УДК 547.26'118

НОВЫЕ БИС[N-АЛКИЛ-N-(2-ДИФЕНИЛФОСФИНИЛЭТИЛ)]АМИДЫ ДИГЛИКОЛЕВОЙ КИСЛОТЫ: СИНТЕЗ И ДАННЫЕ СПЕКТРОСКОПИИ ЯМР ¹Н, ¹³С, ³¹Р

© 2021 г. Н. А. Бондаренко^{*a,b,**}, К. В. Царькова^{*a,b*}, С. К. Белусь^{*b*}, О. И. Артюшин^{*c*}, А. С. Перегудов^{*c*}

^а Институт химических реактивов и особо чистых химических веществ Национального исследовательского центра «Курчатовский институт», ул. Богородский вал 3, Москва, 3107076 Россия ^b Национальный исследовательский центр «Курчатовский институт», Москва, 123182 Россия ^c Институт элементоорганических соединений имени А. Н. Несмеянова Российской академии наук, Москва, 119991 Россия *e-mail: bond039@mail.ru

> Поступило в Редакцию 2 ноября 2020 г. После доработки 2 ноября 2020 г. Принято к печати 22 ноября 2020 г.

Синтезированы пентадентатные бис[N-алкил-N-(2-дифенилфосфинилэтил)]амиды дигликолевой кислоты [Ph₂P(O)CH₂CH₂N(R)C(O)CH₂]₂O, где R = Me, Bu, Oct реакцией хлорангидрида дигликолевой кислоты с N-алкил-N-(2-дифенилфосфинилэтил)аминами, полученными взаимодействием дифенил-(2-феноксиэтил)фосфиноксида с первичными алкиламинами в ДМСО в присутствии водной щелочи. Строение полученных соединений изучено с помощью спектроскопии ЯМР ¹H, ¹³C и ³¹P.

Ключевые слова: дигликольамиды, амидирование, О-триметилсилилдифенилфосфинит, дифенил(2феноксиэтил)фосфиноксид, N-алкил-N-(2-дифенилфосфинилэтил)амины, пентадентатные бис[N-алкил-N-(2-дифенилфосфинилэтил)]амиды дигликолевой кислоты, спектроскопия ЯМР

DOI: 10.31857/S0044460X21020050

В настоящее время одним из самых перспективных классов экстрагентов для переработки рудных тел лантаноидов, а также для выделения минорных актинидов из высокоактивных отходов, являются диамиды дигликолевой кислоты. Связано это с тем, что они обладают комплексом ценных в научном и практическом плане свойств: они высокоэффективны, хорошо растворимы в органических разбавителях, относительно дешевы и, главное, их экстракционная способность зависит от степени окисления экстрагируемого металла, что уникально для нейтральных молекул [1]. Впервые предложенные в 1991 году [2], эти соединения за прошедшие годы интенсивно исследовались, и в результате на основе одного из самых активных тетраоктилдиамида дигликолевой кислоты (TODGA) были разработаны несколько инновационных методов переработки высокоактивных отходов (ARTIST, SANEX и т. д.) [3, 4].

Вместе с тем, TODGA и другие диамиды дигликолевой кислоты обладают весьма существенным недостатком – низкой экстракционной емкостью, что приводит к образованию третьей фазы уже при экстракции лишь 10% от теоретического количества ионов металла. В этом случае необходимо использование фосфорорганических солюбилизаторов, например, трибутилфосфата [4]. Различные модификации молекулы TODGA алкильными заместителями, триподальными структурами и даже каликс[4]ареновыми платформами не дали желаемых результатов [5–7].

Ранее нами были синтезированы модифицированные бидентатные аналоги тетрабутилдигликольамида, в молекуле которого одна из двух

Схема 2.

Ви₂NC(O)-групп заменена на $R_2P(O)$ -группу (R = Bu, Ph), показавшие заметно более высокую экстракционную способность по отношению к ионам лантанидов при использовании синергетической смеси с 4-бензоил-3-метил-1-фенил-5-пиразолоном по сравнению как с TODGA, так и с карбамоилметилфосфиноксидами [8]. При аналогичной замене второй Bu₂NC(O)-группы этот эффект возрастает [8].

Нами использован другой способ модификации диамидов дигликолевой кислоты путем введения диарил(алкил)фосфорильных фрагментов в один из алкильных заместителей при атоме азота с сохранением скелетной структуры молекулы диамида дигликолевой кислоты, что позволяет не только увеличить дентатность диамидов дигликолевой кислоты с трех до пяти, но и повысить его экстракционную емкость и растворимость образующихся комплексов.

В настоящем исследовании синтезированы фосфорилзамещенные модифицированные пентадентатные диамиды дигликолевой кислоты 1–3, содержащие 2-дифенилфосфинилэтильные группы в амидной части молекулы. Синтез этих соединений был осуществлен амидированием коммерчески доступного дихлорангидрида дигликолевой кислоты вторичными N-алкил-N-(2-дифенилфосфинилэтил)аминами 4–6 в присутствии Et₃N в хлороформе (схема 1).

Следует отметить, что для амидирования дихлорангидрида дигликолевой кислоты обычно используют 1.5–2-кратный избыток вторичного амина [9–11]. Однако в нашем случае оказалось, что избыток фосфорилсодержащих аминов **4–6** невозможно удалить из реакционной смеси ни отогонкой в вакууме, ни экстракцией разбавленной HCl. Кроме того, их присутствие осложняет очистку диамидов на колонке с SiO₂, существенно снижая их выход. Напротив, использование небольшого избытка дихлорангидрида (~6–7%) позволяет легко очистить целевые продукты от примеси моноамида промывкой раствором KHCO₃ или K₂CO₃.

Попытка провести амидирование дигликолевой кислоты триамидофосфитом, полученным из аминов **4–6** и PCl₃ в присутствии триэтиламина в сухом толуоле по описанному методу [12] без его выделения, оказалась неудачной из-за плохой растворимости как триамидофосфита, так и образующегося диамида **1–3** даже при температуре $100-110^{\circ}$ C.

Исходные вторичные амины **4–6** были получены взаимодействием первичных алкиламинов с дифенил(2-феноксиэтил)фосфиноксидом **7** в ДМСО в присутствии водного КОН [13] (схема 2) аналогично реакциям нуклеофильных реагентов с более трудно доступными 2-гидрокси- и 2-эток-сиэтилдифенилфосфиноксидами [14, 15]. Следует отметить, что синтезированные амины **4** и **6** имеют температуры плавления на 33 и 45°С выше таковых у полученных ранее другими способами. Их строение подтверждено данными ЯМР ¹H, ¹³С и ³¹Р (табл. 1).

		δ, м. д. (Ј, Гц)			
N⁰	R	¹ Н (300.28 МГц)	¹³ С{ ¹ H} (75.51 МГц)	$^{31}P\{^{1}H\}$	
				(121.56 МГц)	
4	Me	1.68 уш. с (1H, NH), 2.36 с (3H, CH ₃), 2.48 д. т (2H,	30.33 д (РСН ₂ , ¹ <i>J</i> _{СР} 71.1), 36.36	31.4	
		РСН ₂ , ³ <i>J</i> _{HH} 7.4, ² <i>J</i> _{HP} 11.3), 2.89 д. т (2H, CH ₂ N,	(CH ₃), 45.12 д (CH ₂ N, ² J _{CP} 2.0),		
		³ <i>J</i> _{HH} 7.4, ³ <i>J</i> _{HP} 11.4), 7.41–7.54 м (6H, <i>мета</i> -CH +	128.86 д (<i>мета</i> -CH, ³ <i>J</i> _{CP} 11.6),		
		<i>пара</i> -СН), 7.72 д. д. д (4H, <i>opmo</i> -CH, ³ <i>J</i> _{HH} 7.9, ⁴ <i>J</i> _{HH}	130.85 д (<i>орто</i> -CH, ² <i>J</i> _{CP} 9.4),		
		$1.6, {}^{3}J_{\rm HP}$ 11.5)	131.96 д (<i>napa</i> -CH, ⁴ <i>J</i> _{CP} 2.7), 133.12		
			д (<i>unco</i> -C, ¹ <i>J</i> _{CP} 98.6)		
5	Bu	$0.84 \text{ t} (3\text{H}, \text{CH}_3, {}^3J_{\text{HH}} 7.2), 1.25 \text{ секстет} (2\text{H}, \text{CH}_2\text{Me},$	14.09 (CH ₃), 20.52 (CH ₂ Me), 30.50	31.6	
		$^{3}J_{\text{HH}}$ 7.3), 1.37 квинтет (2H, CH ₂ Et, $^{3}J_{\text{HH}}$ 7.2), 1.73 с	д (РСН ₂ , ¹ <i>J</i> _{СР} 71.0), 32.19 (СН ₂ Еt),		
		(1H, NH), 2.49 д. т (2H, PCH ₂ , ${}^{3}J_{\text{HH}}$ 7.5, ${}^{2}J_{\text{HP}}$ 11.2),	43.05 д (CH ₂ N, ² J _{CP} 2.1), 49.54		
		2.52 ^а т (2H, CH ₂ Pr, ${}^{3}J_{\text{HH}}$ 7.0), 2.92 ^а д. т (2H, CH ₂ N,	(CH ₂ Pr), 128.82 д (мета-CH, ${}^{3}J_{CP}$		
		$^{3}J_{\text{HH}}$ 7.4, $^{3}J_{\text{HP}}$ 11.3), 7.40–7.53 м (6H, <i>mema</i> -CH +	11.7), 130.84 д (<i>opmo</i> -CH, ² <i>J</i> _{CP} 9.4),		
		<i>пара</i> -СН), 7.72 д. д. д (4H, <i>opmo</i> -CH, ³ J _{HH} 7.8, ⁴ J _{HH}	131.92д(<i>napa</i> -CH, ⁴ <i>J</i> _{CP} 2.8), 133.15д		
		$1.7, {}^{3}J_{\rm HP}$ 11.5)	$(unco-C, {}^{1}J_{CP} 98.8)$		
6	Oct	0.86 T (3H, CH ₃ , ${}^{3}J_{\rm HH}$ 6.5), 1.17-1.35 M (10H,	14.09 (CH ₃), 22.64 (CH ₂ Me), 27.28	31.2	
		$(CH_2)_5$ Me), 1.41 квинтет (2H, CH ₂ Hex, ³ J _{HH} 6.7),	(CH ₂ Pent), 29.22 c (CH ₂ Pr), 29.48		
		2.51 д. т (2H, PCH ₂ , ${}^{3}J_{\text{HH}}$ 7.2, ${}^{2}J_{\text{HP}}$ 11.2), 2.55 ^a т	(CH ₂ Bu), 30.01 (CH ₂ Hex), 30.43 д		
		(2H, CH ₂ Hept, ${}^{3}J_{\text{HH}}$ 7.1), 2.95 ^а д. т (2H, CH ₂ N, ${}^{3}J_{\text{HH}}$	$(PCH_2, {}^{1}J_{CP}, 71.0), 31.81 (CH_2Et),$		
		7.4, ${}^{3}J_{\rm HP}$ 11.0), 7.41–7.55 м (6H, <i>mema</i> -CH + <i>na</i> -	42.89 д (CH ₂ N, ² <i>J</i> _{CP} 1.4), 49.78		
		$ pa$ -CH), 7.73 д. д. д (4H, opmo-CH, ${}^{3}J_{HH}$ 7.9, ${}^{4}J_{HH}$	(CH ₂ Hept), 128.68 д (<i>мета</i> -CH,		
		$1.7, {}^{3}J_{\rm HP}$ 11.5)	³ <i>J</i> _{CP} 11.7), 130.70 д (<i>opmo</i> -CH, ² <i>J</i> _{CP}		
			9.4), 131.78 д (<i>napa</i> -CH, ⁴ J _{CP} 2.7),		
			133.04 д (<i>unco</i> -C, ¹ <i>J</i> _{CP} 98.7)		

Таблица 1. Данные спектроскопии ЯМР ¹H, ${}^{13}C{}^{1}H$ и ${}^{31}P{}^{1}H$ растворов вторичных аминов 4–6 в CDCl₃

^а Перекрывающиеся сигналы.

Исходный феноксиэтильный фосфиноксид 7 синтезирован реакцией 2-феноксиэтилхлорида с О-триметилсилилдифенилфосфинитом **8**, который был получен взаимодействием дифенилфосфинистой кислоты с гексаметилдисилазаном [16] и использован без выделения (схема 3). Ранее аналогичная реакция была успешно проведена с этилхлорацетатом [15], а также дигалогенпроизводными и дитозилатами олигоэтиленгликолей [17].

Следует отметить, что в реакции, по данным ЯМР ¹Н и ³¹Р, в качестве побочного продукта образуется тетрафенилэтилендифосфиндиоксид **9** (6–8%).

Для подтверждения строения полученных соединений 1–7, 9 были использованы данные спектроскопии ЯМР ¹H, ¹³С и ³¹Р растворов этих

соединений в CDCl₃, для отнесения сигналов в которых были применены двумерные гомо- (¹H-¹H, COSY) и гетероядерные (¹H–¹³C, HSQC и HMBC) корреляционные методики. Полученные результаты позволяют предположить, что в растворах в CDCl₃ молекулы амидов 1–3 представлены в двух конформерных формах (М и т), отличающихся пространственным расположением атомов скелета молекулы (1-3), алкильных заместителей при атоме азота (4-11) и двух Ph₂P(O)-групп. В молекуле минорного конформера протоны, ядра ¹³С и ³¹Р являются магнитно неэквивалентными (m1 и m2). Так, в спектрах ЯМР ³¹Р амидов 1-3 наблюдаются три сигнала: синглет атома фосфора М-конформера и пара синглетных сигналов m1 и m2 одинаковой интенсивности магнитно неэквивалентных

Схема 3.

$$Ph_{2}PHO \xrightarrow{(Me_{3}Si)_{2}NH} [Ph_{2}POSiMe_{3}] \xrightarrow{Cl OPh} Ph_{2}P \xrightarrow{O} OPh + Ph_{2}P \xrightarrow{O} Ph_{2}P \xrightarrow{O} Ph_{2}P \xrightarrow{O} Ph_{2}P$$

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 91 № 2 2021

Рис. 1. Спектр ³¹Р{¹H} раствора диамида **3** в CDCl₃.

атомов фосфора m-конформера (рис. 1, табл. 2). Соотношение интегральных интенсивностей сигналов M и m1+m2 составляет примерно 1.8:1 (R = Me) и 2.6:1 (R = Bu, Oct). Следует отметить, что соотношение конформеров не зависит от способа получения амидов **1–3**, а нагревание их растворов в ДМФА- d_6 до 70°С и охлаждение до –30°С не приводит к каким-либо изменениям в соотношении наблюдаемых сигналов.

В спектрах ЯМР ¹Н растворов амидов 1–3 в CDCl₃ количество сигналов соответствует числу неэквивалентных протонов, а положение сигналов протонов N-метильного (4), N-бутильного (4–7) и N-октильного (4–11) фрагментов в области 0.50–3.25 м. д. являются характерными для их структуры. Наличие двух конформеров в растворах подтверждается существованием двух или трех протонных сигналов CH₃, CH₂, и CH_{Ph} групп скелета молекул и заместителей при атоме азота диамидов 1–3.

Протонам H_2C^1P -группы диамидов **1–3**, а также H_3C^4N -группы диамида **1**, принадлежат по три синглетных сигнала в области 3.90–4.20 и 2.82–

Рис. 2. Фрагмент спектра 1 Н раствора диамида 3 в CDCl₃.

2.87 м. д. соответственно М и т конформеров. Последние содержат магнитно неэквивалентные протоны m1 и m2. Протоны остальных метиленовых групп H_2C^4N и H_2C^3P всех трех амидов в спектрах ЯМР ¹Н представлены только мультиплетными сигналами (рис. 2, табл. 3).

Следует отметить, что данные спектров ЯМР ¹Н, зарегистрированных в режиме полной шумовой развязки от ³¹Р, подтверждают наличие спин-спинового взаимодействия протонов H_2C^2 и H_2C^3 с атомом фосфора. Такое отнесение подтверждают данные гомоядерных спектров COSY ¹H–¹Н амидов **1–3**, по которым были установлены спиново-связанные протоны соседних метиленовых групп 2 и 3 между атомами N и P, метиленовых групп 4–7 в бутильном и 4–11 в октильном заместителях при атоме азота, а также группы H_2C^1O между атомами N и O.

Кроме того, подтверждением отнесения сигналов ¹Н (М и m) групп H_2C^2N и H_2C^4N является наличие их кросс-пиков с ¹³С сигналом С=О группы, а также ¹Н сигналов H_2C^3P -групп с сигналами ядер *ипсо*-¹³С фенильного фрагмента в спектрах

Таблица 2. Данные спектроскопии ЯМР ³¹Р{¹H} (202.47 МГц) растворов диамидов 1–3 в CDCl₃

N⁰	R	δ _р , м. д.	Соотношение интенсивностей сигналов ³¹ Р М и т форм
1	Me	29.0 (m1), 30.1 (M), 30.2 (m2)	1.8:1
2	Bu	29.1 (m1), 30.2 (M + m2)	2.6:1
3	Oct	29.0 (m1), 30.28 (M), 30.26 (m2)	2.6:1

	, , , 1	(0) / 0) 1	1 , , , , ,	5
R	R	$\overset{2}{\overset{3}{\overset{0}{}}}_{4^{l}R}^{N} \overset{PPh_{2}}{\overset{1}{}}_{PPh_{2}}$		$m \xrightarrow{o i P}_{p} Ph$
Me	Мажорный конформер (М) 66.7% + минорный конформер (m) 33.3%			
	$2.82 c [3H, H_3C^4N (m1)],$	2.60–2.67 м [8H, H ₂ C ³ P	$3.97 c [2H, H_2C^1]$	7.40–7.56 м [8Н, мета-СН
	$2.86 c [3H, H_3C^4N (m2)],$	(M+m1+m2)], 3.52–3.62 м	(m1)], 4.02 c [4H,	(M) + 8H, <i>mema</i> -CH (m) +
	$2.87 c [6H, H_3C^4N (M)]$	$[2H, H_2C^2N(m1)], 3.62-3.69$	$H_2C^1(M)$], 4.18 c	4H, <i>napa</i> -CH (M) + 4H,
		м (6H, H ₂ C ² N (M+m2)]	$[2H, H_2C^1 (m2)]$	<i>пара</i> -СН (m)], 7.70–7.82 м [8H. <i>орто</i> -СН (M) + 8H.
				opmo-CH (m)]
Bu	Мажорн	ый конформер (М) 72.2% + мин	юрный конформер	(m) 27.8%
	0.81–0.92 м [12Н, Н ₃ С ⁷	2.60–2.75 м [8Н, Н ₂ С ³ Р	$4.04 \text{ c} 2\text{H}, \text{H}_2\text{C}^1$	7.38–7.67 м [8Н, мета-СН
	(M+m)], 1.18–1.28 м [8H,	(M+m1+m2)], 3.04–3.17 м	(m1)], 4.09 c [4H,	(M) + 8H, Mema-CH(m) +
	H ₂ C ⁶ (M+ m)], 1.38–1.50 м	[6H, H ₂ C ⁴ N (M+m1)], 3.17–	H_2C^1 (M)], 4.16 c	4H, <i>napa</i> -CH (M) + 4H,
	$[8H, H_2C^5 (M+m)]$	3.26 м [2H, H ₂ C ⁴ N (m2)],	$[2H, H_2C^1 (m2)]$	<i>пара</i> -СН (m)], 7.67–7.92 м
		3.46–3.56 м [2H, H ₂ C ² N		[8H, <i>opmo</i> -CH (M) + 8H,
		(m1)], 3.56–3.68 м [6Н,		opmo-CH (m)]
	$H_2C^2N(M+m2)]$			
Oct	Мажорный конформер (М) 72.2% + минорный конформер (m) 27.8%			(m) 27.8%
	0.84–0.90 м [12Н, Н ₃ С ¹¹	2.61–2.74 м [8H, H ₂ C ³ P	4.05 c [2H, H_2C^1	7.42–7.56 м [8Н, мета-СН
	(M+m)], 1.28–1.31 м [40H,	(M+m1+m2)], 3.08–3.14 м	(m1)], 4.11 c [4H,	(M) + 8H, <i>mema</i> -CH $(m) +$
	$H_2C^6-H_2C^{10}$ (M+m)], 1.40-	[6H, H ₂ C ⁴ N (M+m1)], 3.20–	$H_2C^1(M)$], 4.18 c	4H, <i>napa</i> -CH (M) + 4H,
	1.51 м [8H, H ₂ C ⁵ (M+m)]	3.25 м [2H, H ₂ C ⁴ N (m2)],	$[2H, H_2C^1 (m2)]$	<i>пара</i> -СН (m)], 7.76–7.85 м
		3.49–3.58 м [2H, H ₂ C ² N		[16H, opmo-CH (M + m)]
		(m1)], 3.60–3.68 м [6Н,		
		$[H_2C^2N(M+m^2)]$		

Таблица 3. Данные спектроскопии ЯМР ¹Н (600.22 МГц, б, м. д,) растворов диамидов 1–3 в CDCl₃

HMBC, отражающих вицинальное и геминальное взаимодействие ядер. Для сигналов протонов (M, m1 и m2) H₂C¹O групп найдены все три кросс-пика с соответствующими сигналами ядер ¹³C.

Соотношение интегральных интенсивностей индикаторных сигналов ¹Н и ¹³С в группах H_2C^1P , H_2C^2N , H_2C^4N примерно соответствует таковому в спектрах ³¹P. Следует отметить, что N,N,N',N'-тетрабутилдиамид дигликолевой кислоты, не содержащий фосфорильной группы в амидной части молекулы, по данным ЯМР ¹Н, существует в виде двух конформеров, соотношение которых составляет 1:1 [18].

В спектрах ЯМР ¹Н амидов **1–3** в области 7.34–7.90 м. д. наблюдаются два мультиплетных сигнала, первый из которых принадлежит *мета-* и *пара-*протонам фенильных заместителей при атоме фосфора обоих конформеров (M + m). Второй мультиплетный сигнал относится к *орто*-¹Н фенильных заместителей (М + m) (табл. 3).

На основании данных HSQC $^{1}H^{-13}C$ эксперимента было сделано отнесение сигналов в спектрах ЯМР ^{13}C амидов **1–3** и определены значения химических сдвигов для ядер ^{13}C всех групп в скелете молекулы, в алкильных заместителях при атоме азота и фенильных радикалах при атоме фосфора (табл. 4).

В спектрах ${}^{13}C{}^{1}H$, снятых в режиме JMODECHO, углеродные ядра всех групп CH₂ и C=O амидов **1–3** представлены тремя сигналами конформеров M и m, за исключением групп H₂C³P в амидах **1–3** и H₂C⁴N в амиде **3**, в которых ядрам 13 C принадлежат два синглета (табл. 4). Следует отметить, что в спектрах амидов **2**, **3** абсолютное значение разницы химических сдвигов для сигналов ядер 13 C углеводородных заместителей при

		, , , , , , , , , , , , , , , , , , ,		5
R	R	$O \xrightarrow{1}_{CN} O \xrightarrow{2}_{CN} O \xrightarrow{1}_{PPh_2} O \xrightarrow{4}_{R}$	$p \xrightarrow{o} i \xrightarrow{P} P$	C=O
Me	Ma	жорный конформер (M) 66.7%	+ минорный конформер (m) 33.3%	·
	32.97 [C ⁴ (m1)], 35.15 [C ⁴ (m2)], 35.20 [C ⁴ (M)]	27.44 μ [C ³ , (M+m1), ¹ <i>J</i> _{CP} 69.5], 29.15 μ [C ³ , (m2), ¹ <i>J</i> _{CP} 67.6], 42.98 [C ² (m1)], 43.23 [C ² (m2)], 43.29 [C ² (M)], 69.06 [C ¹ (M)], 69.12 [C ¹ (m1)], 69.74 [C ¹ (m2)]	128.76 μ [<i>mema</i> -CH (M+m1), ³ J _{CP} 11.7], 128.86 μ [<i>mema</i> -CH (m2), ³ J _{CP} 11.7], 128.86 μ [<i>mema</i> -CH (m2), ³ J _{CP} (M+m1), ² J _{CP} 9.4], 130.60 μ [<i>opmo</i> -CH (m2), ² J _{CP} 10.9], 131.90 μ [<i>napa</i> -CH (M+m1), ⁴ J _{CP} 2.7], 132.12 μ [<i>napa</i> -CH (m2), ⁴ J _{CP} 2.8], 132.20 μ [<i>unco</i> -C (m1), ¹ J _{CP} 94.0], 132.68 μ [<i>unco</i> -C (M+m2), ¹ J _{CP} 99.4]	168.42 (m1), 68.65 (m2), 69.02 (M)
Bu	Ma	жорный конформер (M) 72.2%	+ минорный конформер (m) 27.8%	
	13.77 [C ⁷ (M+m)], 19.89 [C ⁶ (M+m1)], 20.07 [C ⁶ (m2)], 31.12 [C ⁵ (M+m)]	27.82 μ [C ³ , (M+m1), ¹ J _{CP} 69.0], 29.66 μ , [C ³ (m2), ¹ J _{CP} 68.2], 40.64 [C ² (m1)], 41.20 [C ² (m2)], 41.27 [C ² (M)], 45.13 [C ⁴ (m2)], 45.19 [C ⁴ (m1)], 47.79 [C ⁴ (M)], 68.80 [C ¹ (m1)], 68.90 [C ¹ (M)], 69.77 [C ¹ (m2)]	128.74 μ [<i>mema</i> -CH (M+m1), ³ <i>J</i> _{CP} 11.7], 128.86 μ [<i>mema</i> -CH (m2), ³ <i>J</i> _{CP} 11.9], 130.57 μ [<i>opmo</i> -CH (M+m1), ² <i>J</i> _{CP} 9.5], 130.63 μ [<i>opmo</i> -CH (m2), ² <i>J</i> _{CP} 9.8], 131.86 μ [<i>napa</i> -CH (M+m1), ⁴ <i>J</i> _{CP} 2.7], 132.11 μ [<i>napa</i> -CH (m2), ⁴ <i>J</i> _{CP} 2.6], 132.20 μ [<i>unco</i> -C (m1), ¹ <i>J</i> _{CP} 99.3], 132.74 μ [<i>unco</i> -C (M+m2), ¹ <i>J</i> _{CP} 99.5]	168.13 (m1), 168.56 (m2), 168.88 (M)
Oct	Ma	жорный конформер (M) 72.2%	+ минорный конформер (m) 27.8%	l
Oct	Ma 14.10 [C ¹¹ (M+ m)], 22.60 [C ¹⁰ (M+m1)], 22.64 [C ¹⁰ (m2)], 26.70 [C ⁷ (M+m1)], 26.72 [C ⁷ (m2)], 29.12 [C ⁵ (M+m1)], 29.22 [C ⁵ (m2)], 29.19 [C ⁸ (M+m)], 29.29 [C ⁹ (M+m)], 31.70 [C ⁶ (M+m1), 31.77 [C ⁶ (m2)]	27.14 [C ³ (m1), ${}^{1}J_{CP}$ 74.7], 27.80 μ [C ³ (M+m2), ${}^{1}J_{CP}$ 69.1], 40.67 [C ² (m1)], 41.23 [C ² (m2)], 41.28 [C ² (M)], 45.52 [C ⁴ (m1)], 48.04 [C ⁴ (M+m2)], 68.80 [C ¹ (m1)], 68.92 [C ¹ (M)], 69.78 [C ¹ (m2)]	⁺ минорный конформер (m) 27.8% 128.76 д [<i>мета</i> -CH (M+m1), ${}^{3}J_{CP}$ 11.3], 128.88 д [<i>мета</i> -CH (m2), ${}^{3}J_{CP}$ 11.8], 130.58 д [<i>орто</i> -CH (M+m1), ${}^{2}J_{CP}$ 9.6], 130.65 д [<i>орто</i> -CH (m2), ${}^{2}J_{CP}$ 10.3], 131.88 д [<i>пара</i> -CH (M+m1), ${}^{4}J_{CP}$ 2.7], 132.15 д [<i>пара</i> -CH (m2), ${}^{4}J_{CP}$ 2.6], 132.18 д [<i>ипсо</i> -C (m1), ${}^{1}J_{CP}$ 99.6], 132.71 д [<i>ипсо</i> -C (M+m2), ${}^{1}J_{CP}$ 99.4]	168.12 (m1), 168.57 (m2), 168.93 (M)

Таблица 4. Данные спектроскопии ЯМР ¹³С (150.925 МГц, δ_C , м. д., *J*, Гц) растворов диамидов1–3 в CDCl₃

атоме азота конформеров M и m $\Delta\delta_{\rm C} = \delta_{\rm C} (M) - \delta_{\rm C}$ (m) последовательно уменьшается при переходе от NC⁴H₂-группы к конечной группе CH₃. Это позволило сделать отнесение сигналов метиленовых групп 9 и 10 в спектрах ЯМР ¹³С амида **3** (табл. 4) [19]. Кроме того, у сигналов ¹³С ядер β-C²H₂-групп отсутствует расщепление на атоме фосфора, в отличие от дублетных сигналов этих ядер, наблюдаемых в спектрах вторичных аминов (табл. 1) [20, 21], а также N-алкил-N-(2-дифенилфосфинилэтил)амидах дифенилфосфинилуксусной кислоты [19].

В области 128–133 м. д. наблюдаются по две пары дублетных сигналов (М + m1, m2) ядер ¹³С фенильных заместителей при атоме фосфора с ЖУРНАЛ ОБШЕЙ ХИМИИ том 91 № 2 2021 КССВ для *орто*- (³*J*_{CP} 9.4–10.9 Гц), *мета*- (²*J*_{CP} 11.3–11.9 Гц), *пара*- (⁴*J*_{CP} 2.6–2.8 Гц) и (т1, М + т2) для *ипсо*-¹³С (¹*J*_{CP} 99.0–99.6 Гц) (рис. 3, табл. 4).

Углеродным ядрам С=О групп амидов 1–3 принадлежат три синглетных сигнала (М, m1и m2) в области 168.40–169.00 м. д. (табл. 4). Сделанное отнесение сигналов ¹Н и ¹³С, значения химических сдвигов которых приведены в табл. 3 и 4, подтверждаются наличием соответствующих кросс-пиков в корреляционных спектрах HMBC.

Таким образом, реакцией хлорангидрида дигликолевой кислоты со вторичными N-алкил-N-(2-дифенил-фосфинилэтил)аминами синтезированы пентадентатные диамиды дигликолевой кислоты [Ph₂P(O)CH₂CH₂N(R)C(O)CH₂]₂O, где R = Me, Bu, Oct. По данным ЯМР ¹H, ¹³C и ³¹P, в растворах CDCl₃ полученные соединения находятся в виде двух конформеров в соотношении ⁻¹.8:1 (R = Me) и 2.6 : 1 (R = Bu, Oct). В молекуле минорного конформера протоны, ядра ¹³C и ³¹P являются магнитно неэквивалентными.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹H, ¹³С{¹H} и ³¹Р{¹H} растворов реакционных смесей и исследованных соединений в CDCl₃ зарегистрированы на спектрометрах Advance III NanoBay и Bruker AvanceTM 500 и 600. Рабочая частота составляет 300.28, 500.13 600.22 МГц (¹H), 75.51, 125.77 и 150.925 МГц (¹³C) и 121.495, 202.46 и 242.974 МГц (³¹Р) соответственно. Для отнесения сигналов в спектрах ЯМР ¹Н и ¹³С были применены двумерные гомо- (¹H-¹H) и гетеро- (¹H-¹³C) корреляционные методики из стандартной библиотеки программ Bruker, использующие импульсные полевые градиенты gs-COSY, gs-HSQC и gs-HMBC. Масс-спектры растворов полученных соединений в метаноле зарегистрированы на масс-спектрометре AmaZon Bruker Daltonik GmbH, режим сканирования Ultra-Scan положительной ионизации, диапазон регистрируемых элементов *m/z* 70–2200. Температуры плавления измерены укороченными термометрами Аншютца в специальном блоке с использованием капилляров.

Дихлорангидрид дигликолевой кислоты (Aldrich) был использован без дополнительной очистки. Органические растворители высушены известными методами [22].

Рис. 3. Фрагмент спектра ${}^{13}C{}^{1}H$ раствора диамида **3** в CDCl₃.

2-Феноксиэтанол. К нагретому до 80°С раствору фенолята натрия, приготовленному из 19.9 г (212 ммоль) фенола и 11.0 г (275 ммоль) NaOH в 17 мл H₂O, прибавили по каплям при перемешивании 17.9 г (15 мл, 223 ммоля) этиленхлоргидрина в течение 30 мин. Гетерогенную смесь нагревали при 90-95°С в течение 20 мин. затем охлаждали. Маслянистую жидкость темно-вишневого цвета декантировали и промывали водой (2×10 мл). Осадок растворяли в 15 мл воды, раствор экстрагировали CHCl₃ (3×10 мл). Экстракт, объединенный с маслянистой жидкостью, сушили Na₂SO₄ и упаривали в вакууме, остаток 24.6 г (84%) перегоняли. Выход 20.0 г (68%), т. кип. 134-136°С (18 мм рт. ст.) {т. кип. 128–130°С (20 мм рт. ст.) [23]}. Спектр ЯМР ¹Н (300.28 МГц, CDCl₃), б, м. д. (Ј, Гц): 2.57 уш. с (1Н, ОН), 3.98 м (2Н, СН₂ОН), 4.10 м (2H, CH₂OPh), 6.95 д (2H, *opmo*-CH, ³*J*_{HH} 7.6), 7.00 т (1Н, *napa*-CH, ³J_{HH} 7.4), 7.32 д. д (2Н, мета-СН, ³J_{HH} 7.2, ³J_{HH} 7.4 Гц). Спектр ЯМР ¹³С{¹H} (75.50 МГц, CDCl₃), ₆, м. д.: 61.59 (CH₂OH), 69.29 (CH₂OPh), 114.76 (opmo-CH), 121.34 (пара-СН), 129.74 (мета-СН), 158.78 (ипсо-С).

2-Феноксиэтилдифенилфосфиноксид (7). Смесь 30.0 г (148 ммоль) дифенилфосфинистой кислоты [24] и 48 мл (37.1 г, 230 ммоль) гексаметилдисилазана перемешивали при 120°С в течение 1 ч, а затем при той же температуре в токе аргона прибавляли по каплям 19.7 г (126 ммоль) 2-феноксиэтилхлорида [23] в течение 30 мин. Смесь

нагревали при 180-200°С в течение 3 ч. отгоняя триметилхлорсилан (т. паров 57-97°С). После охлаждения смесь разбавляли CCl₄ (70 мл) и CHCl₂ (30 мл) и перемешивали при 40-50°С в течение 3 ч. К смеси добавляли 50 мл воды, органический слой отделяли, промывали последовательно насыщенным раствором K_2CO_3 (5×10 мл)¹, H_2O (2× 10 мл), 5%-ным раствором HCl (10 мл), H₂O (2× 10 мл), сушили Na₂SO₄ и упаривали в вакууме. К остатку (39.2 г. масло желтого цвета) добавляли 50 мл Et₂O, кристаллы отфильтровывали (38 г). По данным ЯМР ${}^{31}P{}^{1}H{}$, продукт содержит 94% фосфиноксида 7 и 6% диоксида 9. Кристаллический продукт смешивали с EtOAc (100 мл), гетерогеннную смесь пропускали через колонку с 30 г SiO₂ и промывали EtOAc (10×50 мл). Элюат упаривали в вакууме. Остаток 35.5 г (88%) с т. пл. 103-105°С перекристаллизовали из EtOAc. Выход 34.9 г (86%), т. пл.105-106°С (т. пл. 105-106°С [25]). Спектр ЯМР ¹Н (300.28 МГц, CDCl₃), б, м. д. (*J*, Гц): 2.86 д. т (2H, PCH₂, ³*J*_{HH} 7.4, ²*J*_{HP} 11.7), 4.34 д. т (2H, CH₂O, ³*J*_{HH} 7.4, ³*J*_{HP} 9.3), 6.73 д (2H, *opmo*- CH_{OPh} , ${}^{3}J_{HH}$ 8.6), 6.91 T (1H, *napa*-CH_{OPh}, ${}^{3}J_{HH}$ 7.4), 7.21 д. д (2H, мета-CH_{OPh}, ${}^{3}J_{\text{HH}}$ 7.3 Гц), 7.44–7.58 м (6H, *мета*-СН_{РРh} + *пара*-СН_{РРh}), 7.78 д. д. д (4H, *орто*-СН_{РРЬ}, ³*J*_{HH} 7.9, ⁴*J*_{HH} 1.6, ³*J*_{HP} 11.7). Спектр ЯМР ¹³С{¹H} (75.50 МГц, CDCl₃), δ_{C} , м. д. (*J*, Гц): 30.56 д (РСН₂, ¹J_{CP} 70.7), 61.58 (СН₂О), 114.65 (*орто*-С_{ОРb}), 121.28 (*пара*-С_{ОРb}), 128.96 д (*мета*-С_{РРh}, ³J_{CP} 12.0), 129.64 (*мета*-С_{ОРh}), 130.99 д (*орто*-С_{РРh}, ²J_{CP} 9.6), 132.25 д (*napa*-C_{PPh}, ⁴J_{CP} 3.1) 132.63 д (*unco*-С_{ррь}, ¹*J*_{СР} 100.6), 158.18 (*unco*-С_{ОРь}). Спектр ЯМР ³¹Р{¹H} (121.56 МГц, CDCl₃): б_Р 29.9 м. д. Масс-спектр, m/z ($I_{\text{отн}}$, %): 323 (23) [M + H]⁺, 345 $(95) [M + Na]^+, 667 (34) [2M + Na]^+.$

Оставшееся на колонке вещество элюировали метанолом, элюат упаривали в вакууме, остаток 2.1 г (6%) с т. пл. 265–268°С перекристаллизовали из этанола. Получено 1.4 г (4%) диокиси **9** с т. пл. 268–269°С (т. пл. 269–279°С [14]). Спектр ЯМР ¹H (CDCl₃, 600.22 МГц), δ, м. д. (*J*, Гц): 2.49 с и 2.50 с (4H, CH₂P, два конформера), 7.42 д. д (8H, *mema*-CH, ³*J*_{HH} = ⁴*J*_{HP} = 7.5), 7.47 д. д (4H, *napa*-CH, ³*J*_{HH} = ⁵*J*_{HP} = 7.4), 7.68 д. т (8H, *opmo*-CH, ³*J*_{HH} = ⁴*J*_{HP} = 6.9, ³*J*_{HP} 5.2). Спектр ЯМР ¹³С {¹H} (150.925 МГц, CDCl₃), $\delta_{\rm C}$, м. д. (*J*, Гц): 21.44 д. д и 21.88 д. д (CH₂P, ${}^{1}J_{CP} = {}^{2}J_{CP} = 31.4$, два конформера), 128.86 два перекрывающихся дублета (*мета*-CH, ${}^{3}J_{CP}$ 5.9), 130.77 два перекрывающихся дублета (*орто*-CH, ${}^{2}J_{CP}$ 4.8), 131.89 д (*ипсо*-C, ${}^{1}J_{CP}$ 100.2), 132.09 с (*пара*-CH). Спектр ${}^{31}P\{{}^{1}H\}$ (121.56 МГц, CDCl₃): δ_{P} 32.8 м. д. Масс-спектр, m/z (I_{OTH} , %): 431 (20) [M + H]⁺, 453 (100) [M + Na]⁺.

N-Метил-N-(2-дифенилфосфинилэтил)амин (4). Смесь 4.00 г (12.4 ммоль) дифенил-(2-феноксиэтил)фосфиноксида 7, 4.3 мл 40%-ного раствора (3.86 г, 124.0 ммоль) метиламина и 50%-ного водного раствора 1.1 г (18 6 ммоль) КОН в 10 мл ДМСО перемешивали в течение 1 ч при 70°С. Степень превращения исходного оксида 7 контролировали методом ЯМР ³¹Р. Смесь разбавляли 10 мл воды, экстрагировали CHCl₃ (3×15 мл), экстракт тщательно промывали 30%-ным раствором КОН (3×10 мл), сушили Na₂SO₄ и упаривали в вакууме. Остаток выдерживали² при 50°С (1 мм рт. ст.) в течение 1 ч и растворяли в 16 мл 5%-ного раствора HCl. Раствор промывали бензолом (3×10), подщелачивали насыщенным раствором K₂CO₃ до pH 12 и экстрагировали CHCl₃ (3×10 мл). Экстракт промывали насыщенным раствором К₂CO₃ (10 мл), сушили Na₂SO₄ и упаривали в вакууме. Остаток очищали на колонке с SiO₂ марки Fluka (70-230 меш, 60 Å) в системе CHCl₃–CH₃OH, 20:2. Выход 2.80 г (87%), т. пл. 61-63°С (т. пл. 28-30°С [26]). Данные ЯМР ¹H, ¹³С и ³¹Р приведены в табл. 1. Масс-спектр, m/z ($I_{\text{отн}}$, %): 260 (100) [M + H]⁺, 282 (12) $[M + Na]^+$, 519 (94) $[2M + H]^+$, 541 (80) [2M +Na]⁺. Найдено, %: С 69.29; Н 7.11; N 5.42; Р 12.00. С₁₅Н₁₈NOP. Вычислено, %: С 69.48; Н 7.00; N 5.40; P 11.95.

N-Бутил-N-(2-дифенилфосфинилэтил)амин (5) получали аналогично из 6.0 г 18.6 ммоль) фосфиноксида 7 и 13.6 г (18 мл, 186.0 ммоль) *н*-бутиламина, 50%-ного водного раствора 1.6 г (27.9 ммоль) КОН и 15 мл ДМСО. Выход 5.0 г (89%), т. пл. 67–68°С (т. пл. 64–65°С [27]). Данные ЯМР ¹H, ¹³С и ³¹Р приведены в табл. 1. Массспектр, *m/z* ($I_{\text{отн}}$, %): 302 (100) [M + H]⁺, 324 (33) [M + Na]⁺, 340 (9) [M + K]⁺, 603 (18) [2M + H]⁺, 625 (11) [2M + Na]⁺.

N-Октил-N-(2-дифенилфосфинилэтил)амин (6) получали аналогично из 6.2 г (19.1 ммоль)

¹ Органический слой промывали до тех пор, пока при подкислении промывных вод не перестала выпадать Ph₂P(O)OH.

² Для удаления остатков ДМСО в ловушку, охлаждаемую жидким азотом.

фосфиноксида 7 и 14.8 г (19 мл, 114.6 ммоль) *н*-октиламина, 50%-ного водного раствора 1.6 г (28.6 ммоль) КОН и 15 мл ДМСО (70°С, 3 ч). После очистки на колонке амин **6** (5.6 г, 82%) перекристаллизовывали из ЕtOAc. Выход 5.0 г (74%), т. пл. 79.5–80.5°С (т. пл. 35°С [21]). Данные ЯМР ¹H, ¹³С и ³¹Р приведены в табл. 1. Масс-спектр, *m/z* ($I_{\text{отн}}$, %): 358 (99) [M + H]⁺, 380 (40) [M + Na]⁺, 715 (12) [2M + H]⁺, 737 (13) [2M + Na]⁺. Найдено, %: С 73.99; H 8.99; N 4.01; P 8.47. С₂₂H₃₂NOP. Вычислено, %: С 73.92; H 9.02; N 4.00; P 8.66.

Бис[N-метил-N-(2-дифенилфосфинилэтил)]амид дигликолевой кислоты (1). К раствору 2.90 г (11.2 ммоль) N-метил-N-(2-дифенилфосфинилэтил)амина 4 и 1.81 г (2.5 мл, 17.8 ммоль) Et₃N в 20 мл безводного CHCl₃ при -10-0°С очень медленно прибавляли по каплям при перемешивании в токе аргона 1.02 г (6.0 ммоль) дихлорангидрида дигликолевой кислоты в 4 мл безводного CHCl₃. Смеси дали нагреться до комнатной температуры (1.5 ч), а затем нагревали при 40-50°С в течение 4 ч и оставляли на ночь. Смесь разбавляли 20 мл воды и 10 мл CHCl₃, слои разделяли. Водный слой экстрагировали хлороформом (2×10 мл), объединенный экстракт промывали 2%-ной соляной кислотой (2×15мл), затем насыщенным раствором K_2CO_3 (2×15мл), сушили Na_2SO_4 и упаривали в вакууме. Остаток 3.50 г (101%), масло желтого цвета, очищали методом колоночной хроматографии на силикагеле марки (Aldrich, 13–270 меш, 60 Å) в системе CHCl₃-MeOH, 20:1-20:2. Получено 3.00 г (89%) диамида 1 в виде густого бесцветного масла. Данные спектров ЯМР ¹Н, ¹³С и ³¹Р приведены в табл. 2 и 3. Найдено, %: С 63.82; Н 6.82; N 4.29; Р 9.91. С₃₄Н₃₈N₂O₅P₂ ×1.3H₂O. Вычислено, %: С 63.81; H 6.40; N 4.38; P 9.68.

Бис[N-бутил-N-(2-дифенилфосфинилэтил)]амид дигликолевой кислоты (2) получали аналогично из 1.70 г (5.6 ммоль) амина 5, 0.86 г (1.18 мл, 8.5 ммоль) Et₃N и 0.51 г (3.0 ммоль) дихлорангидрида дигликолевой кислоты. Выделено 2.40 г густого масла желтого цвета, после очистки которого на колонке с SiO₂ получено 1.52 г (77%) диамида 2 в виде густого бесцветного масла. Данные спектров ЯМР ¹H, ¹³C и ³¹Р приведены в табл. 2 и 3. Найдено, %: С 66.73; Н 7.64; N 4.02; Р 8.98. С₄₀H₅₀N₂O₅P₂ × H₂O. Вычислено, %: С 66.84; Н 7.29; N 3.90; Р 8.62.

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 91 № 2 2021

Бис[N-октил-N-(2-дифенилфосфинилэтил)]амид дигликолевой кислоты (3) получали аналогично из 2.11 г (5.9 ммоль) амина 6, 0.91 г (1.3 мл, 9.0 ммоль) Et₃N и 0.54 г (0.4 мл, 3.2 ммоль) дихлорангидрида дигликолевой кислоты. Выделено 2.40 г масла желтого цвета, после очистки которого на колонке с SiO₂ в системе CHCl₃–MeOH 40:0.2–40:2 получено 1.95 г (85%) диамида **3** в виде густого бесцветного масла. Данные спектров ЯМР ¹H, ¹³C и ³¹Р приведены в табл. 2 и 3. Найдено, %: C 68.66; H 8.34; N 3.15; Р 7.49. $C_{48}H_{66}N_2O_5P_2 \times 1.5H_2O$. Вычислено, %: C 68.66; H 8.28; N 3.34; Р 7.38.

ФОНДОВАЯ ПОДДЕРЖКА

Работа выполнена при поддержке Министерства науки и высшего образования Российской Федерации с использованием научного оборудования Центра коллективного пользования Национального исследовательского центра «Курчатовский институт» и Центра исследования строения молекул Института элементоорганических соединений им. А.Н. Несмеянова РАН.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Ansari S.A., Pathak P., Mohapatra P.K., Manchanda V.K. // Chem. Rev. 2012. Vol. 112. N 3. P.1751. doi 10.1021/cr200002f
- Stephan H., Gloe K., Beger J., Muhl P. // Solv. Extr. Ion Exch. 1991. Vol. 9. N 3. P. 459. doi 10.1080/07366299108918064
- Sasaki Y., Suzuki S., Tachimori S., Kimura T. // Proc. Int. Conf. Global. New Orlean, 2003. Vol. 2. P. 1266.
- Sypula M., Wildem A., Schreinemachers C., Modolo G. // Proc. First ACSEPT Int. Workshop, Lisbon, 2010. http:// www.acsept.org.
- Leoncini A., Mohapatra P.K., Bhattacharyya A., Raut D.R., Senqupta A., Verma P.K., Tiwari N., Bhattacharyya D., Jha S., Wonda A.M., Huskens J., Verboom W. // Dalton Trans. 2016. Vol. 45. N 6. P. 2476. doi 10.1039/C5DT04729C
- Mohapatra P.K., Senqupta A., Iqbal M., Huskens J., Verboom W. // Inorg. Chem. 2013. Vol. 52. N 5. P. 2533. doi 10.1021/ic302497k
- Iqbal M., Huskens J., Verboom W., Sypula M., Modolo G. // Supramol. Chem. 2010. Vol. 22. N 11–12. P. 827. doi 10.1080/10610278.2010.506553

- Turanov A.N., Karandashev V.K., Kharlamov A.V., Bondarenko N.A. // Solv. Extr. Ion Exch. 2014. Vol. 32. N 5. P. 492. doi 10.1080/07366299.2014.908584
- Skinner W.A., Rosentreter U., Elward T. // J. Pharm. Sci. 1982. Vol. 71. N 7. P. 837. doi 10.1002/jps.2600710735
- Narita H., Yaita T., Tamura K., Tachimori S. // J. Radioanal. Nucl. Chem. 1999. Vol. 239. N 2. P. 381. doi 10.1007/BF02349516
- 11. Liu J.-F., Yang H.-J., Wang W., Li Zh. // J. Chem. Eng. Data. 2008. Vol. 53. N 9. P. 2189. doi 10.1021/je800434j
- Швецов И.К., Трухляев П.С., Калистратов В.А., Кулажко В.Г., Харитонов А.В., Антошин А.Э., Цветков Е.Н. // Радиохимия. 1989. Т. З. № 2. С. 63.
- Бондаренко Н.А., Царькова К.В., Белусь С.К., Артюшин О.И. // Тезисы докл. научн. конф., посвященной 115-летию со дня рождения академика Б.А. Арбузова. Казань, 2018. С. 72.
- Бондаренко Н.А., Рудомино М.В., Цветков Е.Н. // Изв. АН СССР. Сер. хим. 1990. № 9. С. 2180; Bondarenko N.A., Rudomino M.V., Tsvetkov E.N. // Russ. Chem. Bull. 1990. Vol. 39. N 9. P. 1989. doi 10.1007/BF00958287
- Бондаренко Н.А. // ЖОХ. 1999. Т. 69. Вып. 7. С. 1058; Bondarenko N.A. // Russ. J. Gen. Chem. 1999. Vol. 69. N 7. C. 1016.
- 16. Бондаренко Н.А., Цветков Е.Н. // ЖОХ. 1989. Т. 59. Вып. 7. С. 1533.
- Евреинов В.И., Баулин В.Е., Вострокнутова З.Н., Цветков Е.Н. // Изв. АН. Сер. хим. 1993. № 3. С. 518; Evreinov V.I., Baulin V.E., Vostroknutova Z.N., Tsvetkov E.N. // Russ. Chem. Bull. 1993. Vol. 42. N 3. P. 472. doi 10.1007/BF00 698434
- 18. Turanov A.N., Karandashev V.K., Kharlamov A.N., Bondarenko N.A., Khvostikov V.A. // Solv. Extr.

Ion Exch. 2019. Vol. 37. N 1. P. 65. doi 10.1080/07366299.2019.1592923

- Бондаренко Н.А., Белусь С.К., Артюшин О.И., Перегудов А.С. // ЖОХ. 2020. Т. 90. Вып. 12. С. 1867; Bondarenko N.A., Belus' S.K., Artyushin O.I., Peregudov A.S. // Russ. J. Gen. Chem. 2020. Vol. 90. N 12. P. 2273. doi 10.1134/S1070363220120099
- Rahman M.S., Steed J.W., Hii R.R. // Synthesis. 2000. N 9. P. 1320. doi 10.1055/s-2000-6422
- Matveeva E.V., Petrovskii P.V., Klemenkova Z.S., Bondarenko N.A., Odinets I.L. // Comptes Rendus Chimie. 2010. Vol. 13. N 8–9. P. 964. doi 10.1016/j. crci.2010.03.005
- Гордон А.Д., Форд Р.А. Спутник химика. М.: Мир, 1976. 541 с.; Gordon A.J., Ford R.A. The Chemists Companion: A Handbook of Practical Date, Techniques and References, Wiley, New York, 1972.
- Földeák S., Czombos J., Matkovics B., Pórszász J. // Acta Phys. Chem. Szeged. 1963. Vol. 9. N 3–4. P. 134.
- Бондаренко Н.А., Харламов А.В., Вендило А.Г. // Изв. АН. Сер. хим. 2009. № 9. С. 1814; Bondarenko N.A., Kharlamov A.V., Vendilo A.G. // Russ. Chem. Bull. 2009. Vol. 58. N 9. P. 1872. doi 10.1007/s11172-009-0256-3
- Shutt J.R., Trippett S. // J. Chem. Soc. (C). 1969. N 15.
 P. 2038. doi 10.1039/J39690002038
- Туранов А.Н., Карандашев В.К., Бондаренко Н.А., Уринович Е.М., Цветков Е.Н. // ЖНХ. 1996. Т. 41.
 № 10. С. 1742; Turanov A.N., Karandashev V.K., Bondarenko N.A., Urinovich E.M., Tsevtkov E.N. // Russ. J. Inorg. Chem. 1996. Vol. 41. N 10. P. 1658.
- Horner L., Lindel H. // Phosphorus, Sulfur, Silicon, Relat. Elem. 1984. Vol. 20. N 2. P. 161. doi 10.1080/03086648408077624

Novel Bis[N-Alkyl-N-(2-diphenylphosphinylethyl)]diglycolamides: Syntheses and NMR Spectroscopy Studies

N. A. Bondarenko^{*a,b,**}, K. V. Tcarkova^{*a,b*}, S. K. Belys^{*b*}, O. I. Artyushin^{*c*}, and A. S. Peregudov^{*c*}

^a Institute of Chemical Reagents and High Purity Chemical Substances of National Research Centre "Kurchatov Institute", Moscow, 107076 Russia

^b National Research Centre "Kurchatov Institute", Moscow, 123182 Russia

^c A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 119991 Moscow, Russia *e-mail: bond039@mail.ru

Received November 2, 2020; revised November 2, 2020; accepted November 22, 2020

Pentadentate bis[*N*-alkyl-*N*-(2-diphenylphosphinylethyl)]diglycolamides [Ph₂P(O)CH₂CH₂N(R)C(O)CH₂]₂O, where R Me, Bu, Oct, were synthesized by reaction of diglycolyl chloride with *N*-alkyl-*N*-(2-diphenylphosphinylethyl)amines Ph₂P(O)CH₂CH₂NHR obtained by reacting diphenyl(2-phenoxyethyl)phosphine oxide with primary alkylamines in DMSO in the presence of an aqueous alkali. Structure of the prepared compounds was studied by ¹H, ¹³C and ³¹P NMR spectroscopy.

Keywords: diglycolamides, amidation, *O*-trimethylsilyldiphenylphosphinite, diphenyl(2-phenoxyethyl)phosphine oxide, *N*-alkyl-*N*-(2-diphenylphosphinylethyl)amines, pentadentate bis-[*N*-alkyl-*N*-(2-diphenylphosphinylethyl)]diglycol-amides, NMR spectroscopy