УДК 546.224-31:547.388.2:547.281.1

АМИНОМЕТАНСУЛЬФОКИСЛОТЫ – ПРОДУКТЫ ВЗАИМОДЕЙСТВИЯ В СИСТЕМАХ SO₂–NH₂Alk–CH₂O–H₂O: СИНТЕЗ И СТРОЕНИЕ

© 2021 г. Р. Е. Хома^{*a,b,**}, В. О. Гельмбольдт^{*c*}, В. Н. Баумер^{*d*}, А. А. Эннан^{*a*}, С. В. Водзинский^{*a,b*}, Ю. В. Ишков^{*b*}, И. М. Ракипов^{*e*}

^а Физико-химический институт защиты окружающей среды и человека Национальной академии наук Украины, ул. Преображенская 3, Одесса, 65082 Украина

^b Одесский национальный университет имени И. И. Мечникова, Одесса, 65082 Украина

^с Одесский национальный медицинский университет, Одесса, 65082 Украина

^d Научно-технический комплекс «Институт монокристаллов Национальной академии наук Украины», Харьков, 61001 Украина

^е Физико-химический институт имени А. В. Богатского Национальной академии наук Украины, Одесса, 65080 Украина *e-mail: rek@onu.edu.ua

> Поступило в Редакцию 13 ноября 2020 г. После доработки 13 ноября 2020 г. Принято к печати 22 ноября 2020 г.

Предложена оригинальная методика синтеза ряда аминометансульфокислот AlkNHCH₂SO₃ (Alk = *n*-Bu, *n*-Hept, *n*-Oct, Bn) и N-трис(гидроксиметил)метиламмония гидроксиметансульфоната. Строение полученных соединений изучено методами элементного анализа, рентгеноструктурного анализа, ИК спектроскопии и масс-спектрометрии.

Ключевые слова: аминоалкансульфокислоты, оксид серы(IV), параформ, алкиламин, конденсация

DOI: 10.31857/S0044460X21020049

Аминоалкансульфокислоты, в том числе аминометансульфокислота (AMSA) и ее N-алкилированные производные (YAMSA) обладают специфическими физико-химическими свойствами, широким спектром биологической активности [1–4] и низкой токсичностью [5], что позволяет рассматривать эти соединения в качестве перспективных кандидатов в лекарственные препараты и компонентов буферных систем для медико-биологических исследований [6–11].

Ранее с использованием оригинальной методики нами был синтезирован и спектрально охарактеризован ряд новых производных аминометансульфокислоты [5, 12–14] (схема 1). N-Метил- [15], N-2-гидроксиэтил- [13], N-*н*-пропил- [5] и N-*трет*-бутильные [14] производные AMSA были охарактеризованы структурно в отличие от N-бензильного аналога [12].

Настоящая работа является продолжением исследований, начатых в работах [5, 12–14], и посвящена синтезу, изучению строения и спектральных характеристик N-(бутил)- (1), N-(гептил)- (2), N-(октил)- (3), N-бензиламинометансульфокислот (4) и N-трис(гидроксиметил)метиламмония гидроксиметансульфоната (5) – продуктов взаимодействия в системах оксид серы(IV)–первичный алкиламин–формальдегид–вода.

Строение соединений 1–5 доказано методом рентгеноструктурного анализа. Основные кристаллографические данные и результаты уточнения структур соединений 1–5 представлены в табл. 1, 2. Координаты атомов, структурные фак-

Y = CH₃ (MeAMSA), HOCH₂CH₂ (HEAMSA), *n*-Pr (*n*-PrAMSA), *t*-Bu (*t*-BuAMSA) и Bn (BnAMSA).

торы и все результаты уточнения депонированы в Кембриджском банке структурных данных.

Базисной единицей соединений 1–4 является цвиттер-ион (Alk)N⁺H₂CH₂SO₃⁻. В независимой части ячейки соединений 1 и 4 находятся два цвиттер-иона, в молекулах соединений 2 и 3 – один. Общим для структуры аминометансульфокислот 1–4 является как характер водородных связей (они образуются между атомами азота и кислородными атомами сульфогрупп соседних молекул), так и способ упаковки: полярные части молекул образуют слои, снаружи которых находятся неполярные части молекул, хотя расположение водородных связей в слоях несколько различается.

Строение аминометансульфокислоты 1 показано на рис. 1. Для обеих базисных молекул наблюдается разупорядочение концевых атомов в неполярной части, тогда как полярные части молекул связаны между собой H-связями и плотно упакованы. Цепочечный каркас каждой молекулы (атомы серы, азота и углерода) имеет строение, близкое к плоскому. Эти цепочки расположены в плоскостях y = 0 и y = 0.5 и образуют слои, которые связаны друг с другом двухмерной сеткой H-связей (рис. 2), вытянутых вдоль оси *b*, из которых связи N¹–H^{1B}…O¹, N¹–H^{1B}…O⁵, N²–H^{2C}…O⁴, N²– H^{2C}…O² являются вилочковыми.

Строение базисной единицы в структуре соединения **2** n-C₇H₁₅N⁺H₂CH₂SO₃⁻ показано на рис. 3. Атомы N¹, C¹-C⁸ лежат в одной плоскости с точностью 0.018 Å, отклонение атомов сульфогруппы от этой плоскости составляет –0.223(2), 1.050(2), –1.252(3) и –0.650(2) Å для атомов S¹, O¹, O² и O³ соответственно. В кристалле молекулы, связанные

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 91 № 2 2021

Н-связями (табл. 2), упакованы в слои в плоскостях (101). Водородные связи сшивают как молекулы в слое, так и слои друг с другом. Аналогично соединению 1, связи N¹–H^{1B}···O¹ и N¹–H^{1B}···O² являются вилочковыми. Таким образом, в данной структуре образуется двухмерная сетка Н-связей в плоскости z = 0.25 (рис. 4).

В структуре соединения **3** (рис. 5, 6) плоским с точностью 0.046 Å является только углеродный остов алкильного фрагмента, аммониометансульфонильный (AMS) фрагмент повернут вокруг связи C^2-C^3 и значительно отклоняется от плоскости остова [торсионный угол N¹C²C³C⁴ равен –65.3(5)° против 179.61(12)° в молекуле **2**]. AMS-Фрагменты в кристалле упакованы в плоскости x = 0.5 (рис. 6) и связаны друг с другом зигзагообразными цепочками H-связей, вытянутыми вдоль оси [010].

В структуре соединения **4** (рис. 7, 8) два базисных цвиттер-иона $n-C_6H_5CH_2N^+H_2CH_2SO_3^-$ за счет H-связей являются парой, с которой соседние

Рис. 1. Общий вид молекулы соединения 1 в кристалле.

ХОМА и др.

Параметр	1	2	3	4	5
CCDC	2040821	2040822	2040824	2040837	2040838
Формуца	C-H-NO-S	C ₀ H ₁₀ NO ₂ S	CoHorNO2	C ₀ H ₁ NO ₂ S	C ₂ H ₁ NO ₂ S
M	167.22	209 30	223 33	201 24	233.24
T, K	293(2)	293(2)	293(2)	293(2)	293(2)
Сингония	Моноклинная	Моноклинная	Моноклинная	Моноклинная	Моноклинная
Пространственная группа	C2/c	$P2_1/n$	$P2_{1}/c$	$P2_1$	$P2_{1}/c$
a, Å	24.608(13)	5.4164(3)	17.748(4)	5.2699(5)	8.1634(6)
<i>b</i> , Å	7.9776(19)	30.8675(15)	5.4192(7)	28.105(3)	6.3494(4)
<i>c</i> , Å	17.811(7)	6.5500(4)	12.9508(16)	6.4061(8)	18.4863(12)
β, град	94.63(4)	98.850(7)	93.355(15)	93.606(10)	96.132(5)
$V, Å^3$	3485(2)	1082.06(11)	1243.5(4)	946.93(17)	952.71(11)
Ζ	16	4	4	4	4
$d_{\rm выч}, \Gamma/{\rm cm}^3$	1.275	1.285	1.193	1.412	1.626
$\mu(MoK_{\alpha}), \text{мм}^{-1}$	0.328	0.278	0.246	0.316	0.355
Интервал 0, град	3.49-26.00	3.22-26.00	3.42-25.99	3.50-26.00	3.17-29.00
Размеры кристалла, мм	0.60×0.02×0.015	0.60×0.03×0.02	0.50×0.20×0.03	0.25×0.20×0.03	0.45×0.25×0.20
F_{000}	1440	456	455	424	496
Коэффициент пропускания	0.827/0.995	0.851/0.995	0.887/0.993	0.925/0.991	0.857/0.932
T_{\min}/T_{\max}					
Число отражений					
измеренных	8838	6662	5395	5908	6560
независимых	3696	2092	2323	3135	2174
наблюдаемых с $I_{hkl} > 2\sigma(I)$	801	1612	1461	2388	1815
R _{int}	0.2553	0.0552	0.0746	0.0564	0.0250
Полнота охвата, %	95.6	98.3	95.1	98.4	98.9
Число уточняемых параме-	202	126	135	237	151
тров					
$R_{\rm F}/wR^2$ по наблюдаемым от-	0.0769/0.1162	0.0373/0.0865	0.0685/0.1557	0.0504/0.0646	0.0324/0.0880
ражениям					
$R_{\rm F}/wR^2$ по независимым от-	0.3365/0.2035	0.0563/0.0940	0.1060/0.1782	0.0799/0.0714	0.0414/0.0940
ражениям					
S	0.950	0.943	0.981	0.987	0.979
$\Delta \rho_{\min} / \Delta \rho_{\max}, e / Å^3$	-0.218/0.239	-0.262/0.304	-0.216/0.051	-0.251/0.437	-0.351/0.314

Таблица 1. Кристаллографические данные и результаты уточнения структур соединений 1-5

(a)

(б)

Рис. 2. Кристаллическая упаковка соединения **1**: (а) – расположение молекул в слое; (б) – взаимное расположение слоев и система водородных связей. Водородные связи изображены *штриховыми линиями*. Разупорядочение концевых атомов не показано.

АМИНОМЕТАНСУЛЬФОКИСЛОТЫ

D–H…A	Расстояние, Å			V DILA	Π			
	<i>d</i> (D–H), Å	<i>d</i> (H···A), Å	$d(\mathbf{D}\cdots\mathbf{A}), \mathbf{A}$	УЮЛ DHA, Град	преобразование атома А			
1								
N^1 – H^{1A} ··· O^4	0.90	1.90	2.762(7)	159.5				
N^1 – H^{1B} ··· O^1	0.90	2.14	2.957(8)	150.5	-x+1, y, -z+1/2			
N^1 – H^{1B} ··· O^5	0.90	2.34	2.932(7)	123.2	<i>x</i> , <i>y</i> +1, <i>z</i>			
N^2 – H^{2C} ···O ⁴	0.90	2.14	2.933(8)	147.2	-x+1, y, -z+1/2			
N^2 – H^{2C} ··· O^2	0.90	2.42	2.957(7)	118.8				
N^2 – H^{2D} ···O ¹	0.90	2.02	2.840(7)	150.7	x, y–1, z			
2								
N^1 – H^{1A} ··· O^2	0.844(16)	2.018(16)	2.8252(15)	159.8(15)	x+1/2, -y+1/2, z+1/2			
N^1 – H^{1B} ···O ¹	0.823(15)	2.329(15)	2.8971(15)	126.7(14)	x-1/2, -y+1/2, z-1/2			
N^1 – H^{1B} ···O ²	0.823(15)	2.487(14)	2.9222(15)	114.1(12)				
			3					
N^1 – H^{1N} ···O ²	0.839(5)	2.046(7)	2.881(3)	173(3)	-x+1, y+1/2, -z+3/2			
N^1 – H^{2N} ···O ¹	0.840(5)	2.075(15)	2.838(3)	151(2)	-x+1, y-1/2, -z+3/2			
4								
N^1 – H^{1A} ···O ⁴	0.89	2.57	3.141(4)	122.6				
N^1 – H^{1A} ···O ⁵	0.89	2.53	3.165(4)	129.3	<i>x</i> , <i>y</i> , <i>z</i> –1			
N^1 – H^{1B} ···O ⁴	0.89	2.59	3.033(4)	111.5	<i>x</i> +1, <i>y</i> , <i>z</i>			
N^1 – H^{1B} ···O ⁶	0.89	2.04	2.847(4)	150.8				
N^2 – H^{2A} ···O ¹	0.89	2.04	2.848(4)	149.5				
N^2 – H^{2A} … O^2	0.89	2.59	3.038(4)	111.8	<i>x</i> –1, <i>y</i> , <i>z</i>			
N^2 – H^{2B} ···O ²	0.89	2.52	3.106(4)	123.6				
$N^2 - H^{2B} \cdots O^3$	0.89	2.55	3.175(4)	127.8	<i>x</i> , <i>y</i> , z+1			
			5					
O^1 – H^1 ··· O^6	0.818(17)	1.913(17)	2.7219(12)	169.4(17)	<i>x</i> +1, <i>y</i> , <i>z</i>			
$O^2 - H^2 \cdots O^3$	0.821(19)	1.882(19)	2.6945(13)	170.1(18)	x, y–1, z			
$O^3 - H^3 \cdots O^5$	0.81(2)	1.94(2)	2.7491(14)	170.8(18)				
$O^7 - H^7 \cdots O^5$	0.886(19)	2.020(19)	2.8517(16)	155.8(17)	-x+1, -y+1, -z+1			
N^1 – H^{1A} … O^6	0.886(15)	1.994(15)	2.8781(14)	174.7(14)	-x+1, y-1/2, -z+1/2			
N^1 – H^{1B} ···O ²	0.856(16)	1.976(16)	2.8208(13)	168.9(14)	-x+1, y+1/2, -z+1/2			
$N^1-H^{1C}\cdots O^1$	0.852(16)	2.108(16)	2.9415(13)	165.8(14)	-x+2, y+1/2, -z+1/2			

Таблица 2. Характеристики водородных связей D-H··· А в соединениях 1-5

пары также связаны водородными связями, образуя, таким образом, одномерные зигзагообразные цепочки вдоль оси [010], подобные наблюдаемым в молекуле соединения **3**.

В отличие от аминометансульфокислот 1–4 базисными единицами в структуре соединения 5 являются N-трис(гидроксиметил)метиламмоний-ион $[(HOCH_2)_3CNH_3]^+$ и гидроксиметансульфонат-ион HOCH_2SO₃, строение которых показано на рис. 9. В образовании H-связей (табл. 2) участвуют не только аммонийная группа и кислородные атомы сульфогруппы, но и все гидроксо груп-

пы, поэтому наблюдаемая здесь система Н-связей является трехмерной (рис. 10).

В результате термической деструкции аминометансульфокислот 1–4 в условиях регистрации масс-спектров (EI FAB) происходит разложение

Рис. 3. Общий вид молекулы соединения 2 в кристалле.

Рис. 4. Кристаллическая упаковка соединения **2**: (а) – расположение молекул в слое; (б) – взаимное расположение слоев и система водородных связей. Водородные связи изображены *штриховыми линиями*.

продуктов, что сопровождается выбросом SO₃ (1– 3, аналогично MeAMSA, HEAMSA и *t*-BuAMSA [12–14]). Разложение соединения 1, подобно *n*-PrAMSA и *t*-BuAMSA [5, 14], сопровождается элиминированием NH_3 .

В масс-спектре соли 5 наблюдается пик иона $[M_{\text{TRIS}} - \text{CH}_2\text{OH}]^+$ с максимальной интенсивностью – характерного продукта фрагментации этаноламинов [16].

Результаты анализа ИК спектров соединений 1–5 приведены в табл. 3. Отнесение колебаний проведено с использованием данных [17, 18]. Валентные колебания ОН-групп в ИК спектре соединения

Рис. 5. Общий вид молекулы соединения 3 в кристалле.

Рис. 7. Общий вид молекулы соединения 4 в кристалле.

5 проявляются в виде дублета с максимумами при 3440 и 3230 см⁻¹. Колебания v(NH) аминогрупп, включенных в систему H-связей, зафиксированы для всех синтезированных соединений в области 3470–3020 см⁻¹. В ИК спектрах N-производных AMSA **1–4** и соли **5** колебания v_{as}(SO₂) проявля-

Рис. 6. Кристаллическая упаковка соединения **3**. Водородные связи изображены *штриховыми линиями*.

Рис. 8. Кристаллическая упаковка и система водородных связей в соединении **4**. Водородные связи изображены *штриховыми линиями*.

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 91 № 2 2021

АМИНОМЕТАНСУЛЬФОКИСЛОТЫ

					F		-	
Соединение	v(OH)	ν(NH ⁺), ν(CH)		ν(NH ⁺)	$\delta_{s}(NH_{3}^{+}), \\ \delta_{s}(NH_{2}^{+})$	$v_{as}(SO_2)$	$v_s(SO_2)$	v(S–O)
1		3320 cp,	2963 пл, 2953 с,	2427 сл,	1679 пл, 1601	1235 пл,	1081 д.	557 cp
		3123 пл,	2922 o. c, 2870 c	2352 сл	пл, 1592 с, 1501	1206 д. с	сл, 1051 с,	-
		3083 c.			c, 1493 c		1046 c	
		3032 c			,			
2		3322 c.	3025 с. 2965 пл.	2352 сл	1625 cp. 1542	1241 л. с	1090 сл.	551 cp
		3205 c	2957 o c		сп 1504 ш сп		1080 сл	or op
			2942 o c 2926		1491 ш. сп		1076 пл	
			o c 2872 c		1469 c		1054 c	
			2855 c		1.00		100.0	
3		3470	3013 ш. о. с	2570 cn	1626 c 1565 c	1244 cn	1079 пл	580 сл
C C			2950 ш. о. с,	2492 nn	1542 пл 1538	1203 c	1056 c	200 031
		3412 III	2878 ш. о. с,	2192101	ср. 1506 пл	1205 0,	10000	
		0 C	2837 III. 0. C		1498 III. cn			
		0.0	2816 III. 0. C,		1490 ш. ср			
1		3044 a	2780 mm 2605	1555 0	1227 0	1056 a	580 0	
-		$2040 \pi\pi$	2780 III, 2003	15550	1237 0,	1030 C,	3690	
		2940 IIJI,	ср, 2510 сл		12170	1052 сл, 1016 ср		
		284/ cp,				1016 cp		
-	2.4.40	2819 cp	2740 2604	1 (21	1122	1025	507	
5	3440 cp.	3039 пл,	2748 cp, 2694	1631 c,	1133 пл	1035 c	526 c	
	Ш,	2991	cp, 2601 cp,	1552 c,				
	3230 c	пл, 2942	2468 cp, 2382	1516 сл				
		пл,	сл, 2296 сл					
		2891 пл,						
		2835 cp						

Таблица 3. Волновые числа (см⁻¹) максимумов полос поглощения в ИК спектрах соединений 1–5

ются в области 1270–1130 см⁻¹, $v_s(SO_2)$ – в области 1183–1023 см⁻¹, v(S-O) – в виде полос сильной (4 и 5), средней (1 и 2) и слабой (3) интенсивности в области 590–525 см⁻¹.

Отметим, что, как и в случае ранее изученных AMSA [19] и ее производных [5, 12–14], положения полосы колебания v(NH) в ИК спектрах соединений 1–4 не подвержены существенному смещению, что указывает на сохранение их цвиттер-ионного строения.

Можно констатировать, что взаимодействие в системах SO_2 -YNH₂-CH₂O-H₂O [где Y = Alk, кроме (HOCH₂)₃C] включает процесс конденсации, сопровождаемой окислением S(IV) \rightarrow S(VI),

Рис. 9. Общий вид молекулы соединения **5** в кристалле. ЖУРНАЛ ОБЩЕЙ ХИМИИ том 91 № 2 2021

Рис. 10. Кристаллическая упаковка и система водородных связей в соединении **5**. Водородные связи изображены *штриховыми линиями*.

с образованием N-алкилированных производных AMSA. Причем, выход целевого продукта существенно зависит от строения N-заместителя. В ряду N-заместителей CH₃ (~ 100% [12]) – HOCH₂CH₂ (~ 100% [13]) – n-C₃H₇ (~100% [5]) – n-C₄H₉ (~ 92.3%) – n-C₇H₁₅ (~ 67.3%) – n-C₈H₁₇ (~ 56.2%) с увеличением углеводородного заместителя, начиная с C₄, выход (указан в скобках) целевого продукта уменьшается, что, вероятно, обусловлено развитием побочных процессов гидролиза производных AMSA [20]. В частности, в случае системы с участием TRIS выделен продукт гидролиза целевого соединения – N-трис(гидроксиметил)метиламмонийгидроксиметансульфонат, как и в ранее описанном примере (схема 2) [8].

В заключение отметим, что, с учетом ранее полученных результатов [5, 12], охарактеризованные в настоящей работе производные аминометансульфокислоты могут представлять интерес в качестве объектов дальнейших фармакологических исследований как потенциальные противовирусные и антибактериальные агенты.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Анализ содержания углерода, водорода и азота проводили с использованием элементного CHNанализатора, серы – по Шенигеру. ИК спектры регистрировали на спектрометре Spectrum BX II FT-IR System (PerkinElmer) в области 4000–350 см⁻¹, образцы готовили в виде таблеток с KBr. Масс-спектры (EI) регистрировали на приборе MX-1321 (прямой ввод образца в источник, энергия ионизирующих электронов – 70 эВ). Масс-спектры (FAB) снимали на приборе VG 7070, десорбцию ионов из жидкой матрицы осуществляли пучком атомов аргона с энергией 8 кэВ, в качестве матрицы использовали *м*-нитробензиловый спирт.

Рентгеноструктурный анализ выполнен на дифрактометре Xcalibur-3 (Oxford Diffraction Ltd.), (Мо K_{α} -излучение, графитовый монохроматор, ССD-детектор Sapphire-3). Расшифровка, уточнение и анализ структуры выполнены с использова-

нием программ SHELXT, SHELXL-16 и WinGX [21–23]. Атомы водорода найдены из разностного синтеза и уточнены по модели *наездника*. Водородные атомы, участвующие в образовании водородных связей в структурах 2, 3 и 5 уточнены в изотропном приближении.

В работе использовали коммерческий оксид серы(IV) после предварительной очистки и осушки согласно методике [24]. *n*-BuA, *n*-HpA, *n*-OcA и TRIS, бензиламин и параформ классификации Ч являлись коммерческими реактивами и использовались без предварительной очистки.

N-(Бутил)аминометансульфокислота (1). К 25 мл водной эмульсии, содержащей 0.10 моль н-бутиламина, прибавляли эквимолярное количество параформа при охлаждении (≤ 10°С) и оставляли на 24 ч, затем через полученный раствор барботировали SO₂ до pH ≤ 1.0 с последующей выдержкой реакционной смеси при комнатной температуре до полного испарения воды. Выход 15.43 г (выход ~ 92.3%), кристаллы белого цвета, т. пл. 136-139°С (т. пл. 135-137°С [20]). Массспектр (FAB), m/z (I_{0TH} , %): 168 (8) $[M - NH_3 + H]^+$, $166 (7) [M - NH_3 - H]^+$, 138 (14), 137 (43), 136 (55), $89(12), 86(23) [M - NH_3 - SO_3 - H]^+, 77(8), 57(7),$ 55 (7), 43 (11), 42 (9), 41 (7). Найдено, %: С 35.25; Н 8.26; N 8.62; S 19.57. С₅Н₁₃NO₃S. Вычислено, %: C 35.91; H 7.84; N 8.38; S 19.17. M 167.23.

N-(Гептил)аминометансульфокислота (2) получена аналогично 0.10 моль *н*-гептиламина. Полученную белую пенообразную массу отфильтровывали, полученный фильтрат выдерживали на воздухе до полного испарения воды и образования белых кристаллов. Выход 14.09 г (~ 67.3%). Массспектр (FAB), *m/z* ($I_{\text{отн}}$, %): 128 (6) [M – SO₃ – H]⁺, 117 (5), 116 (100) [M – SO₃ – CH₂ – H]⁺, 57 (6), 40 (9). Найдено, %: C 45.63; H 8.83; N 6.43; S 15.67. C₈H₁₉NO₃S. Вычислено, %: C 45.91; H 9.15; N 6.69; S 15.32. *M* 209.31.

N-(Октил)аминометансульфокислота (3) получена аналогично из 0.10 моль *н*-октиламина.

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 91 № 2 2021

Выход 13.11 г (~ 56.2%). Масс-спектр (FAB), *m/z* ($I_{\text{отн}}$, %): 142 (30) [M – SO₃ – H]⁺, 137 (6), 136 (8), 131 (22), 130 (100) [M – SO₃ – CH₂ – H]⁺, 128 (6), 71 (6), 57 (7), 42 (6), 40 (5). Найдено, %: С 48.11; H 9.11; N 6.49; S 14.02. С₉H₂₁NO₃S. Вычислено, %: С 48.40; H 9.48; N 6.27; S 14.36. M 233.34.

N-Бензиламинометансульфокислота (4) синтезирована по методике [5] с использованием 0.05 моль бензиламина. Выход 10.00 г (~ 100%), кристаллы белого цвета, т. пл. 144–145°С. Массспектр (EI), m/z ($I_{\text{отн}}$, %): 91 (100) [C_7H_7]^{+,}, 77 (15) [C_6H_5]^{+,}, 64 (50) [SO_2]^{+,}, 48 (21) [SO]^{+,}. Найдено, %: С 45.90; H 5.95; N 7.20; S 15.55. $C_8H_{11}NO_3S$. Вычислено, %: С 47.75; H 5.51; N 6.96; S 15.93. *M* 201.25.

N-Трис(гидроксиметил)метиламмония гидроксиметансульфонат (5) получен аналогично соединению 1 с использованием 0.05 моль TRIS. Выход 11.66 г (~ 100%), кристаллы белого цвета, т. пл. 82–83°С. Масс-спектр (ЕІ), m/z ($I_{\text{отн}}$, %): 118 (12), 114 (10), 104 (14), 102 (29), 100 (36), 90 (100) [M_{TRIS} – CH₂OH]⁺, 83 (21), 73 (11), 72 (11), 71 (31), 70 (35), 64 (31) [SO₂]⁺, 60 (60), 56 (15), 54 (13), 48 (13) [SO]⁺, 43 (12), 42 (70), 41 (20), 30 (54), 29 (20). Найдено, %: С 32.58; H 8.29; N 7.42; S 17.89. C₅H₁₅NO₇S. Вычислено, %: С 32.42; H 8.16; N 7.56; S 17.31. *M* 185.07.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Grygorenko O.O., Biitseva A.V., Zhersh S. // Tetrahedron. 2018. Vol. 74. N 13. P. 1355. doi 10.1016/j. tet.2018.01.033
- Benoit R.L., Boulet D., Frechette M. // Can. J. Chem. 1988. Vol. 66. P. 3038. doi 10.1139/v88-470
- Bickerton J., MacNab J.I., Skinner H.A., Pilcher G. // Thermochimica Acta. 1993. Vol. 222. N 1. P. 69. doi 10.1016/0040-6031(93)80540-Q
- Badeev Yu.V., Korobkova V.D., Ivanov V.B., Pozdeev O.K., Gil'manova G.Kh., Batyeva É.S., Andreev S.V. // Pharm. Chem. J. 1991. Vol. 25. N 4. P. 272. doi 10.1007/bf00772113
- 5. Khoma R.E., Baumer V.N., Antonenko P.B., Snihach A.O., Godovan V.V., Ennan A.A., Dlubovskii R.M., Gelmboldt V.O. // Вопросы химии и химической тех-

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 91 № 2 2021

нологии. 2019. № 6. С. 255. doi 10.32434/0321-4095-2019-127-6-255-262

- Yu Q., Kandegedara A., Xu Y., Rorabacher D.B. // Analyt. Biochem. 1997. Vol. 253. N 1. P. 50. doi 10.1006/abio.1997.2349
- Goldberg R.N., Kishore N., Lennen R.M. // J. Phys. Chem. Ref. Data. 2002. Vol. 31. N 2. P. 231. http:// dx.doi.org/10.1063/1.1416902
- Long R.D., Hilliard N.P., Chhatre S.A. Timofeeva T.V., Yakovenko A.A., Dei D.K., Mensah E.A. // Beilstein J. Org. Chem. 2010. Vol. 6. N. 31. doi 10.3762/bjoc.6.31
- Khali M.M., Mahmoud R.K., Babiker S.E. // J. Chem. Sci. Techn. 2014. Vol. 3. N 2. P. 49. doi 10.1002/ adic.200490119
- Ferreira C.M.H., Pinto I.S.S., Soares E.V., Soares H.M.V.M. // RSC Adv. 2015. Vol. 5. N 39. P. 30989. doi 10.1039/c4ra15453c
- Хома Р.Е. // ЖФХ. 2017. Т. 91. № 1. С. 79; Khoma R.E. // Russ. J. Phys. Chem. 2017. Vol. 91. N 1. P. 76. doi 10.1134/S0036024417010125
- Хома Р.Е., Гельмбольдт В.О., Эннан А.А., Гридина Т.Л., Федчук А.С., Лозицкий В.П., Ракипов И.М., Владыка А.С. // Хим.-фарм. ж. 2019. Т. 53. № 5. С. 28; Khoma R.E., Gelmboldt V.O., Ennan А.А., Gridina T.L., Fedchuk A.S., Lozitskiy V.P., Rakipov I.M., Vladika A.S. // Pharm. Chem. J. 2019. Vol. 53. N 5. Р. 436. doi 10.1007/s11094-019-02016-w
- Хома Р.Е., Гельмбольдт В.О., Шишкин О.В., Баумер В.Н., Короева Л.В. // ЖОХ. 2013. Т. 83. № 5. С. 834; Khoma R.E., Gelmboldt V.O., Shishkin O.V., Baumer V.N., Koroeva L.V. // Russ. J. Gen. Chem. 2013. Vol. 83. N 5. P. 969. doi 10.1134/S1070363213050149
- Хома Р.Е., Гельмбольдт В.О., Эннан А.А., Баумер В.Н., Пузан А.Н. // ЖОХ. 2015. Т. 85. № 10. С. 1650; Khoma R.E., Gelmboldt V.O., Ennan А.А., Baumer V.N., Puzan A.N. // Russ. J. Gen. Chem. 2015. Vol. 85. N 10. P. 2282. doi 10.1134/S1070363215100102
- Cameron T.S., Chute W.J., Knop O. // Canadian J. Chem. 1984. Vol. 62. N 3. P. 540. doi10.1139/v84-090
- Вульфсон Н.С., Заикин В.Г., Микая А.И. Масс-спектрометрия органических соединений. М.: Химия, 1986. 312 с.
- Socrates G. Infrared and Raman Characteristic Group Frequencies. Tables and Charts. New York: John Wiley & Sons, 2001. 347 p.
- Larkin P.J. Infrared and Raman Spectroscopy: Principles and Spectral Interpretation. New York: Elsevier, 2011. 228 p.
- 19. Хома Р.Е., Шестака А.А., Шишкин О.В., Баумер В.Н., Брусиловский Ю.Э., Короева Л.В.,

ХОМА и др.

Эннан А.А., Гельмбольдт В.О. // ЖОХ. 2011. Т. 81. № 3. С. 525; Khoma R.E., Shestaka A.A., Shishkin O.V., Baumer V.N., Brusilovskii Yu.E., Koroeva L.V., Ennan A.A., Gelmboldt V.O. // Rus. J. Gen. Chem. 2011. Vol. 81. N 3. P. 620. doi 10.1134/S1070363211030352

- McMillan F.H., Pattison I.C. // J. Pharm. Sci. 1969.
 Vol. 58. N 6. P. 730. doi 10.1002/jps.2600580618
- Sheldrick G.M. // Acta Crystallogr. (A). 2015. Vol. 71. N 1. P. 3. doi 10.1107/s2053273314026370
- Sheldrick G.M. // Acta Crystallogr. (C). 2015. Vol. 71. P. 3. doi 10.1107/S2053229614024218
- 23. *Farrugia L.J.* // J. Appl. Cryst. 1999. Vol. 32. N 4. P. 837. doi 10.1107/s0021889899006020
- 24. *Гордон А., Форд Р.* Спутник химика. М.: Мир, 1976. С. 438.

Aminomethanesulfonic Acids as Reaction Products in SO₂–NH₂Alk–CH₂O–H₂O Systems: Synthesis and Structure

R. E. Khoma^{*a,b,**}, V. O. Gelmboldt^{*c*}, V. N. Baumer^{*d*}, A. A. Ennan^{*a*}, S. V. Vodzinskii^{*a,b*}, Yu. V. Ishkov^{*b*}, and I. M. Rakipov^{*e*}

^a Physico-Chemical Institute of Environment and Human Protection, Odessa, 65082 Ukraine
 ^b Odessa I.I. Mechnikov National University, Odessa, 65082 Ukraine
 ^c Odessa National Medical University, Odessa, 65082 Ukraine
 ^d Institute of Single Crystals of the National Academy of Sciences of Ukraine, Kharkov, 61001 Ukraine
 ^e A.V. Bogatsky Physico-Chemical Institute of National Academy of Science of Ukraine, Odessa, 65080 Ukraine
 *e-mail: rek@onu.edu.ua

Received November 13, 2020; revised November 13, 2020; accepted November 22, 2020

An original procedure for the synthesis of a series of aminomethanesulfonic acids $AlkNHCH_2SO_3$ (Alk = n-Bu, n-Hept, n-Oct, Bn) and N-tris(hydroxymethyl)methylammonium hydroxymethanesulfonate was proposed. Structure of the obtained compounds was studied by the methods of elemental analysis, X-ray structural analysis, IR spectroscopy and mass spectrometry.

Keywords: aminoalkanesulfonic acids, sulfur(IV) oxide, paraform, alkylamine, condensation