УДК 547.75;547.787.1;547.83

СИНТЕЗ НОВЫХ 1*Н*-ПИРРОЛО[3,4-*c*]ПИРИДИН-1,3(2*H*)-ДИОНОВ

© 2021 г. С. В. Ключко, С. А. Чумаченко, О. В. Шаблыкин, В. С. Броварец*

Институт биоорганической химии и нефтехимии имени В. П. Кухаря Национальной академии наук Украины, ул. Мурманская 1, Киев, 02094 Украина *e-mail: brovarets@bpci.kiev.ua

> Поступило в Редакцию 23 декабря 2020 г. После доработки 23 декабря 2020 г. Принято к печати 30 декабря 2020 г.

На основе взаимодействия 4-метокси-1,3-оксазолов с призводными малеимида в условиях реакции Дильса–Альдера предложен метод синтеза новых замещенных 1*H*-пирроло[3,4-*c*]пиридин-1,3(2*H*)-дионов.

Ключевые слова: 4-метокси-1,3-оксазол, пирроло[3,4-*c*]пиридин, малеимид, реакция Дильса–Альдера **DOI:** 10.31857/S0044460X21030021

Производные пиррола широко распространены в природе как индивидуальные соединения, так и в виде фрагмента сложных биомолекул (порфины, аминокислоты и др.) и разнообразных фармакологически активных соединений [1–3]. Они используются как антиоксиданты [4], антибактериальные [5, 6], ионотропные [7, 8], противоопухолевые [9], противовоспалительные [10, 11] и противогрибковые агенты [12].

Аннелирование пиридинового ядра к пиррольному циклу приводит к новому спектру биологической активности полученных соединений. Так, среди производных пирроло[2,3-d]пиридинов выявлены ингибиторы рецептора (IGF-1R) тирозинкиназы, связанной с различными видами рака [13]. Производные пирроло[3,4-с]пиридинов наряду с анальгетической активностью [14] показывают активность против микобактерий туберкулеза [15]. Разнообразная биологическая активность производных пирролопиридина вызывает интерес к синтезу и изучению свойств новых соединений этого класса с целью поиска эффективных лекарственных средств. Поэтому актуальной задачей является развитие методов синтеза конденсированных производных пирролопиридинов.

Оксазолы имеют сопряженную азадиеновую систему и являются универсальными структурами для исследований в качестве диеновой компоненты в реакциях Дильса-Альдера [16-20]. В результате термических реакций с ацетиленами образуются фураны [21], а при присоединении к олефинам – замещенные пиридины, включая аналоги витамина В₆ [22]. В этих реакциях хорошо изучены 5-алкоксиоксазолы [23, 24]. В частности, циклоприсоединение малеимидов к 5-алкоксиоксазолам приводит замещенным 7-гидрокси-1*H*-пирроло[3,4-*c*]-К пиридин-1,3(2H)-дионам [25–27]. Однако реакции 4-алкоксиоксазолов с малеимидами, приводящие к пирроло[3,4-с]пиридин-6-алкоксипроизводным 1,3(2Н)-дионам, не исследованы. В связи с этим, целью нашей работы являлось получение новых 4-замещенных 6-метокси-1*Н*-пирроло[3,4-*с*]пиридин-1,3(2Н)-дионов путем циклопри-соединения 4-метоксиоксазолов к производными малеимида.

4-Метоксиоксазолы **6а**–**в** были синтезированы по схеме 1. В качестве исходных соединений использовали продукты конденсации амидов **1а**–**в** с хлоралем, которые дают соединения **2**. В дальнейшем хлоральамиды **2** превращали в дихлоракриловые кислоты **5** через хлорпроизводные **3** и дихлоракрилонитрилы **4** (схема 1).

 $R = Ph(a), 3-MeOC_6H_4(6), циклопропил(в).$

Состав соединений 2–6 подтвержден данными элементного анализа, а строение – с помощью ИК и ЯМР ¹Н спектроскопии, а также хромато-масс-спектрометрии. Спектры ЯМР ¹Н синтезированных соединений содержат сигналы всех структурных фрагментов; в хромато-масс-спектрах присутствуют пики молекулярных ионов $[M + 1]^+$.

Циклизацию кислот **5а**–в в 4-метокси-1,3-оксазолы **6а**–в проводили при 240-часовом выдерживании их в метанольном растворе в присутствии избытка метилата натрия. 4-Метокси-1,3-оксазолы **6** неустойчивы при комнатной температуре. Их нужно использовать сразу после выделения или хранить при температуре -14° C. В ИК спектрах 4-метокси-1,3-оксазолов **6** отсутствуют полосы поглощения, характерные для связей N–H и C=O дихлоракриловых кислот **5**, что согласуется с участием ациламинных остатков в циклизации.

Кипячение эквимолярных количеств метоксиоксазола 6 и малеимида 7 в ксилоле в течение 1–4 ч давало с удовлетворительными и хорошими выходами продукты конденсации 8 (схема 2). Образование производных пирроло[3,4-*c*]пиридин-1,3(2*H*)-дионов 8а–в можно представить следующим образом: малеимиды 7а–ж, как диенофилы, циклоаннелируются к 2-замещенным 4-метоксиоксазолам 6а–в с образованием циклоаддуктов **А**, которые в результате разрыва связей

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 91 № 3 2021

 C^4 -O образуют цвиттер-ионы **Б** и **Б**¹ с последующей их ароматизацией за счет отщепления молекулы воды.

Существенное влияние на скорость реакции, как и следовало ожидать, оказывает природа заместителя R^1 в 4-метоксиоксазолах. С увеличением донорных свойств увеличивается и скорость реакции, что приводит к уменьшению времени конденсации. Реакция 4-метоксиоксазолов **6а**, **б** с замещенными малеимидами **7а**-ж проходит за 4 ч, а оксазола **6в** – за 1 ч. Влияния заместителя R^2 на скорость реакции не наблюдалось. Продукты конденсации **8а**-в отфильтровывали и очищали перекристаллизацией из этилацетата.

При сравнении ИК спектров соединений **6а–в** и **7а–ж** с продуктами конденсации **8а–с** наблюдается появление двух интенсивных полос поглощения в области 1709–1723 см⁻¹, что обусловлено валентными колебаниями карбонильных групп. В спектрах ЯМР ¹Н соединений **8а–с** происходит смещение сигнала CH₃O-группы (3.95–4.17 м. д.) в пиридиновом цикле в более слабое поле по сравнению с оксазолом (3.73–3.85 м. д.), а вместо синглета (2H, CH=CH) в области 6.67–6.87 м. д. малеимидов **7а–ж** появляется синглет C⁷H в области 7.11–7.23 м. д. в спектрах пирроло[3,4-*с*]пиридинов **8а–с**. В спектрах ЯМР ¹³С соединений **8ж**, м присутствуют сигналы всех структурных фрагментов, что согласуется с литературными данными [28].

R¹ = H (7**a**, 8**a**), Me (7**б**, 8**б**, 3, н), 4-MeOC₆H₄ (7**в**, 8**в**), 4-FC₆H₄ (7**г**, 8**г**, и, о), 4-EtO(O)CC₆H₄ (7**д**, 8**д**, к, п), 4-EtO C₆H₄ (7**e**, 8**e**, л, **p**), 3,4-Me₂C₆H₃ (7**ж**, 8**ж**, м, с); R² = Ph (8**a**-**ж**), 3-MeOC₆H₄ (8**3**-**м**), циклопропил (8**н**-**с**).

Таким образом, 2-замещенные 4-метоксиоксазолы впервые были введены в реакцию Дильса– Альдера с малеимидами, в результате которой были получены новые производные 6-метоксипирролопиридины. Этот подход позволяет расширить спектр соединений этого класса, которые представляют интерес как потенциально биологически активные вещества.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры зарегистрированы на спектрометре Vertex-70 в таблетках KBr. Спектры ЯМР ¹H и ¹³C получены на приборе Bruker AVANCE DRX-500 (500 и 125 МГц соответственно) в ДМСО- d_6 или CDCl₃. Хромато-масс-спектры записаны при использовании жидкостной хромато-масс-спектрометрической системы на высокоэффективном жидкостном хроматографе Agilent 1100 Series, оснащенным диодной матрицей с масс-селективным детектором Agilent LC\MSD SL. Параметры хромато-масс-анализа: колонка Zorbax SB-C₁₈ 1.8 мкм 4.6×15 мм (PN 821975-932); растворители: A – ацетонитрил–вода, 95:5, 0.1%-ная трифторуксусная кислота; Б – 0.1%-ная водная трифторуксусная кислота; поток элюента 3 мл/мин, объем впрыскивания – 1 мкл, УФ детекторы – 215, 254, 285 нм; метод ионизации – химическая ионизация при атмосферном давлении (APCI), диапазон сканирования – *m/z* 80–1000. Элементный анализ проведен в аналитической лаборатории Института биоорганической химии и нефтехимии им. В.П. Кухаря Национальной академии наук Украины. Содержание углерода и водорода определенно весовым методом Прегля, азота – газометрическим микрометодом Дюма, а хлора – титриметрическим методом Шенигера [29]. Температуры плавления измеряли на приборе Fisher-Johns. Контроль за протеканием реакции и чистотой полученных соединений осуществляли методом тонкослойной хроматографии на пластинах Silufol UV-254 в системе хлороформ-метанол (10:0.2).

N-(2,2,2-Трихлор-1-гидроксиэтил)арил(циклопропил)амиды (2а–в) получены по описанной ранее методике [30]. Смесь 20 ммоль соединения **1а–в**, 22 ммоль хлораля и 0.1 мл конц. серной кислоты нагревали при 100–110°С в течение 2 ч, затем обрабатывали водой. Осадок отфильтровывали и промывали большим количеством воды. Соединения **2а–в** очищали кристаллизацией из этанола. **N-(2,2,2-Трихлор-1-гидроксиэтил)бензамид** (2а). Выход 92%, т. пл. 118–120°С (т. пл. 133°С [31]). ИК спектр, v, см⁻¹: 685, 806, 834, 879, 1011, 1115, 1278, 1351, 1490, 1531, 1578, 1636, 2864, 3066, 3325. Спектр ЯМР ¹Н (ДМСО- d_6), δ , м. д.: 6.01–6.05 м (1H, CH), 7.45–7.57 м (3H, H_{Ar}), 7.77 д (1H, OH, ³ J_{HH} 6.0 Гц), 7.89 д (2H, H_{Ar}, ³ J_{HH} 7.2 Гц), 9.07 д (1H, NH, ³ J_{HH} 7.4 Гц). Масс-спектр, *m/z*: 268 [M + H]⁺. Найдено, %: С 40.48; Н 3.21; Cl 39.72; N 5.46. С₉H₈Cl₃NO₂. Вычислено, %: С 40.26; Н 3.00; Cl 39.61; N 5.22.

3-Метокси-N-(2,2,2-трихлор-1-гидроксиэтил)бензамид (26). Выход 90%, т. пл. 162–164°С. ИК спектр, v, см⁻¹: 695, 816, 854, 890, 1000, 1105, 1288, 1361, 1496, 1588, 1635, 2860, 3056, 3320. Спектр ЯМР ¹Н (ДМСО-*d*₆), δ, м. д.: 3.80 с (3H, OCH₃), 6.03–6.05 м (1H, CH), 7.41–7.50 м (2H, H_{Ar}), 7.75 д (1H, OH, ³*J*_{HH} 6.0 Гц), 7.90 д (2H, H_{Ar}, ³*J*_{HH} 6.7 Гц), 9.00 д (1H, NH, ³*J*_{HH} 7.2 Гц). Массспектр, *m/z*: 298 [*M* + H]⁺. Найдено, %: С 40.47; Н 3.41; Cl 35.72; N 4.80. C₁₀H₁₀Cl₃NO₃. Вычислено, %: С 40.23; Н 3.38; Cl 35.62; N 4.69.

N-(2,2,2-Трихлор-1-гидроксиэтил)циклопропанкарбоксамид (2в). Выход 86%, т. пл. 158–160°С. ИК спектр, v, см⁻¹: 680, 811, 863, 1000, 1111, 1270, 1348, 1485, 1516, 1570, 1630, 2860, 3061, 3320. Спектр ЯМР ¹Н (ДМСО-*d*₆), δ, м. д.: 0.75–0.87 м (4H, CH_{2 циклопропил}), 1.80–1.86 м (1H, CH_{циклопропил}), 5.70–5.73 м (1H, CH), 7.58 д (1H, OH, ³*J*_{HH} 6.0 Гц), 8.81 д (1H, NH, ³*J*_{HH} 7.2 Гц). Массспектр, *m/z*: 232 [*M* + H]⁺. Найдено, %: С 31.30; Н 3.62; Cl 46.00; N 6.34. C₆H₈Cl₃NO₂. Вычислено, %: C 31.00; H 3.47; Cl 45.75; N 6.02.

N-(1,2,2,2-Тетрахлорэтил)арил(циклопропил)амиды (3а–в) получены по описанной ранее методике [32]. Смесь 50 ммоль соединения **2а–в** и 5.5 мл (75 ммоль) хлористого тионила в 50 мл бензола кипятили в течение 4 ч до прекращения выделения хлористого водорода. Избыток хлористого тионила удаляли в вакууме, остаток очищали перекристаллизацией из CCl₄.

N-(1,2,2,2-Тетрахлорэтил)бензамид (3а). Выход 88%, т. пл. 122–124°С (т. пл. 121–122°С [33]). ИК спектр, ν, см⁻¹: 601, 672, 687, 742, 794, 1186, 1264, 1320, 1486, 1519, 1655, 3277. Спектр ЯМР ¹Н (CDCl₃), δ, м. д.: 6.01 д (1H, CH, ³J_{HH} 8.6 Гц), 7.44–7.48 м (2H, H_{Ar}), 7.53–7.57 м (1H, H_{Ar}), 7.89 д (2H, H_{Ar}, ³*J*_{HH} 6.0 Гц), 9.06 д (1H, NH, ³*J*_{HH} 8.6 Гц). Масс-спектр, *m/z*: 286 [*M* + H]⁺. Найдено, %: С 38.05; Н 2.93; Cl 49.85; N 5.06. C₉H₇Cl₄NO. Вычислено, %: С 37.67; Н 2.46; Cl 49.42; N 4.88.

3-Метокси-N-(1,2,2,2-тетрахлорэтил)бензамид (36). Выход 78%, т. пл. 109–111°С. ИК спектр, v, см⁻¹: 630, 675, 697, 748, 798, 1180, 1254, 1328, 1442, 1569, 1655, 3270. Спектр ЯМР ¹Н (CDCl₃), δ , м. д.: 3.82 с (3H, OCH₃), 6.01 д (1H, CH, ³J_{HH} 8.8 Гц), 7.40–7.43 м (2H, H_{Ar}), 7.50–7.52 м (2H, H_{Ar}), 9.00 д (1H, NH, ³J_{HH} 8.8 Гц). Масс-спектр, *m*/*z*: 316 [*M* + H]⁺. Найдено, %: С 38.05; H 2.93; Cl 44.85; N 4.50. C₁₀H₉Cl₄NO₂. Вычислено, %: С 37.89; H 2.86; Cl 44.74; N 4.42.

N-(1,2,2,2-Тетрахлорэтил)циклопропанкарбоксамид (3в). Выход 64%, т. пл. 96–97°С. ИК спектр, v, см⁻¹: 693, 738, 782, 1056, 1190, 1280, 1390. Спектр ЯМР ¹Н (CDCl₃), δ, м. д: 0.71–0.84 м (4H, CH_{2циклопропил}), 1.80–1.85 м (1H, CH_{циклопропил}), 6.00 д (1H, CH, ³J_{HH} 8.7 Гц), 10.22 уш. с (1H, NH). Масс-спектр, *m/z*: 250 [*M* + H]⁺. Найдено, %: С 28.30; Н 3.05; Cl 56.75; N 5.63. C₆H₇Cl₄NO. Вычислено, %: C 28.72; H 2.81; Cl 56.51; N 5.58.

N-(2,2-Дихлор-1-цианоэтенил)арил(циклопропил)амиды (4а–в) получены по описанной ранее методике [34]. К раствору 40 ммоль цианида калия в 12 мл воды при перемешивании и охлаждении до –8°С прибавляли раствор 20 ммоль соединения **3** в 6 мл диоксана. Смесь нагревали до 20–25°С и перемешивали при этой температуре еще 2 ч. Осадок отфильтровывали, промывали водой и очищали кристализацией из бензола.

N-(2,2-Дихлор-1-цианоэтенил)бензамид (4а). Выход 88%, т. пл. 141–143°С (т. пл. 134–137°С [35]). ИК спектр, v, см⁻¹: 648, 688, 887, 923, 1291, 1475, 1495, 1600, 1663, 3247. Спектр ЯМР ¹Н (CDCl₃), δ, м. д.: 7.47–7.55 м (2H, H_{Ar}), 7.63 т (1H, H_{Ar}, ³J_{HH} 7.2 Гц), 7.82 с (1H, NH), 7.86 д (2H, H_{Ar}, ³J_{HH} 7.2 Гц). Масс-спектр, *m/z*: 241 [*M* + H]⁺. Найдено, %:С 50.12; H 2.81; Cl 29.65; N 11.65. C₁₀H₆Cl₂N₂O. Вычислено, %: С 49.82; H 2.51; Cl 29.41; N 11.62.

N-(2,2-Дихлор-1-цианоэтенил)-3-метоксибензамид (46). Выход 83%, т. пл. 125–127°С. ИК спектр, v, см⁻¹: 687, 754, 896, 974, 1049, 1230, 1279, 1303, 1432, 1474, 1504, 1584, 1653, 3073, 3168. Спектр ЯМР ¹Н (ДМСО-*d*₆), δ, м. д.: 3.82 с (3H, ОСН₃), 7.2 д (1H, Н_{Аг}, ³*J*_{HH} 9.5 Гц), 7.44–7.51 м (3H, H_{Ar}), 10.64 с (1H, NH). Масс-спектр, *m/z*: 271 [*M*+ H]⁺. Найдено, %: С 48.87; Н 3.15; Сl 26.43; N 10.62. С₁₁Н₈Cl₂N₂O₂. Вычислено, %: С 48.73; Н 2.97; Cl 26.15; N 10.33.

N-(2,2-Дихлор-1-цианоэтенил)циклопропанкарбоксамид (4в). Выход 80%, т. пл. 161-163°С. ИК спектр, v, см⁻¹: 950, 1188, 1289, 1446, 1659, 3229. Спектр ЯМР ¹Н (CDCl₃), б, м. д.: 0.70–0.72 м (1H, CH_{2шиклопропил}), 0.81–0.85 м (3H, CH_{2шиклопропил}), 1.81–1.88 м (1Н, СН_{шиклопропил}), 3.57 уш. с (1Н, NH). Масс-спектр, *m/z*: 205 [*M* + H]⁺. Найдено, %: C 41.24; H 3.15; Cl 35.20; N 13.80. C₇H₆Cl₂N₂O. Вычислено, %: С 41.00; Н 2.95; СІ 34.58; N 13.66.

3,3-Дихлор-2-[алканоил(ароил)амино]акриловые кислоты (5а-в) получены по описанной ранее методике [36]. Соединение 4 (74 ммоль) суспендировали в 160 мл конц. хлористоводородной кислоты, реакционнную смесь кипятили 15 мин и охлаждали. Осадок отфильтровывали, промывали водой и прибавляли небольшими порциями к 320 мл конц. водного раствора NaHCO₃. Нерастворившийся осадок отфильтровывали, фильтрат подкисляли конц. хлористоводородной кислотой до pH 2. Осадок отфильтровывали, промывали водой и очищали кристаллизацией из водного ацетона.

3,3-Дихлор-2-(бензоиламино)акриловая кислота (5а). Выход 74%, т. пл. 219-221°С (т. пл. 190-193°С, разл. [36]). ИК спектр, v, см⁻¹: 658, 679, 692, 797, 881, 1076, 1125, 1163, 1280, 1310, 1425, 1479, 1581, 1599, 3236. Спектр ЯМР ¹Н (ДМСО-*d*₆), δ, м. д.: 3.15-3.72 уш. с (1Н, ОН), 7.49-7.53 м (2Н, H_{Ar}), 7.59–7.62 м (1H, H_{Ar}), 7.93 д (2H, H_{Ar}, ³J_{HH} 7.5 Гц), 10.27 с (1Н, NН). Масс-спектр, m/z: 260 [*M* + H]⁺. Найдено, %: С 46.42; Н 2.74; Cl 27.15; N 5.49. С₁₀H₇Cl₂NO₃. Вычислено, %: С 46.18; Н 2.71; Cl 27.26; N 5.39.

3,3-Дихлор-2-(3-метоксибензоиламино)акриловая кислота (56). Выход 49%, т. пл. 207-209°С. ИК спектр, v, см⁻¹: 668, 686, 700, 873, 993, 1184, 1208, 1240, 1276, 1297, 1313, 1414, 1478, 1504, 1596, 1650, 1712, 3245. Спектр ЯМР ¹Н (ДМСО-*d*₆), δ, м. д.: 2.97 уш. с (1Н ОН), 3.81 с (3Н, ОСН₃), 7.18 д (1Н, Н_{Аг}, ³*J*_{НН} 7.0 Гц), 7.41–7.52 м (3Н, Н_{Аг}), 10.23 c (1H, NH). Macc-спектр, m/z: 290 $[M + H]^+$. Найдено, %: С 45.78; Н 3.33; Cl 24.65; N 5.05. С₁₁Н₀Сl₂NO₄. Вычислено, %: С 45.54; Н 3.13; Сl 24.44; N 4.83.

3.3-Дихлор-2-[(циклопропилкарбонил)аминојакриловая кислота (5в). Выход 34%, т. пл. 209–211°С. ИК спектр, v, см⁻¹: 627, 663, 705, 884, 941, 1196, 1228, 1302, 1400, 1419, 1508, 1590, 1657, 1708, 3243. Спектр ЯМР ¹Н (ДМСО-*d*₆), б, м. д.: 0.73-0.80 м (4H, CH_{2шиклопропил}), 1.82-1.88 м (1H, СН_{циклопропил}), 3.06-3.08 уш. с (1Н, ОН), 10.09 с (1H, NH). Масс-спектр, *m/z*: 224 [*M*+H]⁺. Найдено, %: C 37.75; H 3.87; Cl 31.61; N 6.50. C₇H₇Cl₂NO₃. Вычислено, %: С 37.53; Н 3.15; Cl 31.65; N 6.25.

2-Арил(циклопропил)-4-метокси-1,3-оксазолы (6а-в) получены по описанной ранее методике [37]. Смесь 28 ммоль дихлоракриловой кислоты 5, 42 мл (84 ммоль) 2 н. раствора метилата натрия и 80 мл метанола перемешивали при 20-25°С в течение 240 ч. Избыток растворителя удаляли в вакууме, остаток обрабатывали 150 мл воды и экстрагировали хлористым метиленом (3 × 30мл). Экстракт промывали водой (4×5 мл) и сушили Na₂SO₄, pacтворитель удаляли в вакууме.

4-Метокси-2-фенил-1,3-оксазол (6а). Выход 67%, т. пл. 65-67°С (гексан) (т. пл. 65-67°С [37]). ИК спектр, v, см⁻¹: 660, 689, 721, 776, 838, 933, 983, 1047, 1066, 1105, 1173, 1254, 1304, 1352, 1450, 1498, 1599, 2839, 2937, 3117. Спектр ЯМР ¹H (CDCl₃), δ, м. д.: 3.82 с (3H, OCH₃), 7.15 с (1H, C⁵H), 7.41–7.42 м (3H, H_{Ar}), 7.97–7.99 м (2H, H_{Ar}). Масс-спектр, *m/z*: 176 [*M* + H]⁺. Найдено, %: С 68.75; Н 5.50; N 8.04. C₁₀H₀NO₂. Вычислено, %: С 68.56; Н 5.18; N 8.00.

4-Метокси-2-(3-метоксифенил)-1,3-оксазол **(66)**. Выход 67%, желтое масло. ИК спектр, v, см⁻¹: 682, 738, 755, 1036, 1219, 1254, 1338, 1457, 1490, 1594. Спектр ЯМР ¹Н (CDCl₃), б, м. д.: 3.85 с (6Н, 2OCH₃), 6.98 д (1H, H_{Ar}, ³J_{HH} 8.0 Гц), 7.17 с (1H, C⁵H), 7.32 т (1H, H_{Ar}, ³J_{HH} 8.0 Гц), 7.59 с (1H, H_{Ar}), 7.60 д (1H, H_{Ar}, ${}^{3}J_{HH}$ 8.0 Гц). Масс-спектр, m/z: 206 [*M* + H]⁺. Найдено, %: С 64.58; Н 5.70; N 7.03. С₁₁Н₁₁NO₃. Вычислено, %: С 64.38; Н 5.40; N 6.83.

4-Метокси-2-циклопропил-1,3-оксазол (6в). Выход 37%, желтое масло. ИК спектр, v, см⁻¹: 956, 1027, 1055, 1096, 1155, 1273, 1608, 1651. Спектр ЯМР ¹Н (CDCl₃), δ, м. д: 0.96–1.02 м (4Н, CH_{2циклопропил}), 1.92–1.95 м (1H, CH_{шиклопропил}), 3.72 с (3H, OCH₃), 6.91 c (1H, C⁵H). Macc-спектр, m/z: 140 $[M + H]^+$. Найдено, %: С 60.67; Н 6.81; N 10.29. С₇Н₀NO₂. Вычислено, %: С 60.42; Н 6.52; N 10.07.

Замещенные 1*Н*-пиррол-2,5-дионы (7а-ж) получены по методике [38].

1*Н*-Пиррол-2,5-дион (7а). Выход 91%, т. пл. 96–98°С (т. пл. 92–94°С [39]). ИК спектр, v, см⁻¹: 417, 625, 645, 679, 720, 725, 841, 936, 1138, 1153, 1300, 1340, 1621, 1708, 1772, 1802. Спектр ЯМР ¹Н (ДМСО-*d*₆), δ, м. д.: 6.83 с (2H, CH), 10.82 уш. с (1H, NH). Масс-спектр, *m/z*: 98 [*M* + H]⁺. Найдено, %: С 49.55; Н 3.20; N 14.30. С₄H₃NO₂. Вычислено, %: С 49.49; Н 3.12; N 14.43.

1-Метил-1*Н***-пиррол-2,5-дион (76)**. Выход 94%, т. пл. 111–113°С (т. пл. 96°С [40]). ИК спектр, v, см⁻¹: 612, 631, 668, 696, 831, 940, 1180, 1253, 1387, 1400, 1439, 1457, 1587, 1600, 1673, 1702, 1721, 1752, 1766, 3095, 3102. Спектр ЯМР ¹Н (ДМСО-*d*₆), δ, м. д.: 2.96 с (3H, CH₃), 6.67 с (2H, CH). Масс-спектр, *m/z*: 112 [*M* + H]⁺. Найдено, %: С 54.30; H 4.70; N 12.90. С₅Н₅NO₂. Вычислено, %: С 54.06; H 4.54; N 12.61.

1-(4-Метоксифенил)-1*Н***-пиррол-2,5-дион (7в)**. Выход 94%, т. пл. 149–151°С (т. пл. 153–154°С [41]). ИК спектр, v, см⁻¹: 445, 550, 600, 690, 711, 800, 812, 830, 1072, 1145, 1213, 1225, 1252, 1371, 1402, 1510, 1673, 1710, 1722, 1748. Спектр ЯМР ¹Н (CDCl₃), δ , м. д.: 3.83 с (3H, OCH₃), 6.83 с (2H, CH), 6.98 д (2H, H_{AP} ³J_{HH} 8.8 Гц), 7.22 д (2H, H_{AP} ³J_{HH} 8.8 Гц). Масс-спектр, *m*/*z*: 204 [*M* + H]⁺. Найдено, %: С 65.20; H 4.66; N 7.10. С₁₁H₉NO₃. Вычислено, %: С 65.02; H 4.46; N 6.89.

1-(4-Фторфенил)-1*Н***-пиррол-2,5-дион (7г)**. Выход 90%, т. пл. 136–138°С (т. пл. 136–138°С [42]). ИК спектр, v, см⁻¹: 450, 515, 599, 685, 713, 769, 819, 837, 1073, 1150, 1204, 1231, 1262, 1374, 1392, 1409, 1515, 1680, 1713, 1721, 1750. Спектр ЯМР ¹H (CDCl₃), δ, м. д.: 6.84 с (2H, CH), 7.14–7.16 м (2H, H_{Ar}), 7.30–7.32 м (2H, H_{Ar}). Масс-спектр, *m/z*: 192 [*M* + H]⁺. Найдено, %: С 63.05; Н 3.50; N 7.53. С₁₀Н₆FNO₂. Вычислено, %: С 62.83; Н 3.16; N 7.33.

Этил-4-(2,5-диоксо-2,5-дигидро-1*Н*-пиррол-1-ил)бензоат (7д). Выход 83%, т. пл. 113–115°С (т. пл. 114–116°С [43]). ИК спектр, v, см⁻¹: 688, 703, 766, 828, 834, 857, 1108, 1144, 1175, 1256, 1284, 1308, 1385, 1397, 1414, 1512, 1605, 1709, 1716. Спектр ЯМР ¹Н (CDCl₃), δ, м. д.: 1.38–1.40 м (3H, CH₂<u>CH₃</u>), 4.36–4.39 м (2H, <u>CH₂</u>CH₃), 6.87 с (2H, CH), 7.48 д (2H, H_{AP}, ³J_{HH} 8.6 Гц), 8.14 д (2H,

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 91 № 3 2021

Н_{Аг}, ³*J*_{НН} 8.6 Гц). Масс-спектр, *m/z*: 246 [*M* + H]⁺. Найдено, %: С 63.95; Н 4.75; N 5.94. С₁₃Н₁₁NO₄. Вычислено, %: С 63.67; Н 4.52; N 5.71.

1-(4-Этоксифенил)-1*H*-пиррол-2,5-дион (7е). Выход 85%, т. пл. 116–118°С (т. пл. 133–134°С [44]). ИК спектр, v, см⁻¹: 519, 687, 719, 831, 1035, 1047, 1115, 1153, 1172,1256, 1301, 1401, 1415, 1476, 1518, 1660, 1704, 1750. Спектр ЯМР ¹Н (CDCl₃), δ , м. д : 1.41–1.43 м (3H, CH₃), 4.04–4.06 м (2H, CH₂CH₃), 6.82 с (2H, CH), 6.97 д (2H, H_{Ar}, ³J_{HH} 8.8 Гц), 7.22 д (2H, H_{Ar}, ³J_{HH} 8.8 Гц). Масс-спектр, *m/z*: 218 [*M* + H]⁺. Найдено, %: С 66.58; H 5.35; N 6.67. С₁₃H₁₁NO₄. Вычислено, %: С 66.35; H 5.10; N 6.45.

1-(3,4-Диметилфенил)-1*Н***-пиррол-2,5-дион (7ж)**. Выход 90%, т. пл. 130–132°С (т. пл. 152– 154°С [45]). ИК спектр, v, см⁻¹: 442, 596, 610, 676, 690, 711, 818, 830, 844, 883, 1080, 1146, 1375, 1390, 1414, 1449, 1710. Спектр ЯМР ¹Н (CDCl₃), δ, м. д.: 2.29 с (6H, 2CH₃), 6.82 с (2H, CH), 7.06–7.14 м (2H, H_{Ar}), 7.23 д (1H, H_{Ar}, ³*J*_{HH} 8.1 Гц). Масс-спектр, *m/z*: 202 [*M* + H]⁺. Найдено, %: С 71.88; Н 5.66; N 6.71. С₁₂H₁₁NO₂. Вычислено, %: С 71.63; Н 5.51; N 6.96.

4-Арил(циклопропил)-6-метокси-1*H***-пирро**ло[**3**,**4**-*c*]**пиридин-1**,**3**(2*H*)-дионы (8а–с). Смесь 1.4 ммоль соединения **6** и 1.4 ммоль соединения 7 в 3.5 мл ксилола кипятили в течение 4 ч для соединений **6а**, **б** и 1 ч для соединения **6в**. Осадок отфильтровывали, промывали 1 мл бензола, сушили на воздухе и очищали перекристаллизацией из этилацетата.

6-Метокси-4-фенил-1*Н***-пирроло[3,4-***с***]пиридин-1,3(2***H***)-дион (8а). Выход 60%, т. пл. 225– 227°С. ИК спектр, v, см⁻¹: 632, 685, 747, 1109, 1212, 1408, 1448, 1469, 1573, 1625, 1733, 2738, 3075, 3191. Спектр ЯМР ¹Н (ДМСО-***d***₆), δ, м. д: 4.02 с (3H, OCH₃), 7.11 с (1H, C⁷H), 7.49–7.50 м (3H, H_{Ar}), 7.99–8.00 д (2H, H_{Ar}, ³***J***_{HH} 5.6 Гц), 11.53 уш. с (1H, NH). Масс-спектр,** *m/z***: 255 [***M* **+ H]⁺. Найдено, %: С 65.95; H 4.12; N 10.84. С₁₄H₁₀N₂O₃. Вычислено, %: С 66.14; H 3.96; N 11.02.**

2-Метил-6-метокси-4-фенил-1*Н***-пирроло[3,4-с]пиридин-1,3(2***H***)-дион (86). Выход 79%, т. пл. 153–154°С. ИК спектр, v, см⁻¹: 746, 1252, 1405, 1449, 1626, 1727. Спектр ЯМР ¹Н (CDCl₃), δ, м. д.: 3.18 с (3H, CH₃), 4.13 с (3H, OCH₃), 7.11 с** (1H, C⁷H), 7.49–7.52 м (3H, H_{Ar}), 8.08 м (2H, H_{Ar}). Масс-спектр, *m/z*: 269 [*M* + H]⁺. Найдено, %: С 66.96; H 4.31; N 10.23. C₁₅H₁₂N₂O₃. Вычислено, %: С 67.16; H 4.51; N 10.44.

6-Метокси-2-(4-метоксифенил)-4-фенил-1*Н***-пирроло[3,4-с]пиридин-1,3(2***Н***)-дион (8в). Выход 80%, т. пл. 192–194°С. ИК спектр, v, см⁻¹: 680, 747, 821, 1032, 1095, 1169, 1212, 1254, 1382, 1471, 1515, 1626, 1723. Спектр ЯМР ¹Н (CDCl₃), δ, м. д.: 3.85 с (3H, OCH₃), 4.17 с (3H, OCH₃), 7.01 д (2H, H_{Ar}, ³***J***_{HH} 8.8 Гц), 7.22 с (1H, С⁷Н), 7.34 д (2H, H_{Ar}, ³***J***_{HH} 8.8 Гц), 7.51–7.53 м (3H, H_{Ar}), 8.12–8.14 м (2H, H_{Ar}). Масс-спектр,** *m/z***: 361 [***M* **+ H]⁺. Найдено, %: С 70.22; H 4.41; N 7.90. С₂₁Н₁₆N₂O₄. Вычислено, %: С 69.99; H 4.48; N 7.77.**

6-Метокси-4-фенил-2-(4-фторфенил)-1*Н*-пирроло[**3,4-***с*]пиридин-1,**3**(*2H*)-дион (**8***г*). Выход 45%, т. пл. 217–218°С. ИК спектр, v, см⁻¹: 749, 1091, 1110, 1213, 1234, 1366, 1388, 1409, 1450, 1471, 1515, 1625, 1721. Спектр ЯМР ¹Н (CDCl₃), δ, м. д.: 4.17 с (3H, OCH₃), 7.17–7.23 м (3H, C⁷H+H_Ar), 7.40–7.43 м (2H, H_Ar), 7.51–7.52 м (3H, H_Ar), 8.09– 8.10 м (2H, H_Ar). Масс-спектр, *m*/*z*: 349 [*M* + H]⁺. Найдено, %: С 68.76; Н 3.54; N 7.83. C₂₀H₁₃FN₂O₃. Вычислено, %: С 68.96; Н 3.76; N 8.04.

4-(6-Метокси-1,3-диоксо-4-фенил-1,3-дигидро-2*H***-пирроло[3,4-***c***]пиридин-2-ил)этилбензоат (8д). Выход 49%, т. пл. 130–132°С. ИК спектр, v, см⁻¹: 835, 1111, 1277, 1382, 1471, 1627, 1722. Спектр ЯМР ¹Н (CDCl₃), \delta, м. д.: 1.38 т (3H, CH₂CH₃, ³J_{HH} 7.4 Гц), 4.14 с (3H, OCH₃), 4.37 к (2H, <u>CH</u>₂CH₃, ³J_{HH} 7.0 Гц), 7.20 с (1H, C⁷H), 7.49–7.51 м (3H, H_{Ar}), 7.53 д (2H, H_{Ar}, ³J_{HH} 8.8 Гц), 8.04–8.07 м (2H, H_{Ar}), 8.15 д (2H, H_{Ar}, ³J_{HH} 8.8 Гц). Массспектр,** *m/z***: 403 [***M* **+ H]⁺. Найдено, %: С 68.90; H 4.65; N 7.18. C₂₃H₁₈N₂O₅. Вычислено, %: С 68.65; H 4.51; N 6.96.**

6-Метокси-4-фенил-2-(4-этоксифенил)-1*Н***-пирроло[3,4-с]пиридин-1,3(2***Н***)-дион (8е). Выход 53%, т. пл. 191–193°С. ИК спектр, v, см⁻¹: 1255, 1396, 1473, 1515, 1630, 1718. Спектр ЯМР ¹Н (CDCl₃), \delta, м. д.: 1.45 т (3H, CH₂<u>CH</u>₃, ³***J***_{HH} 7.0 Гц), 4.10 к (2H, <u>CH</u>₂CH₃, ³***J***_{HH} 7.0 Гц), 4.15 с (3H, OCH₃), 7.01 д (2H, H_{Ar}, ³***J***_{HH} 8.8 Гц), 7.22 с (1H, C⁷H), 7.31 д (2H, H_{Ar}, ³***J***_{HH} 8.8 Гц), 7.51–7.54 м (3H, H_{Ar}), 8.10– 8.13 м (2H, H_{Ar}). Масс-спектр,** *m/z***: 375 [***M* **+ H]⁺. Найдено, %: С 70.43; Н 5.04; N 7.78. C₂₂H₁₈N₂O₄. Вычислено, %: С 70.58; Н 4.85; N 7.48.** **2-(3,4-Диметилфенил)-6-метокси-4-фенил-1***Н***-пирроло[3,4-***с***]-пиридин-1,3(2***H***)-дион (8ж). Выход 95%, т. пл. 211–212°С. ИК спектр, v, см⁻¹: 748, 1384, 1473, 1629, 1720. Спектр ЯМР ¹H, (CDCl₃), δ, м. д.: 2.31 с (6H, 2CH₃), 4.17 с (3H, OCH₃), 7.13–7.28 м (4H, H_{Ar} + C⁷H), 7.51–7.53 м (3H, H_{Ar}), 8.13–8.15 м (2H, H_{Ar}). Спектр ЯМР ¹³С (CDCl₃), δ_с, м. д.: 19.5, 19.9, 54.9, 104.6, 114.7, 124.2, 127.7, 127.8, 128.0, 128.1, 129.0, 130.2, 130.3, 130.6, 135.7, 137.2, 137.6, 144.5, 156.3, 165.2, 166.1, 166.7. Масс-спектр,** *m/z***: 359 [***M* **+ H]⁺. Найдено, %: С 73.59; H 4.82; N 7.85. С₂₂H₁₈N₂O₃. Вычислено, %: С 73.73; H 5.06; N 7.82.**

2-Метил-6-метокси-4-(3-метоксифенил)-1*Н***-пирроло[3,4-с]пиридин-1,3(2***H***)-дион (83). Выход 54%, т. пл. 155–157°С. ИК спектр, v, см⁻¹: 754, 986, 1248, 1375, 1405, 1435, 1473, 1625, 1721. Спектр ЯМР ¹H (CDCl₃), \delta, м. д.: 3.18 с (3H, CH₃), 3.91 с (3H, OCH₃), 4.12 с (3H, OCH₃), 7.06 д (1H, H_{Ar}, ³J_{HH} 8.3 Гц), 7.12 с (1H, С⁷H), 7.42 т (1H, H_{Ar}, ³J_{HH} 8.8 Гц), 7.71 д (2H, H_{Ar}, ³J_{HH} 7.7 Гц). Массспектр,** *m/z***: 299 [***M* **+ H]⁺. Найдено, %: С 64.48; H 4.63; N 9.44. С₁₆H₁₄N₂O₄. Вычислено, %: С 64.42; H 4.73; N 9.39.**

6-Метокси-4-(3-метоксифенил)-2-(4-фторфенил)-1*Н***-пирроло[3,4-***с***]пиридин-1,3(2***H***)-дион (8и). Выход 43%, т. пл. 249–250°С. ИК спектр, v, см⁻¹: 754, 814, 1092, 1110, 1135, 1182, 1204, 1228, 1357, 1470, 1514, 1576, 1598, 1626, 1721. Спектр ЯМР ¹Н (ДМСО-***d***₆), δ, м. д.: 3.88 с (3H, OCH₃), 4.15 с (3H, OCH₃), 7.10 д (1H, H_{Ar}, ³***J***_{HH} 5.6 Гц), 7.27 с (1H, C⁷H), 7.33–7.34 м (2H, H_{Ar}), 7.42–7.43 м (1H, H_{Ar}), 7.48–7.49 м (2H, H_{Ar}), 7.67–7.69 м (2H, H_{Ar}). Масс-спектр,** *m/z***: 379 [***M* **+ H]. Найдено, %: С 66.40; Н 3.75; N 7.28. C₂₁H₁₅FN₂O₄. Вычислено, %: С 66.66; H 4.00; N 7.40.**

4-(6-Метокси-4-(3-метоксифенил)-1,3-диоксо-1,3-дигидро-2*H***-пирроло[3,4-***c***]пиридин-2-ил)этилбензоат (8к)**. Выход 80%, т. пл. 172– 173°С. ИК спектр, v, см⁻¹: 1105, 1250, 1277, 1380, 1413, 1472, 1512, 1628, 1721. Спектр ЯМР ¹Н (CDCl₃), δ , м. д.: 1.42 т (3H, CH₂<u>CH₃</u>, ³*J*_{HH} 7.0 Гц), 3.89 с (3H, OCH₃), 4.17 с (3H, OCH₃), 4.42 к (2H, <u>CH₂</u>CH₃, ³*J*_{HH} 7.0 Гц), 7.08 д (1H, H_{Ar}, ³*J*_{HH} 7.9 Гц), 7.23 с (1H, C⁷H), 7.43 т (1H, H_{Ar}, ³*J*_{HH} 7.3 Гц), 7.57 д (2H, H_{Ar}, ³*J*_{HH} 8.3 Гц), 7.67–7.71 м (2H, H_{Ar}), 8.17 д (2H, H_{Ar}, ³*J*_{HH} 8.3 Гц). Масс-спектр, *m/z*: 433 [*M* + H]⁺. Найдено, %: С 66.79; H 4.82; N 6.42. С₂₄H₂₀N₂O₆. Вычислено, %: С 66.66; H 4.66; N 6.48.

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 91 № 3 2021

6-Метокси-4-(3-метоксифенил)-2-(4-этоксифенил)-1*Н***-пирроло[3,4-***c***]-пиридин-1,3(2***H***)-дион (8л). Выход 32%, т. пл. 178–180°С. ИК спектр, v, см⁻¹: 1027, 1104, 1253, 1360, 1374, 1392, 1465, 1519, 1619, 1710, 1724. Спектр ЯМР ¹Н (CDCl₃), \delta, м. д.: 1.44 т (3H, CH₂CH₃, ³J_{HH} 7.1 Гц), 3.89 с (3H, OCH₃), 4.08 к (2H, CH₂CH₃, ³J_{HH} 7.1 Гц), 3.89 с (3H, OCH₃), 7.00 д (2H, H_{Ar}, ³J_{HH} 7.1 Гц), 4.16 с (3H, OCH₃), 7.00 д (2H, H_{Ar}, ³J_{HH} 8.8 Гц), 7.07 д (1H, H_{Ar}, ³J_{HH} 8.1 Гц), 7.22 с (1H, C⁷H), 7.30 д (2H, H_{Ar}, ³J_{HH} 8.8 Гц), 7.42 т (1H, H_{Ar}, ³J_{HH} 8.1 Гц), 7.70– 7.75 м (2H, H_{Ar}). Масс-спектр,** *m***/***z***: 405 [***M* **+ H]⁺. Найдено, %: C 68.44; H 5.14; N 6.82. C₂₃H₂₀N₂O₅. Вычислено, %: C 68.31; H 4.98; N 6.93.**

2-(3,4-Диметилфенил)-6-метокси-4-(3-метоксифенил)-1Н-пирроло-[3,4-с]пиридин-1,3(2H)-дион (8м). Выход 50%, т. пл. 186-187°С. ИК спектр, v, см⁻¹: 1204, 1386, 1404, 1470, 1627, 1718, 1721. Спектр ЯМР ¹Н (CDCl₃), б, м. д.: 2.32 c (6H, CH₃), 3.89 c (3H, OCH₃), 4.16 c (3H, ОСН₃), 7.08 д (1Н, Н_{Аг}, ³J_{НН} 7.7 Гц), 7.15 д (1Н, H_{Ar} ³*J*_{HH} 7.7 Γμ), 7.18 c (1H, H_{Ar}), 7.22 c (1H, C⁷H), 7.27 д (1Н, H_{Ar}, ${}^{3}J_{\rm HH}$ 7.3 Гц), 7.42 т (1Н, H_{Ar}, ${}^{3}J_{\rm HH}$ 7.7 Гц), 7.73 д (2Н, Н_{Аг}, ³*J*_{НН} 7.7 Гц). Спектр ЯМР ¹³C (CDCl₃), δ_C, м. д.: 19.5, 19.8, 54.9, 55.5, 104.7, 114.7, 115.5, 116.5, 116.6, 122.6, 124.2, 127.8, 129.0, 130.2, 137.1, 137.3, 137.6, 144.6, 156.1, 159.3, 165.2, 166.1, 166.7. Масс-спектр, *m/z*: 389 [*M* + H]⁺. Найдено, %: С 70.97; Н 5.00; N 7.29. С₂₃Н₂₀N₂O₄. Вычислено, %: С 71.12; Н 5.19; N 7.21.

2-Метил-6-метокси-4-циклопропил-1*Н*-пирроло[3,4-с]пиридин-1,3(2*H*)-дион (8н). Выход 52%, т. пл. 158–160°С. ИК спектр, v, см⁻¹: 754, 942, 986, 1172, 1273, 1325, 1384, 1437, 1450, 1474, 1591, 1619, 1711. Спектр ЯМР ¹H (CDCl₃), δ , м. д.: 1.12–1.16 м (2H, CH_{2циклопропил}), 1.24–1.27 м (2H, CH_{2циклопропил}), 3.07–3.12 м (1H, CH_{циклопропил}), 3.17 с (3H, CH₃), 3.95 с (3H, OCH₃), 6.85 с (1H, C⁷H). Масс-спектр, *m/z*: 233 [*M* + H]⁺. Найдено, %: С 62.09; H 5.03; N 12.16. С₁₂H₁₂N₂O₃. Вычислено, %: С 62.06; H 5.21; N 12.06.

6-Метокси-4-циклопропил-2-(4-фторфенил)-1*Н***-пирроло[3,4-***с***]пиридин-1,3(2***H***)-дион (80). Выход 45%, т. пл. 173–176°С. ИК спектр, v, см⁻¹: 522, 574, 759, 812, 836, 887, 910, 1129, 1386, 1472, 1513, 1603, 1630, 1712, 1770. Спектр ЯМР ¹Н (CDCl₃), δ, м. д.: 1.16–1.21 м (2H, CH_{2циклопропил}), 1.29–1.33 м (2H, CH_{2циклопропил}), 3.12–3.16 м (1H, CH_{циклопропил}), 3.99 с (3H, OCH₃), 6.95 с (1H, C⁷H),**

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 91 № 3 2021

7.20–7.27 м (2H, H_{Ar}), 7.38–7.42 м (2H, H_{Ar}). Массспектр, *m/z*: 313 [*M* + H]⁺. Найдено, %: С 65.44; Н 4.01; N 8.53. С₁₇H₁₃FN₂O₃. Вычислено, %: С 65.38; H 4.20; N 8.97.

4-(6-Метокси-4-циклопропил-1,3-диоксо-1,3-дигидро-2*H***-пирроло[3,4-***с*]пиридин-2-ил)**этилбензоат (8п**). Выход 36%, т. пл. 174–176°С. ИК спектр, v, см⁻¹: 762, 820, 927, 1019, 1107, 1269, 1382, 1470, 1597, 1623, 1715. Спектр ЯМР ¹Н (CDCl₃), δ, м. д.: 1.12–1.17 м (2H, CH_{2циклопропил}), 1.28–1.33 м (2H, CH_{2циклопропил}), 1.42 т (3H, CH₂<u>СН</u>₃, ³*J*_{HH} 7.2 Гц), 3.12–3.15 м (1H, CH_{циклопропил}), 3.98 с (1H, OCH₃), 4.42 к (2H, <u>CH</u>₂CH₃, ³*J*_{HH} 7.2 Гц), 6.95 с (1H, C⁷H), 7.57 д (2H, H_{Ar}, ³*J*_{HH} 8.0 Гц), 8.19 д (2H, H_{Ar}, ³*J*_{HH} 8.0 Гц). Масс-спектр, *m/z*: 367 [*M* + H]⁺. Найдено, %: С 65.40; Н 5.01; N 7.47. C₂₀H₁₈N₂O₅. Вычислено, %: C 65.57; H 4.95; N 7.65.

6-Метокси-4-циклопропил-2-(4-этоксифенил)-1*H*-пирроло[**3**,**4**-*с*]пиридин-1,**3**(*2H*)-дион (**8**р). Выход 83%, т. пл. 184–185°С. ИК спектр, v, см⁻¹: 725, 938, 1103, 1115, 1150, 1172, 1248, 1330, 1383, 1425, 1475, 1515, 1600, 1630, 1709. Спектр ЯМР ¹H (CDCl₃), δ, м. д.: 1.13–1.17 м (2H, CH_{2циклопропил}), 1.27–1.32 м (2H, CH_{2циклопропил}), 1.46 т (3H, CH₂<u>CH₃</u>, ³*J*_{HH} 6.7 Гц), 3.12–3.16 м (1H, CH₂CH₃, ³*J*_{HH} 6.7 Гц), 3.12–3.16 м (1H, CH₂CH₃, ³*J*_{HH} 6.7 Гц), 6.92 с (1H, C⁷H), 6.99 д (2H, H_{Ar}, ³*J*_{HH} 8.6 Гц). Массспектр, *m/z*: 339 [*M* + H]⁺. Найдено, %: С 67.57; H 5.52; N 8.17. С₁₉H₁₈N₂O₄. Вычислено, %: С 67.45; H 5.36; N 8.28.

2-(3,4-Диметилфенил)-6-метокси-4-циклопропил-1*H***-пирроло[3,4-***c*]-пиридин-**1,3(***2H***)-ди-он (8с)**. Выход 51%, т. пл. 145–147°С. ИК спектр, v, см⁻¹: 816, 1111, 1273, 1329, 1383, 1406, 1598, 1624, 1706. Спектр ЯМР ¹H (CDCl₃), δ, м. д.: 1.13–1.17 м (2H, CH_{2циклопропил}), 1.27–1.32 м (2H, CH_{2циклопропил}), 2.32 с (6H, CH₃), 3.12–3.18 м (1H, CH_{циклопропил}), 3.97 с (3H, OCH₃), 6.94 с (1H, C⁷H), 7.12 д (1H, H_{Ar}, ³J_{HH} 8.1 Гц), 7.17 с (1H, H_{Ar}), 7.26 д (1H, H_{Ar}, ³J_{HH} 8.1 Гц). Масс-спектр, *m/z*: 323 [*M* + H]⁺. Найдено, %: С 70.57; H 5.62; N 8.74. С₁₉H₁₈N₂O₃. Вычислено, %: С 70.79; H 5.63; N 8.69.

ФОНДОВАЯ ПОДДЕРЖКА

Работа выполнена при финансовой поддержке Национального фонда исследований Украины (проект № 2020.01/0075).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Bean G.P.* In: Pyrroles / Ed. R.A. Jones. New York: John Wiley and Sons, 1990. Vol. 48. P. 105.
- Chemistry of Heterocyclic Compounds: Pyrroles, Part One: The Synthesis and the Physical and Chemical Aspects of the Pyrrole Ring / Ed. R.A. Jones. New York: John Wiley and Sons, 1992. Vol. 48. 742 p. doi 10.1002/978047018732
- Gossauer A. Die Chemie der Pyrrole. Berlin; New York: Springer, 1974. 436 p.
- Lehuédé J., Fauconneau R., Barrier L., Ouracow M., Piriou A., Vierfond J.-M. // Eur. J. Med. Chem. 1999. Vol. 34. P. 991. doi 10.1016/S0223-5234(99)00111-7
- Bürli R.W., McMinn D., Kaizerman J.A., Hu W., Ge Y., Pack Q., Jiang V., Gross M., Gracia M., Tanaka R., Moser H.E. // Bioorg. Med. Chem. Lett. 2004. Vol. 14. P. 1253. doi 10.1016/j.bmcl.2003.12.042
- Bürli R.W., Jones P., McMinn D., Le Q., Duan J.-X., Kaizerman J.A., Difuntorum S., Moser H.E. // Bioorg. Med. Chem. Lett. 2004. Vol. 14. P. 1259. doi 10.1016/j. bmcl.2003.12.043
- Jonas R., Klockow M., Lues I., Prücher H., Schliep H.J., Wurziger H. // Eur. J. Med. Chem. 1993. Vol. 28. P. 129. doi 10.1016/0223-5234(93)90005-Y
- Von der Saal W., Hoelck J.-P., Kampe W., Mertens A., Mueller-Beckmann B. // J. Med. Chem. 1989. Vol 32. P. 1481. doi 10.1021/jm00127a015
- Denny W.A., Rewcastle G.W., Baguley B.C. // J. Med. Chem. 1990. Vol. 33. P. 814. doi 10.1021/jm00164a054
- Toja E., Selva D., Schiatti P. // J. Med. Chem. 1984. Vol. 27. P. 610. doi 10.1021/jm00371a010
- Demopoulos V.J., Rekka E. // J. Pharm. Sci. 1995. Vol. 84. P. 79.
- Del Poeta M., Schell W.A., Dykstra C.C., Jones S., Tidwell R.R., Czarny A., Bajic M., Bajic M., Kumar A., Boykin D., Perfect J.R. // Antimicrob. Agents Chemother. 1998. Vol. 42. P. 2495. doi 10.1128/ AAC.42.10.2495
- Mohamed M.S., Fathallah S.S. // Mini-Rev. Org. Chem. 2014. Vol. 11. P. 477. doi 10.2174/ 1570193X113106660018
- Muszalska I. // Acta Polonial Pharm. Drug. Res. 2010. Vol. 67. P. 233.
- Westhuyzen R., Winks S., Wilson C.R., Boyle G.A., Gessner R.K., de Melo C.R., Taylor D., de Kock C., Njoroge M., Brunschwig Ch., Lawrence N., Rao S.P.S., Sirgel F., Helden P., Seldon R., Moosa A., Warner D.P., Arista L., Manjunatha U.H., Smith P.W., Street L.J.,

Chibale K. // J. Med. Chem. 2015. Vol. 58. P. 9371. doi 10.1021/acs.jmedchem.5b01542

- Katritzky A.R., Rees Ch.W. // Compr. Heterocycl. Chem. 1984. Vol. 6. P. 196. doi 10.1002/jps.2600740232
- 17. Turchi I.J. Oxazoles. New York: Wiley, 1986. P. 114.
- Boger D.L. // Tetrahedron. 1983. Vol. 39. N 18. P. 2869. doi 10.1016/S0040-4020(01)92154-4
- Boger D.L. // Chem. Rev. 1986. Vol. 86. N 5. P. 781. doi 10.1021/cr00075a004
- Hassner A., Fischer B. // Heterocycles. 1993. Vol. 35. N 2. P. 1441. doi 10.3987/REV-92-SR(T)6
- Ducept P.C., Marsden S.P. // Arkivoc. 2002. Vol. 6. P. 22. doi 10.3998/ark.5550190.0003.604
- Bondock S. // Heteroatom Chem. 2005. Vol. 16. N 1. P. 49. doi 10.1002/hc.20064
- 23. Ju L., Li X., Lyu Q., Qi Y., Wang Ch. Pat. CN 109956899A (2017).
- Bachmann Th., Rychlik M. // Molecules. 2018. Vol. 23. N 9. P. 2117. doi 10.3390/molecules23092117
- Toshikazu I., Hiroyuki N., Yasushi I., Kiyoshi M. // Bull. Chem. Soc. Japan. 1986. Vol. 59. N 10. P. 3197. doi 10.1246/bcsj.59.3197
- Lossouarn A., Renault K., Bailly L., Frisby A., Le Nahenec-Martel P., Renard P.-Y., Sabot C. // Org. Biomol. Chem. 2020. Vol. 18. N 20. P 3874. doi 0.1039/ D0OB00403K
- Renault K., Jouanno L.-A., Lizzul-Jurse A., Renard P.-Y., Sabot C. // Chem. Eur. J. 2016. Vol. 22. N 51. P 18522. doi 10.1002/chem.201603617
- Dubois K.J., Fannes Ch.C., Compernolle F., Hoornaert G.J. // Tetrahedron. 1996. Vol. 52. N 7. P. 2591. doi 10.1016/0040-4020(95)01084-X
- 29. *Климова, В.А.* Основные микрометоды анализа органических соединений. М.: Химия, 1975.
- Demydchuk B.A., Kondratyuk K.M., Korniyenko A.N., Brovarets V.S., Vasylyshyn R.Y., Tolmachev A., Lukin O. // Synth. Commun. 2012. Vol. 42. P. 2866. doi 10.1080/00397911.2011.571356
- Guirado A., Andreu R., Cerezo A., Galvez J. // Tetrahedron. 2001. Vol. 57. N 23. P. 4925. doi 10.1016/ S0040-4020(01)00434-3
- Kasper F., Bottger H. // Zeit. Chem. 1987. Vol. 27. N 2. P 70. doi 10.1002/zfch.19870270215
- Bohme H., Eiden F., Schunemann D. // Arch. Pharm. 1961. Vol. 294. N 5. P 307. doi 10.1002/ ardp.19612940509
- 34. Драч Б.С., Свиридов Э.П., Кисиленко А.А., Кирсанов А.В. // ЖОрХ. 1973. Т. 9. Вып. 9. С. 1818.
- 35. Драч Б.С., Свиридов Э.П., Лавренюк Т.Я. // ЖОрХ. 1974. Т. 10. Вып. 6. С. 1271.
- 36. *Драч Б.С., Миськевич Г.Н. //* ЖОрХ. 1974. Т. 10. Вып. 11. С. 2315.

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 91 № 3 2021

- 37. Драч Б.С., Седлов А.И., Миськевич Г.Н. // ЖОХ. 1978. Т. 14. Вып. 9. С. 1827.
- Noland W.E., Lanzatella N.P., Venkatraman L., Anderson N.F., Gullickson G.C. // J. Heterocycl. Chem. 2009. Vol. 46. P 1154. doi 10.1002/jhet.198
- Tawney P.O., Snyder R.H., Bryan C.E., Conger R.P., Dovell F.S., Kelly R.J., Stiteler C.H. // J. Org. Chem. 1960. Vol. 25. N 1. P 56. doi 10.1021/j001071a017
- Mehta N.B., Philips A.P., Lui F.F., Brooks R.E. // J. Org. Chem. 1960. Vol. 25. N 6. P 1012. doi 10.1021/ jo01076a038
- Lu Ch.-D., Chen Zh.-Y., Liu H., Hu W.-H., Mi A.-Q., Doyle M. P. // J. Org. Chem. 2004. Vol. 69. N 14. P 4856. doi 10.1021/j00497508

- 42. *Pal B., Pradhan P.K., Jaisankar P., Giri V.S. //* Synthesis. 2003. Vol. 10. P 1549. doi 10.1055/s-2003-40523
- Колямиин О.А., Данилов В.А., Кольцов Н.И. // ЖОрХ.
 2007. Т. 43. Вып. 3. С. 395; Kolyamshin O.A., Danilov V.A., Kol'tsov V.I. // Russ. J. Org. Chem. 2007. Vol. 43.
 N 3. P 393. doi 10.1134/S1070428007030104
- 44. *Roderick W.R.* // J. Am. Chem. Soc. 1957. Vol. 79. N 7. P 1710. doi 10.1021/ja01564a050
- Jha A., Mukherjee Ch., Prasad A.K., Parmar V.S., Vadaparti M., Das U., De Clercq E., Balzarini J., Stables J.P., Shrivastav A., Sharma R.K., Dimmock J.R. // Bioorg. Med. Chem. Lett. 2010. Vol. 20. N 5. P 1510. doi 10.1016/j.bmcl.2010.01.098

Synthesis of New 1*H*-Pyrrolo[3,4-*c*]pyridine-1,3(2*H*)-diones

S. V. Klyuchko, S. A. Chumachenko, O. V. Shablykin, and V. S. Brovarets*

V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, Kyiv, 02094 Ukraine *e-mail: brovarets@bpci.kiev.ua

Received December 23, 2020; revised December 23, 2020; accepted December 30, 2020

A method for the synthesis of new substituted 1H-pyrrolo[3,4-*c*]pyridine-1,3(2*H*)-dions was proposed based on the Diels–Alder type reaction of 4-methoxy-1,3-oxazoles with maleimide derivatives.

Keywords: 4-methoxy-1,3-oxazole, pyrrolo[3,4-c]pyridine, maleimide, Diels-Alder reaction