I. // Organometallics. 2010. Vol. 29. P. 2176. doi 10.1021/om100106e
- Marschner C. // Eur. J. Inorg. Chem. 1998.
 Vol. 1998. P. 221. doi 10.1002/(SICI)1099-0682(199802)1998:2<221::AID-EJIC221>3.0.CO;2-G

Reaction of Substituted Potassium Salts of Group 14 Elements with 1-Chloromethylsilatrane: Substitution or Rearrangement?

K. V. Zaitsev* and Yu. F. Oprunenko

Lomonosov Moscow State University, Moscow, 119991 Russia *e-mail: zaitsev@org.chem.msu.ru

Received March 4, 2021; revised March 4, 2021; accepted March 23, 2021

Substitution products $(Me_3Si)_3ECH_2Si(OCH_2CH_2)_3N$ were obtained in the reaction of *in situ* generated organoelement anions of Group 14 elements $[(Me_3Si)_3E]^-$ (E = Si, Ge) with ClCH_2Si(OCH_2CH_2)_3N. Rearranged compounds containing extended rings are not observed. Structure of the obtained compounds was established based on the multinuclear NMR spectroscopy data.

Keywords: silatrane, supersilyl anion, organogermanium compounds, Group 14 elements derivatives, oligoorganotetrelanes, element–element bond