УДК 547.789.11:547.789.14

СИНТЕЗ И СТРОЕНИЕ (2*E*)-3-АРИЛ(ГЕТАРИЛ)-2-[5-БРОМ-4-АРИЛ(ГЕТАРИЛ)-1,3-ТИАЗОЛ-2-ИЛ]-АКРИЛОНИТРИЛОВ

© 2021 г. Н. А. Пахолка^a, В. Л. Абраменко a , В. В. Доценко b,c , Н. А. Аксенов c , И. В. Аксенова c , С. Г. Кривоколыско a,d,*

^а Лаборатория «ХимЭкс», Луганский государственный университет имени В. Даля, Луганск, 91034 Украина ^b Кубанский государственный университет, Краснодар, 350040 Россия ^c Северо-Кавказский федеральный университет, Ставрополь, 355009 Россия ^d Луганский государственный медицинский университет имени Святителя Луки, кв. 50-летия Обороны Луганска 1-г, Луганск, 91045 Украина *e-mail: ksg-group-lugansk@mail.ru

> Поступило в Редакцию 28 декабря 2020 г. После доработки 28 декабря 2020 г. Принято к печати 20 января 2021 г.

Бромирование (2E)-3-арил(гетарил)-2-[4-арил(гетарил)-1,3-тиазол-2-ил]акрилонитрилов протекает региоселективно по положению C^5 тиазольного цикла с образованием ранее не описанных (2E)-3-арил-(гетарил)-2-[5-бром-4-арил(гетарил)-1,3-тиазол-2-ил]акрилонитрилов. Последние альтернативно были получены реакцией альдегидов, цианотиоацетамида, α -бромкетонов и брома в присутствии триэтиламина в ДМФА. Строение ключевых соединений доказано с привлечением методов спектроскопии 2D ЯМР и рентгеноструктурного анализа.

Ключевые слова: 1,3-тиазолы, 5-бром-1,3-тиазолы, цианотиоацетамид, 2-цианотиоакриламиды, бромирование

DOI: 10.31857/S0044460X21030033

Функционально замещенные тиазолы являются важными реагентами для тонкого органического синтеза [1-4], а также характеризуются широким спектром биологической активности и практического применения (недавние обзорные работы см. [5–10]). В литературе широко представлены многочисленные производные тиазола, обнаруживающие антибактериальные, противогрибковые, противовоспалительные, противоопухолевые, противотуберкулезные, антидиабетические, противовирусные и антиоксидантные и др. практически полезные свойства. В числе наиболее значимых представителей этой группы соединений стоит упомянуть витамин В₁ – тиамин, низатидин, пенициллин, фанетизол, мелоксикам, ритонавир [11-14]. По этой причине разработка доступных подходов к синтезу новых производных 1,3-тиазола представляется весьма актуальной задачей.

Для наших исследований в качестве модельных соединений были выбраны (2E)-3-арил(гетарил)-2-[4-арил(гетарил)-1,3-тиазол-2-ил]акрилонитрилы общей формулы **1** (схема 1). Эти соединения легко доступны по реакции Ганча или различным вариантам этого синтеза с участием α -галогенкетонов с различными производными цианотиоацетамида [15, 16] — (2E)-3-арил(гетарил)-2-цианотиоакриламидами **2** [17–31], 4-арил-2,6-диамино-3,5-дициано-4H-тиопиранами [29, 32–34], 4-арил-6-гидрокси-6-метил-5-[(ариламино)карбонил]-3-циано-1,4,5,6-тетрагидропиридин-2-тиолатами пиперидиния [22, 30] в присутствии оснований (схема 1).

[4-Арил(гетарил)-1,3-тиазол-2-ил]ацетонитрилы вступают в реакцию Кнёвенагеля с альдегидами в присутствии AcONa в AcOH также с образова-

Схема 1.

$$R^1$$
 CN R^1 R^1 R^2 R

Рір = пиперидин.

нием 2-тиазолилакрилонитрилов 1 [17–20, 27, 28, 34–40]. Авторами работы [39] была показана возможность получения 1,3-тиазолов 1 из продуктов присоединения циклопентан(гексан)-1,1-дитиолов к арилиденмалононитрилам — 1,3-дитиа-4-циклогексенов, при нагревании их с фенацилбромидами в этаноле. Приведены два примера многокомпонентного синтеза соединений 1 из ароматических альдегидов, цианотиоацетамида, фенацилбромидов при 25°С в ДМФА в присутствии морфолина [41].

Данные по биологической активности 2-тиазолилакрилонитрилов 1 ограничиваются несколькими сообщениями об использовании их в качестве антибиотиков [28], ингибиторов сфингозинкиназы [42, 43] и онкогенной тирозинкиназы ALK [44, 45], пригодных для лечения или профилактики гиперпролиферативных процессов, воспалительных заболеваний и аллергии.

Реакцией 2-цианотиоакриламидов **2** с α-бромкетонами **3** (схема 2, способ 1) или многокомпонентным взаимодействием альдегида **4a**, цианотиоацетамида 5 и α-бромкетонов 3а-г в присутствии каталитических количеств триэтиламина (способ 2) при кратковременном нагревании в ДМФА нами была синтезирована небольшая библиотека исходных 2-тиазолилакрилонитрилов 1а-т. Показано, что бромирование соединений 1 в ДМФА или спиртах (метаноле, этаноле, н-бутаноле) при действии эквимолярного или двухкратного количества брома как при комнатной температуре, так и при нагревании не затрагивает С=С связь акрилонитрильного фрагмента и региоселективно приводит к продуктам бромирования по С⁵-положению тиазольного цикла – 5-бромтиазолам 6 с высокими выходами (75–92%) (схема 2, метод a). Выбор ДМФА в качестве предпочтительного растворителя обусловлен тем, что исходные 2-тиазолилакрилонитрилы 1 очень плохо растворимы в спиртах. В этих случаях реакцию с бромом приходится проводить при кипячении и/или в условиях гетерогенной среды, что отражается на чистоте и выходах целевых продуктов 6.

В случае тиазолов 1н, 0, c, τ бромирование ведет к осмолению и образованию продуктов неу-

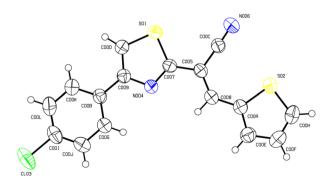
Схема 2.

становленного строения. При введении в реакцию соединений 1π , p бромирование, очевидно, затрагивает 2-оксо-2H-хроменовый фрагмент (положения C^4 или C^4 , C^7). При этом образуются смеси нескольких соединений, которые не удалось разделить из-за плохой растворимости ее компонентов в доступных растворителях, включая ацетон, ДМСО и кипящий ДМФА. В связи с низкой растворимостью продуктов спектры ЯМР оказались малоинформативными для отнесения всех сигналов к структуре индивидуальных продуктов реакции.

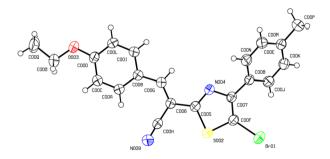
В качестве альтернативного способа получения 5-бромтиазолов $6\mathbf{a}$ — \mathbf{e} (выход 75—81%) нами предложено многокомпонентное взаимодействие альдегидов $4\mathbf{a}$, $\mathbf{6}$ с цианотиоацетамидом $\mathbf{5}$, α -бромкетонами $3\mathbf{a}$ —д и бромом в ДМФА в присутствии триэтиламина (схема 2, метод δ). Такой подход позволяет существенно сократить время и расходы, связанные с синтезом, очисткой и выделением 2-цианотиоакриламидов $\mathbf{2}$ и исходных тиазолилакрилонитрилов $\mathbf{1}$.

Синтезированные соединения 1 и 6 представляют собой мелкокристаллические порошко-

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 91 № 3 2021


Основные корреляции в спектрах ЯМР HSQC и HMBC 1 H $^{-13}$ C и 1 H $^{-15}$ N соед

2 2	δ, м. д.		
δ _H , м. д.	¹ H– ¹³ C HSQC	¹ H– ¹³ C HMBC ^a	¹ H– ¹⁵ N HMBC
7.32 д. д (1H, H ⁴ , тиен-2-	128.6 (С ⁴ , тиен-2-ил)	134.3 (С ³ , тиен-2-ил),	_
ил)		137.3 (С ⁵ , тиен-2-ил)	
7.52 д (2H, H ³ , H ⁵ , Ar)	$128.9 (C^3, C^5, Ar)$	127.9 (C ² , C ⁶ , Ar), 132.2* (C ¹ , Ar), 133.1*	_
		(CCI) , 154.0* $(C^4$, тиазол-2-ил)	
7.95 д (1H, H ⁵ , тиен-2-ил)	137.3 (С ⁵ , тиен-2-ил)	128.6 (С ⁴ , тиен-2-ил), 134.3 (С ³ , тиен-2-ил),	_
		136.5* (С ² , тиен-2-ил)	
8.04 д (2H, H ² , H ⁶ , Ar)	$127.9 (C^2, C^6, Ar)$	116.3 (С ⁵ , тиазол-2-ил), 128.9 (С ³ , С ⁵ , Ar),	_
		133.1* (CCl), 154.0* (С ⁴ , тиазол-2-ил)	
8.06 д (1H, H ³ , тиен-2-ил)	134.3 (С ³ , тиен-2-ил)	136.5* (С ² , тиен-2-ил), 128.6 (С ⁴ , тиен-2-ил)	_
8.29 c (1H, H ⁵ , тиазол-2-ил)	116.3 (С ⁵ , тиазол-2-ил)	132.2* (C ¹ , Ar), $154.0*$ (С ⁴ , тиазол-2-ил),	311.4 (N)
		162.2* (С ² , тиазол-2-ил)	
8.59 c (1H, =CH)	138.4 (=CH)	$100.7* (\underline{C}C \equiv N), 116.5* (C \equiv N), 136.5* (C^2,$	_
		тиен-2-ил), $162.2*$ (\mathbb{C}^2 , тиазол-2-ил)	


^а Звездочкой обозначены сигналы атомов углерода, находящиеся в противофазе в спектре ЯМР ¹³С DEPTQ.

образные вещества различных оттенков желтого, зеленого, реже коричневого цвета, хорощо растворимые в ацетоне, ДМФА, умеренно – в хлороформе и ДМСО. Строение полученных соединений доказано с привлечением методов спектроскопии ЯМР на ядрах 1 Н и 13 С (DEPTQ), ИК спектрометрии. Характерной особенностью спектров ЯМР 1Н полученных соединений является наличие сигналов водорода акрилонитрильного фрагмента -CH=C(CN) в области 8.05-8.62 м. д. и H^5 тиазола (для соединений 1) при 8.04-8.33 м. д. В спектрах ЯМР ¹³С сигналы углеродов =С-Н акрилонитрильного фрагмента проявляются в области 122.9-151.1 м. д., C^2 тиазола – при 154.4–162.6 м. д., C^4 тиазола – при 148.2–155.4 м. д. Сигналы атома С5 тиазола соединений 1 представлены в области 113.8–117.1 м. д., для 5-бромтиазолов **6** они ожидаемо смещаются в область сильного поля (103.7–113.8 м. д.). В ИК спектрах соединений **1** и **6** обнаруживаются полосы поглощения, соответствующие валентным колебаниям сопряженной нитрильной группы (у 2206–2229 см⁻¹).

Соотнесение сигналов ядер углерода со структурой соединения **16** проводили с применением гетероядерной корреляционной спектроскопии ЯМР (см. таблицу). В спектрах ЯМР HSQC ¹H-¹³C наблюдаются все корреляции ¹H-¹³C через одну связь, которые позволили однозначно соотнести сигналы химических сдвигов ядер углерода, связанных с водородом. Наличие в спектрах ЯМР НМВС кросс-пиков для корреляций ¹H-¹³C позволило соотнести атомы углерода соединения

Рис. 1. Общий вид молекулы соединения **16**. Тепловые эллипсоиды неводородных атомов показаны на уровне 50%-ной вероятности нахождения атома.

Рис. 2. Общий вид молекулы соединения **63**. Тепловые эллипсоиды неводородных атомов показаны на уровне 50%-ной вероятности нахождения атома.

16 с наблюдаемой картиной спектров ЯМР ¹³С (DEPTQ). В спектре ¹Н–¹⁵N HMBC обнаруживается одиночный кросс-пик для корреляции ядер водорода и атома азота тиазольного кольца. Помимо этого, строение соединений **16** и **63** было изучено с привлечением рентгеноструктурного анализа (рис. 1, 2).

Таким образом, нами показано, что бромирование (2E)-3-арил(гетарил)-2-[4-арил(гетарил)-1,3-тиазол-2-ил]акрилонитрилов носит региоселективный характер и приводит к образованию ранее не описанных (2E)-3-арил(гетарил)-2-[5-бром-4-арил(гетарил)-1,3-тиазол-2-ил]акрилонитрилов с высокими выходами. Полученные соединения представляют собой перспективные объекты для биоскрининга, их профиль биологической активности в настоящее время находится в стадии изучения.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР 1 Н записаны на ЯМР спектрометре Bruker DPX-400 [400.40 (1 H), 100.63 (13 C), 40.55 МГц (15 N)] в ДМСО- d_6 или CDCl₃. Внутренний стандарт – ТМС или остаточные сигналы растворителя. ИК спектры регистрировали на ИК Фурье-спектрометре Bruker Vertex 70 с приставкой НПВО на кристалле алмаза, спектральное разрешение ± 4 см $^{-1}$. Элементный анализ проводили на С,H,N-анализаторе Carlo Erba 1106. Контрольчистоты полученных соединений осуществляли методом ТСХ на пластинах Silufol UV254, элюент – ацетон–гексан (1:1), проявитель – пары иода, УФ детектор. Температуры плавления определяли на столике Кофлера и не корректировали.

2-Цианотиоакриламиды **2** и цианотиоацетамид **5** были получены по известным методикам [46, 47], в других случаях использовали коммерчески доступные реагенты.

Общая методика синтеза (2*E*)-3-арил(гетарил)-2-[4-арил(гетарил)-1,3-тиазол-2-ил]акрилонитрилов (1а-т). Способ 1. Смесь 5 ммоль 2-цианотиоакриламида 2, 5 ммоль α-бромкетона 3 в 10 мл ДМФА доводили до кипения и фильтровали через складчатый бумажный фильтр. Через 12 ч осадок отфильтровывали, промывали этанолом и гексаном, сушили 3 ч при 60°С.

Способ 2. Смесь 0.46 мл (5 ммоль) 2-тиофенкарбальдегида **1a**, 0.5 г (5 ммоль) цианотиоацетамида **5** и 1 капли триэтиламина в 10 мл ДМФА перемешивали 5 мин, затем добавляли 5 ммоль α-бромкетона **3а**–г. Полученную смесь доводили до кипения, фильтровали через складчатый бумажный фильтр. Через 12 ч осадок отфильтровывали, промывали этанолом и гексаном, сушили 3 ч при 60°C.

(2E)-2-[4-(4-Бромфенил)-1,3-тиазол-2-ил]-3-(тиен-2-ил)акрилонитрил (1а). Выход 86% (способ 1), 81% (способ 2), желтый мелкокристаллический порошок, т. пл. 186-188°С (т. пл. 175-177°С [30]). ИК спектр, v, см⁻¹: 2219 сл (С≡N). Спектр ЯМР 1 Н (ДМСО- d_{6}), δ , м. д.: 7.31 д. д (1H, H 4 , тиен-2-ил, $^3J_{\rm HH}$ 4.3, $^3J_{\rm HH}$ 4.7 Γ ц), 7.66 д (2H, H³, H⁵, Ar, $^3J_{\rm HH}$ 8.4 Γ ц), 7.96 м (3H, H⁵, тиен-2-ил, H², H⁶, Ar), 8.06 д (1H, H³, тиен-2-ил, ${}^{3}J_{HH}$ 4.7 Гц), 8.29 с (1H, H⁵, тиазол-2-ил), 8.57 с (1H, =CH). Спектр ЯМР ¹³С DEPTQ (ДМСО- d_6), δ_C , м. д.: 100.6* (СС≡N), $116.4 (C^5$ тиазол), $116.5* (C \equiv N)$, 121.7* (CBr), 128.2Ar), 132.6* (C¹, Ar), 134.2 (С³, тиен-2-ил), 136.4* $(C^2$, тиен-2-ил), 137.3 $(C^5$, тиенил), 138.3 (=CH), 154.0* (C^4 , тиазол), 162.2* (C^2 , тиазол). Здесь и далее звездочкой обозначены сигналы в противофазе. Найдено, %: С 51.60; Н 2.58; 7.69. С₁₆H₉BrN₂S₂. Вычислено, %: C 51.48; H 2.43; N 7.50. M 373.3

(2E)-3-(Тиен-2-ил)-2-[4-(4-хлорфенил)-1,3тиазол-2-ил акрилонитрил (16). Выход 79% (способ 1), 75% (способ 2), оранжевый мелкокристаллический порошок, т. пл. 191-193°С (т. пл. 173–175°С [30]). ИК спектр, v, см⁻¹: 2210 сл (С≡N). Спектр ЯМР 1 Н (ДМСО- d_{6}), δ , м. д.: 7.32 д. д (1H, H^4 , тиен-2-ил, $^3J_{\mathrm{HH}}$ 3.4, $^3J_{\mathrm{HH}}$ 5.0 $\Gamma\mathrm{u}$), 7.52 д (2H, H^3 , H^5 , Ar, $^3J_{\mathrm{HH}}$ 8.6 Гц), 7.95 д (1H, H^5 , тиен-2-ил, $^3J_{\mathrm{HH}}$ 3.4 Γ ц), 8.04 д (2H, H², H⁶, Ar, $^3J_{\rm HH}$ 8.6 Γ ц), 8.06 д (1H, H³, тиен-2-ил, ${}^{3}J_{HH}$ 5.0 Гц), 8.29 с (1H, H⁵, тиазол), 8.59 с (1H, =CH). Спектр ЯМР ¹³С DEPTQ (ДМСО- d_6), δ_C , м. д.: 100.7* (СС≡N), 116.3 (С⁵, тиазол), 116.5* (C≡N), 127.9 (C², C⁶, Ar), 128.6 (C⁴, тиен-2-ил), 128.9 (С³, С⁵, Ar), 132.2* (С¹, Ar), 133.1* (CCl), 134.3 (\mathbb{C}^3 , тиен-2-ил), 136.5* (\mathbb{C}^2 , тиен-2-ил), 137.3 (C^5 , тиен-2-ил), 138.4 (=CH), 154.0* (C^4 , тиазол), 162.2* (С², тиазол). Найдено, %: 58.57; Н 2.87; N 8.73. С₁₆Н₉СIN₂S₂. Вычислено, %: С 58.44; H 2.76; N 8.52. M 328.84.

(2*E*)-3-(Тиен-2-ил)-2-[4-(1,1'-бифенил-4-ил)-1,3-тиазол-2-ил]акрилонитрил (1в). Выход 88%

(способ 1), 77% (способ 2), ярко-желтый мелкокристаллический порошок, т. пл. 203-205°С (т. пл. 190–191°С [29]). ИК спектр, v, см⁻¹: 2214 сл (C≡N). Спектр ЯМР 1 Н (ДМСО- d_{6}), δ , м. д.: 7.32 д. д (1H, H⁴, тиен-2-ил, ${}^3J_{\rm HH}$ 3.9, ${}^3J_{\rm HH}$ 4.8 Γ ц), 7.38 т $(1H, Ph, {}^{3}J_{HH}7.3 \Gamma \mu), 7.48 д. д (2H, Ph, {}^{3}J_{HH}7.3, {}^{3}J_{HH}$ 7.5 Гц), 7.73 д (2H, Ph, $^3J_{\rm HH}$ 7.5 Гц), 7.79 д (2H,, Ar, ${}^{3}J_{HH}$ 8.3 Гц), 7.97 д (1H, H⁵, тиен-2-ил, ${}^{3}J_{HH}$ 3.9 Γ ц), 8.07 д (1H, H³, тиен-2-ил, ${}^{3}J_{HH}$ 4.8 Γ ц), 8.11 д $(2H, Ar, {}^{3}J_{HH} 8.3 \Gamma \mu), 8.30 c (1H, H⁵, тиазол), 8.62$ с (1H, =CH). Спектр ЯМР 13 С DEPTQ (ДМСО- d_6), $\delta_{\rm C}$, м. д.: 100.8* ($\underline{\rm C}{\rm C}\equiv{\rm N}$), 115.8 (${\rm C}^5$, тиазол), 116.6* (C≡N), 126.6 (2C, Ar), 126.8 (2C,, Ar), 127.1 (2C,, Ar), 127.7 ($C^{4'}$, Ar), 128.6 (C^4 , тиен-2-ил), 129.0 (2C, Ar), 132.5* (Ar), 134.2 (С³, тиен-2-ил), 136.5* $(C^2$, тиен-2-ил), 137.4 $(C^5$, тиен-2-ил), 138.3 (=CH), 139.5* (Ar), 140.1* (Ar), 154.9* (С⁴, тиазол), 162.1* (C², тиазол). Найдено, %: С 71.56; Н 3.96; N 7.81. С₂₂H₁₄N₂S₂. Вычислено, %: С 71.32; Н 3.81; N 7.56. M370.50.

(2E)-3-(Тиен-2-ил)-2-(4-тиен-2-ил-1,3-тиазол-**2-ил)акрилонитрил (1г).** Выход 78% (способ 1), 74% (способ 2), желтый мелкокристаллический порошок, т. пл. 134–136°С. ИК спектр, v, см⁻¹: 2212 сл (С \equiv N). Спектр ЯМР 1 Н (ДМСО- d_{6}), δ , м. д.: 7.16 д. д (1H, H⁴, тиен-2-ил¹, ${}^{3}J_{HH}$ 3.6, ${}^{3}J_{HH}$ 4.9 Гц), 7.33 д. д (1H, H⁴, тиен-2-ил², ${}^{3}J_{HH}$ 3.0, ${}^{3}J_{HH}$ 4.7 Гц), 7.60 д (1H, H 3 , тиен-2-ил 1 , $^3J_{\rm HH}$ 4.9 Γ ц), 7.66 д (1H, H^5 , тиен-2-ил², ${}^3J_{\rm HH}$ 3.0 Гц), 7.98 д (1H, H^5 , тиен-2-ил¹, ${}^{3}J_{HH}$ 3.6 Γ ц), 8.09 м (2H, H³, тиен-2-ил², H⁵, тиазол), 8.53 с (1H, =CH). Спектр ЯМР ¹³С DEPTQ (ДМСО- d_6), δ_C , м. д.: 100.5 (СС≡N), 114.1* (С⁵, тиазол), 116.5 (С≡N), 125.1*, 126.6*, 128.1*, 128.6* (4С, тиен-2-ил), 134.3* (тиен-2-ил), 136.4, 136.9 $(2C^2$, тиен-2-ил), 137.4* (тиен-2-ил), 138.3* (=CH), 150.1 (C⁴, тиазол), 162.1 (С², тиазол). Найдено, %: С 56.14; H 2.93; N 9.51. С₁₄H₈N₂S₃. Вычислено, %: C 55.97; H 2.68; N 9.32. M 300.43.

(2*E*)-3-(4-Бромфенил)-2-[4-(4-хлорфенил)-1,3-тиазол-2-ил]акрилонитрил (1д). Выход 91%, желто-зеленый мелкокристаллический порошок, т. пл. 164–166°С (т. пл. 160–161°С [39]). ИК спектр, v, см⁻¹: 2215 сл (С \equiv N). Спектр ЯМР ¹H (ДМСО- d_6), δ , м. д.: 7.55 д (2H, H³, H⁵, 4-ClC₆H₄, ³ $J_{\rm HH}$ 8.6 Гц), 7.81 д (2H, H³, H⁵, 4-BrC₆H₄, ³ $J_{\rm HH}$ 8.6 Гц), 8.06 д (2H, H², H², 4-ClC₆H₄, ³ $J_{\rm HH}$ 8.6 Гц), 8.35 с и 8.37 с (2H, H⁵, тиазол, =CH). Спектр ЯМР ¹³С DEPTQ (ДМСО- d_6),

 $\delta_{\rm C}$, м. д.: 100.7 ($\underline{\rm CC}\equiv{\rm N}$), 116.1 (${\rm C}\equiv{\rm N}$), 117.0* (${\rm C}^5$, тиазол), 125.5 (C–Br), 127.9* (${\rm C}^2$, ${\rm C}^6$, ${\rm Ar}^1$), 128.9* (${\rm C}^3$, ${\rm C}^5$, ${\rm Ar}^1$), 131.6* (${\rm C}^2$, ${\rm C}^6$, ${\rm Ar}^2$), 131.7, 132.2 (2C¹, ${\rm Ar}^1$ и ${\rm Ar}^2$), 133.3* (${\rm C}^3$, ${\rm C}^5$, ${\rm Ar}^2$), 133.1 (C–Cl), 144.2* (=CH), 154.1 (${\rm C}^4$, тиазол), 162.3 (${\rm C}^2$, тиазол). Найдено, %: С 53.95; H 2.77; N 7.09. ${\rm C}_{18}{\rm H}_{10}{\rm BrClN}_2{\rm S}$. Вычислено, %: С 53.82; H 2.51; N 6.97. M 401.71.

(2E)-3-(4-Бромфенил)-2-[4-(4-метоксифенил)-1,3-тиазол-2-ил]акрилонитрил (1е). Выход 86%, лимонно-зеленый мелкокристаллический порошок, т. пл. 177–179°С. ИК спектр, v, см⁻¹: 2229 сл (C \equiv N). Спектр ЯМР ¹Н (ДМСО- d_6), δ , м. д.: 3.80 с (3H, MeO), 7.02 д [2H, H^3 , H^5 , Ar^1 (4-MeOC₆ H_4), $^{3}J_{HH}$ 8.9 Гц], 7.79 д [2H, H³, H⁵, Ar² (4-BrC₆H₄), $^{3}J_{HH}$ 8.6 Гц], 7.94–7.97 м (4Н, наложение двух дублетов, H^2 , H^6 , Ar^1 , ${}^3J_{HH}$ 8.9 Γ ц + H^2 , H^6 , Ar^2 , ${}^3J_{HH}$ 8.6 Γ ц), 8.14 с (1H, H⁵, тиазол), 8.32 с (1H, =CH). Спектр ЯМР ¹³С DEPTQ (ДМСО- d_6), δ_C , м. д.: 55.2* (MeO), 105.6 ($\underline{C}C \equiv N$), $114.2 * (2C, Ar^1)$, $114.4 * (C^5, Ar^2)$ тиазол), 116.2 (C \equiv N), 125.3, 126.1 (C \rightarrow Br и C¹, Ar¹), 127.6* (2C, Ar¹), 131.6* (C², C⁶, Ar²), 131.8 (C¹, Ar^2), 132.4* (C^3 , C^5 , Ar^2), 143.7* (=CH), 155.4 (C^4 , тиазол), 159.6 (\underline{C} -OMe), 161.7 (C^2 , тиазол). *Сигналы в противофазе. Найдено, %: С 57.72; Н 3.47; N 7.26. C₁₉H₁₃BrN₂OS. Вычислено, %: С 57.44; Н 3.30; N 7.05. M 397.30.

(2E)-3-(2,5-Диметоксифенил)-2-[4-(4-метоксифенил)-1,3-тиазол-2-ил акрилонитрил (1ж). Выход 83%, оранжевый мелкокристаллический порошок, т. пл. 154–156°С. ИК спектр, v, см⁻¹: 2208 сл (С≡N). Спектр ЯМР 1 Н (ДМСО- d_{6}), δ , м. д.: 3.78 с, 3.80 с, 3.87 с (9H, 3MeO), 7.04 д [2H, H^3 , H^5 , Ar^1 (4-MeOC₆ H_4), $^3J_{HH}$ 8.8 Γμ], 7.15–7.17 м {2H, H³, H⁴, Ar² [2,5-(MeO)₂C₆H₃]}, 7.67 д (1H, H^6 , Ar^2 , ${}^4J_{HH}$ 2.7 Гц), 7.94 д (2H, H^2 , H^6 , Ar^1 , ${}^3J_{HH}$ $8.8 \Gamma \mu$), 8.12 c (1H, H⁵, тиазол), 8.42 c (1H, =CH). Спектр ЯМР 13 С DEPTQ (ДМСО- d_6), δ_C , м. д.: 55.2*, 55.6*, 56.3* (3MeO), 105.1 (<u>C</u>C≡N), 112.7*, 113.1* (C³, C⁴, Ar²), 114.0* (C⁵, тиазол), 114.3* (2C, Ar^{1}), 116.5 (C \equiv N), 119.4* (C⁶Ar²), 121.3, 126.1 (2C¹, Ar¹ и Ar²), 127.6* (2С, Ar¹), 138.9* (=СН), 152.6, 152.8 (2COMe), 155.5 (С⁴, тиазол), 159.6 (COMe), 161.9 (C², тиазол). Найдено, %: С 66.77; Н 4.98; N 7.58. C₂₁H₁₈N₂O₃S. Вычислено, %: С 66.65; Н 4.79; N 7.40. M 378.45.

(2*E*)-2-[4-(4-Метилфенил)-1,3-тиазол-2-ил]-3-(4-этоксифенил)акрилонитрил (13). Выход 91%, ярко-желтый мелкокристаллический поро-

шок, т. пл. 118–120°С. ИК спектр, v, см⁻¹: 2219 сл (C≡N). Спектр ЯМР 1 Н (ДМСО- d_{6}), δ , м. д.: 1.34 т (3H, OCH₂Me, ${}^{3}J_{HH}$ 6.8 Гц), 2.34 с (3H, Me), 4.12 к (2H, OC $\underline{\text{H}}_2$ Me, ${}^3J_{\text{HH}}$ 6.8 Гц), 7.11 д [2H, H 3 , H 5 , Ar^{1} (4-MeC₆H₄), ${}^{3}J_{HH}$ 8.8 Гц], 7.27 д [2H, H³, H⁵, Ar² $(4-EtOC_6H_4)$, ${}^3J_{HH}$ 7.8 Гц], 7.91 д (2H, H², H⁶, Ar², $^{3}J_{\rm HH}$ 7.8 Гц), 8.04 д (2H, H², H⁶, Ar¹, $^{3}J_{\rm HH}$ 8.8 Гц), $8.14 \,\mathrm{c}, 8.23 \,\mathrm{c}$ (2H, H⁵, тиазол и =C-H). Спектр ЯМР ¹³С DEPTQ (ДМСО- d_6), δ_C , м. д.: 14.5 (ОСН₂Ме), 20.9 (Me), 63.6* (OCH₂Me), 101.4* (CC \equiv N), 114.5 $(C^5, \text{ тиазол}), 115.2 (2C, Ar^2), 117.0* (C=N), 124.9*$ (C¹Ar²), 126.1 (2C, Ar²), 129.4 (2C, Ar¹), 130.8* (C^1Ar^1) , 132.2 (2C, Ar¹), 137.9* (C⁴, Ar¹), 144.8 (=CH), 155.3* $(C^4$, тиазол), 161.5*, 162.6* (C^4, Ar^2) и С², тиазол). Найдено, %: С 73.02; Н 5.39; N 8.38. C₂₁H₁₈N₂OS. Вычислено, %: С 72.80; Н 5.24; N 8.09. M 346.45.

(2E)-3-(3-Бром-4-гидрокси-5-метоксифенил)-2-[4-(3,4-диметилфенил)-1,3-тиазол-2-ил]акрилонитрил (1и). Выход 81%, ярко-желтый мелкокристаллический порошок, т. пл. 207-209°С. ИК спектр, v, см⁻¹: 3300 ш (ОН), 2224 сл (С≡N). Спектр ЯМР ¹Н (ДМСО-*d*₆), δ , м. д.: 2.25 с и 2.29 с (6H, 2Me), 3.90 c (3H, MeO), 7.22 ди 7.75 д [2H, H⁵, H^6 , Ar^1 (3,4-Me₂C₆H₃), $^3J_{HH}$ 7.7 Гц], 7.76 с, 7.79 с и 7.94 с (3H, H², Ar¹ и H², H⁶, Ar²), 8.13 с и 8.22 с (2H, H⁵, тиазол, =C-H), 10.66 уш. с (1H, OH). Спектр ЯМР ¹³С DEPTQ (ДМСО- d_6), δ_C , м. д.: 19.2*, 19.5* (2Me), 56.3* (MeO), 102.0 (<u>C</u>C≡N), 109.6 (C–Br), 112.3* (Ar²), 114.6* (C⁵, тиазол), 116.9 (C≡N), 123.7* (Ar¹), 124.6 (C¹, Ar¹ или, Ar²), 127.2* (Ar¹), 127.4* (Ar¹), 129.9* (Ar²), 131.1 (С¹, Ar² или Ar¹), 136.6, 136.7 (2CMe), 143.8* (=CH), 147.5, 148.2 (C-OMe, C-OH), 155.5 $(C^4$, тиазол), 162.2 $(C^2$, тиазол). Найдено, %: С 57.25; H 4.04; N 6.59. С₂₁H₁₇Br N₂O₂S. Вычислено, %: С 57.15; Н 3.88; N 6.35. М 441.35.

(2*E*)-2-(4-Фенил-1,3-тиазол-2-ил)-3-(4-хлорфенил)акрилонитрил (1к). Выход 94%, светло-зеленый мелкокристаллический порошок, т. пл. 133–135°С (т. пл. 123–125°С [37, 39], 235–237°С [36], очевидно, недостоверные данные). ИК спектр, \mathbf{v} , см $^{-1}$: 2216 сл (С \equiv N). Спектр ЯМР 1 Н (ДМСО- d_{6}), δ , м. д.: 7.38 т (1H, H 4 Ph, $^{3}J_{\mathrm{HH}}$ 7.1 Γ ц), 7.47 д. д (2H, H 3 , H 5 Ph, $^{3}J_{\mathrm{HH}}$ 7.1, $^{3}J_{\mathrm{HH}}$ 7.5 Γ ц), 7.65 д (2H, H 3 , H 5 , Ar, $^{3}J_{\mathrm{HH}}$ 8.3 Γ ц), 8.01–8.06 м (4H, H 2 , H 6 , Ar и H 2 , H 6 Ph), 8.29 с и 8.34 с (2H, H 5 , тиазол и =CH). Спектр ЯМР 13 С DEPTQ (ДМСО- d_{6}), δ _С,

м. д.: 105.5* ($\mathbb{CC}\equiv\mathbb{N}$), 116.2* ($\mathbb{C}\equiv\mathbb{N}$), 116.4 (\mathbb{C}^5 , тиазол), 126.2 ($2\mathbb{C}$, \mathbb{Ph}), 128.6 (\mathbb{C}^4 , \mathbb{Ph}), 128.9 ($2\mathbb{C}$, \mathbb{Ph}), 129.3 ($2\mathbb{C}$, \mathbb{Ar}), 131.4* (\mathbb{C}^1), 131.5 ($2\mathbb{C}$, \mathbb{Ar}), 133.3* (\mathbb{C}^1 , \mathbb{Ph}), 136.4* (\mathbb{C}^1 , \mathbb{Ar}), 143.8 (\mathbb{C}^1), 155.4* (\mathbb{C}^4), тиазол), 162.0* (\mathbb{C}^2 , тиазол). Найдено, %: \mathbb{C} 67.18; \mathbb{C}^1 3.62; \mathbb{C}^1 8.79. \mathbb{C}^1 18.10 \mathbb{C}^1 8. Вычислено, %: \mathbb{C}^1 66.97; \mathbb{C}^1 3.43; \mathbb{C}^1 8.68. \mathbb{C}^1 322.82.

(2E)-3-(3-Бензилокси-4-метоксифенил)-2-[4-(4-метилфенил)-1,3-тиазол-2-ил]акрилонитрил (1л). Выход 89%, желто-зеленый мелкокристаллический порошок, т. пл. 174-176°С. ИК спектр, у, см⁻¹: 2214 сл (С≡N). Спектр ЯМР 1 Н (ДМСО- d_{6}), δ , м. д.: 2.35 с (3H, Me), 3.88 с (3H, MeO), 5.14 с (2H, OCH_2Ph), 7.21 д [1H, H⁵, Ar¹ (3-BnO-4-MeOC₆H₃), $^{3}J_{HH}$ 8.7 Гц], 7.29 д [2H, H³, H⁵, Ar² (4-MeC₆H₄), $^{3}J_{\rm HH}$ 8.2 Гц], 7.35 т (1H, H⁴, Ph, $^{3}J_{\rm HH}$ 7.1 Гц), 7.41 д. д $(2H, H^3, H^5, Ph, {}^3J_{HH}, 7.1, {}^3J_{HH}, 7.5 \Gamma ц), 7.48 д (2H, H^2,$ H^6 , Ph, $^3J_{HH}$ 7.5 Гц), 7.76 д. д (1H, H^6 , Ar^1 , $^3J_{HH}$ 8.7, $^4J_{\rm HH}$ 1.8 Γ ц), 7.85 д (1H, H², Ar¹, $^4J_{\rm HH}$ 1.8 Γ ц), 7.92 д (2H, H², H⁶, Ar², ${}^{3}J_{HH}$ 8.2 Гц), 8.16 с (1H, =CH), 8.26 с (1H, H^5 , тиазол). Спектр ЯМР 13 С DEPTQ (ДМСО- d_6), δ_C , м. д.: 20.9* (Me), 55.9* (MeO), 70.0 (OCH_2Ph) , 101.6 $(\underline{C}C\equiv N)$, 112.3* (Ar^1) , 114.4* (Ar^1) , 114.6* (\mathbb{C}^5 , тиазол), 117.1 (\mathbb{C} ≡ \mathbb{N}), 124.9* (\mathbb{C} , \mathbb{A} \mathbb{r}^1), 125.1 (C^{1, Ar2}), 126.1* (2C, Ar²), 128.0* (2C, Ph), 128.1* (C⁴, Ph), 128.5* (2C, Ph), 129.4* (2C, Ar²), 130.8 (C¹, Ar¹), 136.5 (C¹, Ph), 137.9 (C⁴Ar²), 144.9* (=C-H), 147.7 (C^3 , Ar^1), 152.5 (C-OMe), 155.3 (C^4 , тиазол), 162.6 (С², тиазол). Найдено, %: С 73.83; Н 5.19; N 6.52. С₂₇H₂₂N₂O₂S. Вычислено, %: С 73.95; H 5.06: N 6.39. M 438.55.

(2E)-3-(4-Бромфенил)-2-[4-(4-бромфенил)-1,3-тиазол-2-ил акрилонитрил (1м). Выход 93%, желто-зеленый мелкокристаллический порошок, т. пл. 170-172°С (т. пл. 157-158°С [39]). ИК спектр, ν , см⁻¹: 2214 сл (С≡N). Спектр ЯМР ¹Н (ДМСО- d_6), δ , м. д.: 7.67 д (2H, H³, H⁵, Ar¹, ${}^3J_{\rm HH}$ 8.6 Γ ц), 7.79 д $^{3}J_{\rm HH}$ 8.6 Гц), 7.98 д (2H, H², H⁶, Ar², $^{3}J_{\rm HH}$ 8.6 Гц), 8.33 с, 8.36 с (2H, H⁵, тиазол, =CH). Спектр ЯМР ¹³С DEPTQ (ДМСО- d_6), δ_C , м. д.: 105.5 (СС≡N), 116.1 (C≡N), 117.1* (С⁵, тиазол), 121.8 (С–Br), 125.5 (C-Br), 128.2* (2C, Ar), 131.6* (2C, Ar), 131.7 (C¹, Ar), 131.8* (2C, Ar), 132.3* (2C, Ar), 132.5 (C¹, Ar), 144.2* (=CH), 154.1 (С⁴, тиазол), 162.3 (С², тиазол). Найдено, %: С 48.60; Н 2.37; N 6.14. С₁₈H₁₀Br₂N₂S. Вычислено, %: С 48.46; H 2.26; N 6.28. *M* 446.17.

(2E)-3-(2.5-Диметоксифенил)-2-[4-(3.4-диметоксифенил)-1,3-тиазол-2-ил]акрилонитрил (1н). Выход 90%, оранжевый мелкокристаллический порошок, т. пл. 148–150°С. ИК спектр, v. см $^{-1}$: 2210 сл (С≡N). Спектр ЯМР 1 Н (ДМСО- d_{6}), δ , м. д.: 3.77 c, 3.80 c, 3.84 c, 3.87 c (12H, MeO), 7.05 д {1H, H⁵, Ar¹ [3,4-(MeO)₂C₆H₃], ${}^{3}J_{HH}$ 8.4 Γ ц}, 7.13 д {1H, H^3Ar^2 [2,5-(MeO)₂C₆H₃], $^3J_{HH}$ 8.9 Гц), 7.16 д. д (1H, H⁴, Ar², ${}^{3}J_{HH}$ 8.9, ${}^{4}J_{HH}$ 2.7 Гц), 7.54 д (1H, H^2 , Ar^1 , ${}^4J_{\mathrm{HH}}$ 2.1 Гц), 7.57 д. д (1H, H^6 , Ar^1 , ${}^3J_{\mathrm{HH}}$ 8.4, $^4J_{\rm HH}$ 2.1 Γ ц), 7.67 д (1H, H 6 , Ar 2 , $^4J_{\rm HH}$ 2.7 Γ ц), 8.18 с, 8.42 с (2H, H⁵, тиазол, =CH). Спектр ЯМР ¹³С DEPTQ (ДМСО- d_6), δ_C , м. д.: 55.5*, 55.6*, 55.6* (3MeO), 56.3* (MeO), 105.1 $(\underline{C}C \equiv N)$, 109.8* (Ar^1) , $111.9* (Ar^1), 112.7* (Ar^2), 113.1* (Ar^2), 114.3* (C^5)$ тиазол), 116.5 (C \equiv N), 119.0* (Ar¹), 119.3* (Ar²), 121.3 (C^1 , Ar^1 или Ar^2), 126.3 (C^1 , Ar^2 или Ar^1), 138.9* (=CH), 148.9, 149.3, 152.6, 152.8 (4<u>C</u>-OMe), 155.6 (С⁴, тиазол), 161.8 (С², тиазол). Найдено, %: С 64.54; Н 5.07; N 7.00. С₂₂Н₂₀N₂О₄S. Вычислено, %: C 64.69; H 4.94; N 6.86. M 408.48.

(2E)-3-(3-Бром-4-гидрокси-5-метоксифенил)-2-[4-(4-этилфенил)-1,3-тиазол-2-ил]акрилонитрил (10). Выход 77%, ярко-желтый мелкокристаллический порошок, т. пл. 203-205°С. ИК спектр, v, см⁻¹: 3292 ш (ОН), 2222 сл (С≡N). Спектр ЯМР 1 Н (ДМСО- d_{6}), δ , м. д.: 1.20 т (3H, CH₂Me, $^{3}J_{\rm HH}$ 7.6 Гц), 2.64 к (2H, С $\underline{\rm H}_{2}$ Me, $^{3}J_{\rm HH}$ 7.6 Гц), 3.90 с (3H, MeO), 7.30 д [2H, H³, H⁵, Ar¹ (4-EtC₆H₄), ${}^{3}J_{HH}$ 8.2 Гц], 7.75 д [1H, H^{6, Ar2} (3-Br-4-HO-5-MeC₆H₂), $^{4}J_{HH}$ 2.0 Гц], 7.91–7.93 м (3H, H², Ar² и H², H⁶, Ar¹), 8.15 c, 8.21 c (2H, H⁵, тиазол, =CH), 10.65 уш. с (1H, OH). Спектр ЯМР 13 С DEPTQ (ДМСО- d_6), δ_C , м. д.: 15.4 (CH₂Me), 27.9* (<u>C</u>H₂Me), 56.3 (MeO), 102.1* (CC \equiv N), 109.6* (CBr), 112.3 (Ar²), 114.7 (C⁵, тиазол), 116.9* (C \equiv N), 124.6* (C¹, Ar²), 126.2 (2C, Ar^{1}), 127.4 (C, Ar^{2}), 128.2 (2C, Ar^{1}), 131.0* (C^{1} , Ar^{1}), 143.8 (=CH), 144.2* (C⁴, Ar¹), 147.5*, 148.2*, 155.4* $(C^4$, тиазол, <u>С</u>-OMe, OH), 162.4* (C^2 , тиазол). Найдено, %: С 57.43; H 4.05; N 6.66. C₂₁H₁₇BrN₂O₂S. Вычислено, %: С 57.15; Н 3.88; N 6.35. М 441.35.

(2*E*)-3-(3-Бром-4-гидрокси-5-метоксифенил)-2-[4-(2-оксо-2*H*-хромен-3-ил)-1,3-тиазол-2-ил]акрилонитрил (1п). Выход 95%, ярко-желтый мелкокристаллический порошок, т. пл. > 300°C (разл.). ИК спектр, ν , см⁻¹: 3423 ш (ОН), 2206 сл (С \equiv N), 1700 ср (С \equiv O). Спектр ЯМР ¹Н (ДМСО- d_6), δ , м. д.: 3.90 с (3H, MeO), 7.41 д. д (1H, H⁶, хромен-

3-ил, $^3J_{\rm HH}$ 7.3, $^3J_{\rm HH}$ 7.6 Гц), 7.48 д (1H, H 8 , хромен-3-ил, ${}^3J_{\rm HH}$ 8.3 Гц), 7.66 м (1H, H⁷, хромен-3-ил, ${}^3J_{\rm HH}$ 7.3, ${}^{3}J_{HH}$ 8.3, ${}^{4}J_{HH}$ 1.1 Гц), 7.76 д (1H, H⁶, Ar, ${}^{4}J_{HH}$ 1.5 Γ ц), 7.93–7.94 м (2H, H², Ar, H⁵ хромен-3-ил), 8.28 с, 8.51 с, 8.86 с (3H, =СН-, Н⁴, хромен-3-ил, H⁵, тиазол), 10.71 уш. с (1H, OH). Спектр ЯМР ¹³С DEPTQ (ДМСО-d₆), δ_C, м. д.: 56.3* (MeO), 101.4 (CC≡N), 109.7 (CBr), 112.1* (Ar), 116.0* (С⁵, тиазол), 116.9 (C \equiv N), 119.0, 119.9 (С³, С⁴⁽¹⁾, хромен-3ил), 121.1* (хромен-3-ил), 124.3 (C^1 , Ar), 124.9 (C^6 , хромен-3-ил), 127.8* (Аг), 129.2* (хромен-3-ил), 132.3 * (хромен-3-ил), 140.1* (С⁴, хромен-3-ил),144.8* (=CH-), 148.2, 148.3 (С⁴, тиазол, С⁸⁽¹⁾, хромен-3-ил), 152.7 (С-ОМе), 158.8 (С-ОН, С², хромен-3-ил), 162.5 (С², тиазол). Найдено, %: С 54.74; H 2.61; N 6.01. С₂₂H₁₃BrN₂O₄S. Вычислено, %: С 54.90; H 2.72; N 5.82. M 481.33.

(2E)-3-(3-Бензилокси-4-метоксифенил)-2-[4-(2-оксо-2*H*-хромен-3-ил)-1,3-тиазол-2-ил]акрилонитрил (1р). Выход 93%, желто-зеленый мелкокристаллический порошок, т. пл. 261-263°C. ИК спектр, v, см⁻¹: 2218 сл (C \equiv N), 1720 ср (C \equiv O). Спектр ЯМР 1 Н (ДМСО- d_{6}), δ , м. д.: 3.88 с (3H, MeO), 5.15 c (2H, OC $\underline{\text{H}}_{2}$ Ph), 7.23 д (1H, H⁵, Ar, ${}^{3}J_{\text{HH}}$ 8.8 Γ ц), 7.35 т (1H, H⁴, Ph, $^{3}J_{HH}$ 7.2 Γ ц), 7.40–7.44 м (3H, H^3 , H^5 , Ph и H^6 , хромен-3-ил), 7.48–7.50 м $(3H, H^2, H^6, Ph и H^8, xромен-3-ил), 7.67 д. д (1H,$ ${
m H}^7$, хромен-3-ил, ${}^3J_{
m HH}$ 7.6, ${}^3J_{
m HH}$ 8.1 Γ ц), 7.77 д. д (1H, H⁶, Ar, ${}^3J_{\rm HH}$ 8.8, ${}^4J_{\rm HH}$ 1.5 Гц), 7.86 д (1H, H², Ar, ${}^4J_{\rm HH}$ 1.5 Гц), 7.95 уш. д (1H, H⁵, хромен-3-ил, $^{3}J_{\rm HH}$ 8.1 Гц), 8.33 с, 8.52 с, 8.88 с (3H, =CH, H⁵, тиазол, H^4 , хромен-3-ил). Спектр ЯМР 13 С DEPTQ (ДМСО- d_6), δ_C , м. д.: 55.9* (MeO), 70.0 (ОС \underline{H}_2 Ph), 101.2 (CC = N), 112.3* (Ar), 114.3* (Ar), 116.0* (C⁵),тиазол), 117.0 (С≡N), 119.0 (хромен-3-ил), 121.0* (хромен-3-ил), 124.9* (Ar), 125.0 (С⁴⁽¹⁾, хромен-3ил), 125.2* (хромен-3-ил), 128.0* (2С, Рh), 128.1* (C⁴, Ph), 128.5* (2C, Ph), 129.2* (хромен-3-ил), 129.7 (C^1 , Ar), 132.3* (хромен-3-ил), 136.4 ($C^{1, Ph}$), 140.1* (С⁴, хромен-3-ил), 146.0* (=CH-), 147.7 (C³, Ar), 148.2 (С⁴, тиазол), 152.7 (<u>С</u>-ОМе), 158.3 $(C^{8(1)}, xpoмeн-3-ил), 158.8 (C^2, xpoмeн-3-ил), 162.8$ (С², тиазол). Найдено, %: С 70.94; Н 4.37; N 5.56. С₂₉Н₂₀N₂O₄S. Вычислено, %: С 70.72; Н 4.09; N 5.69. M 492.56.

(2*E*)-3-(5-Бромфур-2-ил)-2-[4-(4-фторфенил)-1,3-тиазол-2-ил]акрилонитрил (1с). Выход 75%, бежево-оранжевый мелкокристаллический поро-

шок, т. пл. 160–162°С. ИК спектр, v, см⁻¹: 2214 сл (С≡N). Спектр ЯМР ¹Н (ДМСО- d_6), δ , м. д.: 6.95 д (1H, H³, фур-2-ил, $^3J_{\rm HH}$ 3.4 Гц), 7.28 д и 7.30 д (2H, H³, H⁵, Ar, $^3J_{\rm HH}$ 8.8 Гц), 7.33 д (1H, H⁴, фур-2-ил, $^3J_{\rm HH}$ 3.4 Гц), 8.03 д и 8.05 д (2H, H², H⁶, Ar, $^3J_{\rm HH}$ 8.8 Гц), 8.08 с, 8.22 с (2H, H⁵, тиазол, =CH). Спектр ЯМР ¹³С DEPTQ (ДМСО- d_6), $\delta_{\rm C}$, м. д.: 100.1* (СС≡N), 115.6, 115.9 (2C, Ar), 115.8 (С⁵, тиазол), 115.9* (наложение сигналов С≡N и СВг), 116.1 (С⁴, фур-2-ил), 123.0 (=CH), 128.3 (С³, фур-2-ил), 128.4, 128.6 (2C, Ar), 150.7*, 154.4* (С², тиазол), 161.0*, 163.4* (С-F), 161.9* (С², фур-2-ил). Найдено, %: С 51.8; H 2.00; N 7.65. С $_{16}$ H₈BrFN₂OS. Вычислено, %: С 51.22; H 2.15; N 7.47. *M* 375.22.

(2E)-2-[4-(3,4-Метилендиоксифенил)-1,3-тиазол-2-ил]-3-(5-метилфур-2-ил)акрилонитрил (1т). Выход 76%, желто-оранжевый мелкокристаллический порошок, т. пл. 167–169°С. ИК спектр, v, см $^{-1}$: 2220 сл (C≡N). Спектр ЯМР 1 Н (ДМСО- d_{6}), δ, м. д.: 2.41 c (3H, Me), 6.06 c (2H, CH₂), 6.48 д $(1H, H^4, фур-2-ил, {}^3J_{HH} 3.0 \Gamma ц), 6.99 д (1H, H^5, Ar,$ $^3J_{\rm HH}$ 8.6 Гц), 7.26 д (1H, H 3 , фур-2-ил, $^3J_{\rm HH}$ 3.0 Гц), 7.55-7.56 m (2H, H², H⁶, Ar), 8.04 c, 8.05 c (2H, H^5 , тиазола, =CH). Спектр ЯМР 13 С DEPTQ (ДМ- $CO-d_6$), δ_C , м. д.: 13.9 (Me), 97.7* (<u>С</u>С≡N), 101.3* (OCH₂O), 106.5 (Ar), 108.5 (Ar), 110.9 (C⁴, Het), 113.8 (C^5 , тиазол), 116.6* (C≡N), 120.3 (Ar), 122.9 (=CH-), 127.8* (C^1, Ar) , 129.4 (C^3, Het) , 147.5*, 147.6*, 147.8*, 155.1*, 158.3*, 162.0* (C³, C⁴, Ar; C^2 , C^5 , Het; C^2 , C^4 , тиазол). Найдено, %: C 64.56; H 3.77; N 8.47. C₁₈H₁₂N₂O₃S. Вычислено, %: С 64.27; H 3.60; N 8.33. *M* 336.37.

Общая методика синтеза (2*E*)-3-арил(гетарил)-2-[5-бром-4-арил(гетарил)-1,3-тиазол-2-ил]акрилонитрилов (6а-м). *а*. К раствору или суспензии 5 ммоль, тиазолилакрилонитрила 1а-м в 10 мл ДМФА медленно по каплям добавляли 0.31 мл (6 ммоль) брома. Реакционную смесь незамедлительно фильтровали через складчатый бумажный фильтр. Через 12 ч осадок 5-бромтиазола отфильтровывали, промывали этанолом и гексаном, сушили 3 ч при 60°С.

 δ . Смесь 5 ммоль альдегида **1a**, **6**, 0.5 г (5 ммоль) цианотиоацетамида **5** и 1 капли триэтиламина в 10 мл ДМФА перемешивали 5 мин, затем добавляли 5 ммоль α -бромкетона **3a**—д. Полученную смесь доводили до кипения, затем охлаждали до комнатной температуры, добавляли 0.31 мл (6 ммоль) брома

и незамедлительно фильтровали через складчатый бумажный фильтр. Через 12 ч осадок отфильтровывали, промывали этанолом и гексаном, сушили при 3 ч при 60°C.

(2Е)-2-[5-Бром-4-(4-бромфенил)-1,3-тиазол-2-ил]-3-тиен-2-илакрилонитрил (6а). Выход 79% (метод a), 75% (метод δ), ярко-желтый мелкокристаллический порошок, т. пл. 215-217°C. ИК спектр, v, см⁻¹: 2210 сл (С \equiv N). Спектр ЯМР ¹Н (ДМСО- d_6), δ , м. д.: 7.33 д. д (1H, H⁴, тиен-2-ил, $^{3}J_{\rm HH}$ 3.9, $^{3}J_{\rm HH}$ 4.8 Гц), 7.74 д (2H, H³, H⁵, Ar, $^{3}J_{\rm HH}$ 8.4 Γ ц), 7.87 д (2H, H², H⁶, Ar, $^{3}J_{\text{HH}}$ 8.4 Γ ц), 7.95 д (1H, H^5 , тиен-2-ил, $^3J_{\rm HH}$ 3.9 Гц), 8.10 д (1H, H^3 , тиен-2-ил, $^3J_{\rm HH}$ 4.8 Гц), 8.54 с (1H, =CH). Спектр ЯМР 13 С DEPTQ (ДМСО- d_6), δ_C , м. д.: 100.6 $(CC \equiv N)$, 105.7 $(C^5$, тиазол-2-ил), 116.4 $(C \equiv N)$, 122.9 (C-Br, Ar), 129.2* (С², С⁶, Ar), 130.7* (С⁴, тиен-2ил), 132.0 (C¹, Ar), 132.1* (C³, C⁵, Ar), 135.4* (C³, тиен-2-ил), 136.8 (\mathbb{C}^2 , тиен-2-ил), 138.4* (\mathbb{C}^5 , тиен-2-ил), 139.9* (=СН), 151.8 (С4, тиазол-2-ил), 162.6 (C², тиазол-2-ил). Найдено, %: С 42.29; Н 2.02; N 6.45. С₁₆Н₈Вг₂N₂S₂. Вычислено, %: С 42.50; Н 1.78; N 6.20. M 452.19.

(2E)-2-[5-Бром-4-(4-[4-хлорфенил)-1,3-тиазол-2-ил]-3-тиен-2-илакрилонитрил (6б). Выход 85% (метод *a*), 81% (метод *б*), ярко-желтый мелкокристаллический порошок, т. пл. 205-207°С. ИК спектр, v, см⁻¹: 2220 сл (С \equiv N). Спектр ЯМР ¹Н (ДМСО- d_6), δ , м. д.: 7.32 д. д (1H, H⁴, тиен-2-ил, $^{3}J_{\rm HH}$ 3.7, $^{3}J_{\rm HH}$ 4.9 Гц), 7.60 д (2H, H³, H⁵, Ar, $^{3}J_{\rm HH}$ $8.7 \,\Gamma$ ц), $7.95-7.97 \,\mathrm{m}$ (3H, H^2 , H^6 , Ar; H^5 , тиен-2-ил), 8.10 д (1H, H³, тиен-2-ил, ${}^{3}J_{\text{HH}}$ 4.9 Гц), 8.54 с (1H, =CH). Chektp SMP 13 C DEPTQ (ZMCO- d_6), δ_C , м. д.: 100.1 (СС≡N), 105.1 (С⁵, тиазол-2-ил), 116.0 (C≡N), 128.7* (C^2, C^6, Ar) , 130.0* $(C^4, Tиен-2-ил;$ C^3 , C^5 , Ar), 131.2 (C^1 , Ar), 133.7 (C–Cl), 134.9* (C^3 , тиен-2-ил), 136.3 (\mathbb{C}^2 , тиен-2-ил), 137.8* (\mathbb{C}^5 , тиен-2-ил), 139.4* (=CH), 151.3 (С⁴, , тиазол-2-ил), 162.1(C², тиазол-2-ил). Найдено, %: С 47.38; Н 2.12; N 6.98. С₁₆H₈BrClN₂S₂. Вычислено, %: С 47.13; Н 1.98; N 6.87. M 407.74.

(2*E*)-2-[5-бром-4-(1,1'-бифенил-4-ил)-1,3-тиазол-2-ил]-3-тиен-2-илакрилонитрил (6в). Выход 82% (метод *а*), 75% (метод *б*), желто-оранжевый мелкокристаллический порошок, т. пл. 190–192°С. ИК спектр, v, см⁻¹: 2216 сл (С≡N). Спектр ЯМР ¹Н (ДМСО- d_6), δ , м. д.: 7.32 д. д (1H, H⁴, тиен-2-ил, $^3J_{\rm HH}$ 3.7, $^3J_{\rm HH}$ 4.9 Гц), 7.40 т (1H, Ph, $^3J_{\rm HH}$ 7.5 Гц), 7.49 д. д (2H, Ph, ${}^3J_{\rm HH}$ 7.5, ${}^3J_{\rm HH}$ 7.9 Гц), 7.74 д (2H, Ph, ${}^3J_{\rm HH}$ 7.9 Гц), 7.82 д (2H, Ar, ${}^3J_{\rm HH}$ 8.3 Гц), 7.95 д (1H, H⁵, тиен-2-ил, ${}^3J_{\rm HH}$ 3.7 Гц), 8.04 д (2H, Ar, ${}^3J_{\rm HH}$ 8.3 Гц), 8.10 д (1H, H³, тиен-2-ил, ${}^3J_{\rm HH}$ 4.9 Гц), 8.54 с (1H, =CH). Спектр ЯМР 13 С DEPTQ (ДМСО- d_6), $\delta_{\rm C}$, м. д.: 100.3 (СС=N), 104.6 (С⁵, тиазол-2-ил), 116.0 (С=N), 126.7* (2C, Ar), 126.8* (2C, Ar), 127.9* (С⁴, Ar), 128.7* (С⁴, тиен-2-ил), 128.8* (2C, Ar), 129.0* (2C, Ar), 131.4 (Ar), 134.8* (С³, тиен-2-ил), 136.4 (С², тиен-2-ил), 137.8* (С⁵, тиен-2-ил), 139.2* (=CH), 139.3 (Ar), 140.5 (Ar), 152.1 (С⁴, тиазол-2-ил), 161.9 (С², тиазол-2-ил). Найдено, %: С 59.06; Н 3.09; N 6.39. С $_{\rm 22}$ Н $_{\rm 13}$ ВгN $_{\rm 2}$ S $_{\rm 2}$. Вычислено, %: С 58.80; Н 2.92; N 6.23. M 449.39.

(2E)-2-(5-Бром-4-тиен-2-ил-1,3-тиазол-2-ил)-3-тиен-2-илакрилонитрил (6г). Выход 85% (метод a), 78% (метод δ), желтый мелкокристаллический порошок, т. пл. 185-187°С. ИК спектр, v, см $^{-1}$: 2221 сл (C≡N). Спектр ЯМР 1 Н (ДМСО- d_{6}), δ , м. д.: 7.31–7.34 м (2H, H⁴, тиен-2-ил¹, H⁴, тиен-2-ил²), 7.67 д (1H, H³, тиен-2-ил¹, ${}^{3}J_{\text{HH}}$ 4.0 Гц), 7.76д (1H, H⁵, тиен-2-ил², $^3J_{\rm HH}$ 3.9 Гц), 7.95 д (1H, H⁵, тиен-2-ил¹, ${}^{3}J_{HH}$ 3.4 Гц), 8.11 д (1H, H³, тиен-2-ил², $^3J_{\rm HH}$ 4.9 Гц), 8.49 с (1H, =CH). Спектр ЯМР 13 С DEPTQ (ДМСО- d_6), $δ_C$, м. д.: 99.8 (СС≡N), 113.8 $(C^5$, тиазол-2-ил), 115.8 $(C \equiv N)$, 127.8*, 128.2*, 131.4* (3С, тиен-2-ил), 135.2* (тиен-2-ил), 136.3, 136.8 (2С², тиен-2-ил), 138.0*, 139.6* (2С, тиен-2ил), 140.6* (=СН), 146.0 (С⁴, тиазол-2-ил), 162.5 (C², тиазол-2-ил). Найдено, %: С 44.18; Н 2.01; N 7.26. С₁₄H₇BrN₂S₃. Вычислено, %: С 44.33; Н 1.86; N 7.39. M 379.32.

(2*E*)-3-(4-Бромфенил)-2-[5-бром-4-(4-хлорфенил)-1,3-тиазол-2-ил акрилонитрил (бд). Выход 89% (метод a), 74% (метод δ), светло-зеленый мелкокристаллический порошок, т. пл. 141–143°С. ИК спектр, v, см⁻¹: 2223 сл (С \equiv N). Спектр ЯМР 1 Н (CDCl₃), δ , M. д.: 7.50 д [2H, H³, H⁵, Ar¹ (4-ClC₆H₄), $^{3}J_{\rm HH}$ 8.4 Гц], 7.67 д (2H, H², H⁶, Ar¹, $^{3}J_{\rm HH}$ 8.4 Гц), 7.71 д [2H, H³, H⁵, Ar² (4-BrC₆H₄), ${}^{3}J_{\text{HH}}$ 8.4 Гц], 7.82 д (2H, H², H⁶, Ar¹, ${}^{3}J_{HH}$ 8.4 Гц), 8.18 с (1H, =CH). Спектр ЯМР ¹³С DEPTQ (CDCl₃), $\delta_{\rm C}$, м. д.: 102.1 $(\underline{CC} \equiv N)$, 109.6 (C^5 , тиазол-2-ил), 115.9 ($C \equiv N$), 128.8 (CBr), 130.9* (C², C⁶, Ar¹), 131.4, 131.6 (2 C¹, Ar¹ и Ar^2), 131.9* (C^3 , C^5 , Ar^1), 133.7* (C^2 , C^6 , Ar^2), 134.9* (C^3, C^5, Ar^2) , 138.9 (CCl), 151.1* (=CH), 153.1 (C^4 , тиазол-2-ил), 166.2 (С², тиазол-2-ил). Найдено, %: С 44.81; H 2.01; N 5.63. C₁₈H₉Br₂ClN₂S. Вычислено, %: 44.98; Н 1.89; N 5.83. М 480.61.

(2*E*)-2-[5-Бром-4-(4-метоксифенил)-1,3-тиазол-2-ил]-3-(4-бромфенил)-акрилонитрил (6е). Выход 88% (метод a), 79% (метод δ), мелкокристаллический порошок лимонного цвета, т. пл. 208–210°С. ИК спектр, v, см⁻¹: 2221 сл (С \equiv N). Спектр ЯМР 1 Н (ДМСО- d_6), δ , м. д.: 3.82 с (3H, MeO), 7.08 д [2H, H³, H⁵, Ar¹ (4-MeOC₆H₄), $^3J_{\rm HH}$ 8.7 Гц], 7.80 д [2H, H³, H⁵, Ar² (4-BrC₆H₄), $^3J_{\rm HH}$ 8.6 Гц], 7.88 д (2H, H², H⁶, Ar¹, $^3J_{\rm HH}$ 8.7 Гц), 7.96 д (2H, H², H⁶, Ar², $^3J_{\rm HH}$ 8.6 Гц], 8.27 с (1H, =CH). Найдено, %: С 48.16; H 2.66; N 6.10. С $_{19}$ H₁₂Br₂N₂OS. Вычислено, %: С 47.92; H 2.54; N 5.88. M 476.19.

(2E)-2-[5-Бром-4-(4-метоксифенил)-1,3-тиазол-2-ил]-3-(2,5-диметоксифенил)акрилони**трил (6ж).** Выход 82% (метод *a*), желто-коричневый мелкокристаллический порошок, т. пл. 171–173°С. ИК спектр, v, см⁻¹: 2212 сл (С≡N). Спектр ЯМР 1 Н (ДМСО- d_{6}), δ , м. д.: 3.77 с, 3.82 c, 3.85 c (9H, 3MeO), 7.08 д [2H, H³, H⁵, Ar¹ $(4-MeOC_6H_4)$, $^3J_{HH}$ 8.7 Гц], 7.14 д {1H, H³, Ar² [2,5-(MeO)₂C₆H₃], $^3J_{\rm HH}$ 9.0 $^{\circ}$ Ги}, 7.19 д. д (1H, H⁴, Ar^2 , ${}^3J_{HH}$ 9.0, ${}^4J_{HH}$ 2.7 Гц), 7.66 д (1H, H⁶, Ar², ${}^4J_{HH}$ 2.7 Гц), 7.86 д (2H, H², H⁶, Ar¹, ${}^{3}J_{HH}$ 8.7 Гц), 8.32 с (1H, =CH). Спектр ЯМР 13 С DEPTQ (ДМСО- d_6), δ_C, м. д.: 55.3*, 55.6*, 56.4* (3MeO), 103.7, 104.6 Ar^2), 114.0* (2C, Ar^1), 116.0 (C \equiv N), 119.9* (C⁶, Ar^2), 121.1, 124.8 (2C¹, Ar¹ и Ar²), 129.8* (2C, Ar¹), 139.8* (=CH), 152.8 (2C-OMe), 155.4 $(C^4$, тиазол-2-ил), 159.7 (C-OMe), 161.7 (С², тиазол-2-ил). Найдено, %: C 55.36; H 3.92; N 6.32. C₂₁H₁₇BrN₂O₃S. Вычислено, %: С 55.15; Н 3.75; N 6.13. *M* 457.35.

(2*E*)-2-[5-Бром-4-(4-метилфенил)-1,3-тиазол-2-ил]-3-(4-этоксифенил)-акрилонитрил (63). Выход 88% (метод *a*), желтый мелкокристаллический порошок, т. пл. 163–165°С. ИК спектр, v, см $^{-1}$: 2215 сл (С \equiv N). Спектр ЯМР 1 Н (ДМСО- 2 d₆), 3 6, м. д.: 1.35 т (3H, OCH $_{2}$ Me, 3 J_{HH} 7.0 Гц), 2.37 с (3H, Me), 4.14 к (2H, OCH $_{2}$ Me, 3 J_{HH} 7.0 Гц), 7.13 д [2H, H $_{2}$, H $_{3}$, H $_{5}$, Ar $_{1}$ (4-MeC $_{6}$ H $_{4}$), 3 J_{HH} 8.8 Гц], 7.83 д (2H, H $_{2}$, H $_{6}$, Ar $_{2}$, 3 J_{HH} 8.1 Гц), 8.04 д (2H, H $_{2}$, H $_{6}$, Ar $_{1}$, 3 J_{HH} 8.8 Гц), 8.17 с (1H, =CH). Спектр ЯМР $_{1}$ 3C DEPTQ (ДМСО- 2 d₆), 3 6, м. д.: 14.5* (ОСН $_{2}$ Me), 20.9* (Me), 63.7 (ОСН $_{2}$ Me), 100.9 (СС \equiv N), 103.7 (С $_{2}$ 5, тиазол-2-ил), 115.3* (2C, Ar $_{2}$), 116.4 (С \equiv N), 124.8 (С $_{1}$, Ar $_{2}$), 128.2* (2C, Ar $_{2}$), 129.1* (2C, Ar $_{1}$),

129.7 (C^1Ar^1), 132.5* (2C, Ar^1), 138.6 (C^4 , Ar^1), 145.9* (=CH), 152.5 (C^4 , тиазол-2-ил), 161.9, 162.6 (C^4 , Ar^2 и C^2 , тиазол-2-ил). Найдено, %: С 59.11; H 4.20; N 6.76. $C_{21}H_{17}BrN_2OS$. Вычислено, %: С 59.30; H 4.03; N 6.59. M 425.35.

(2E)-3-(3-Бром-4-гидрокси-5-метоксифенил)-2-[5-бром-4-(3,4-диметилфенил)-1,3-тиазол-2-ил]акрилонитрил (би). Выход 75% (метод а), коричневый мелкокристаллический порошок, т. пл. 187–189°С. ИК спектр, v, см⁻¹: 3301 ш (ОН), 2222 сл (С \equiv N). Спектр ЯМР 1 Н (ДМСО- d_{6}), δ , м. д.: 2.28 уш. с (6H, Ме), 3.88 с (3H, МеО), 7.26 уш. псевдосинглет (1H), 7.63-7.72 м (3H), 7.88 с (1H) (Ar¹ и Ar²), 8.09 с (1H, =CH), 10.75 уш. с (1H, OH). Спектр ЯМР 13 С DEPTQ (ДМСО- d_6), δ_C , м. д.: 19.3*, 19.5* (2Me), 56.2* (MeO), 101.4 ($\underline{C}C \equiv N$), $103.8 (C^5, тиазол-2-ил), 109.6 (CBr), 112.1* (Ar^2),$ 116.3 (C≡N), 124.4 (C 1 , Ar 1), 125.7* (Ar 1 или Ar 2), 127.8* (Ar¹), 129.1* (Ar¹), 129.5* (Ar²), 129.9 (C¹, Ar² или Ar¹), 136.3, 137.3 (2CMe), 144.7* (=CH), 147.9, 148.1 (C-OMe, C-OH), 152.7 (С⁴, тиазол-2-ил), 162.1 (C², тиазол-2-ил). Найдено, %: С 48.76; H 3.34; N 5.49. С₂₁H₁₆Br₂ N₂O₂S. Вычислено, %: С 48.48; H 3.10; N 5.38. M 520.25.

(2E)-2-(5-Бром-4-фенил-1,3-тиазол-2-ил)-3-(4-хлорфенил)акрилонитрил (6к). Выход 92% (метод а), светло-зеленый мелкокристаллический порошок, т. пл. 175–177°С. ИК спектр, v, см⁻¹: 2224 сл (С≡N). Спектр ЯМР ¹Н (ДМСО-*d*₆), δ, м. д.: 7.48 т (1H, H⁴, Ph, $^3J_{\rm HH}$ 6.5 Γ ц), 7.54 д. д (2H, H^3 , H^5 , Ph, $^3J_{HH}$ 6.5, $^3J_{HH}$ 7.1 Γ ц), 7.66 д (2H, H^3 , $\rm H^5$, Ar, $^3J_{\rm HH}$ 8.3 Гц), 7.92 д (2H, $\rm H^2$, $\rm H^6$, Ph, $^3J_{\rm HH}$ 7.1 Гц), 8.04 д (2H, H², H⁶, Ar, ${}^{3}J_{HH}$ 8.3 Гц), 8.29 с (1H, =CH). Спектр ЯМР 13 С DEPTQ (ДМСО- d_6), δ_C , м. д.: 105.1, 105.6 ($\underline{C}C \equiv N$ и C^5 , тиазол-2-ил), 115.6 $(C \equiv N)$, 128.3* (2C, Ph), 128.6* (2C, Ph), 129.1* (C^4 , Ph), 129.4* (2C, Ar), 131.2 (CCl), 131.6* (2C, Ar), 132.3 (C¹, Ph), 136.7 (C¹, Ar), 144.9* (=CH), 152.7 $(C^4$, тиазол-2-ил), 161.9 $(C^2$, тиазол-2-ил). Найдено, %: С 54.00; H 2.75; N 7.10. С₁₈H₁₀BrClN₂S. Вычислено, %: С 53.82; H 2.51; N 6.97. M 401.71.

(2*E*)-3-(3-Бензилокси-4-метоксифенил)-2-[5-бром-4-(4-метилфенил)-1,3-тиазол-2-ил]акрилонитрил (6л). Выход 88% (метод a), оранжевый мелкокристаллический порошок, т. пл. 159–161°С. ИК спектр, v, см⁻¹: 2208 сл (С≡N). Спектр ЯМР ¹Н (ДМСО- d_6), δ , м. д.: 2.37 с (3H, Me), 3.87 с (3H, MeO), 5.13 с (2H, ОС \underline{H}_2 Ph), 7.21 д [1H, H⁵, Ar¹

 $(3-BnO-4-MeOC_6H_3)$, ${}^3J_{HH}$ 8.7 Гц], 7.33–7.36 м [3H, H^3 , H^5 , Ar^2 (4-MeC₆ H_4) и H^4 , Ph], 7.40 д. д (2H, H^3 , H^5 , Ph, $^3J_{HH}$ 7.1, $^3J_{HH}$ 7.3 Γц), 7.47 д (2H, H^2 , H^6 , Ph, $^{3}J_{\rm HH}$ 7.3 Гц), 7.74 д. д (1H, H⁶, Ar¹, $^{3}J_{\rm HH}$ 8.7, $^{4}J_{\rm HH}$ 1.6Γ ц), 7.80-7.84 м (3H, H^2 , Ar^1 и H^2 , H^6 , Ar^2), 8.17с (1H, =CH). Спектр ЯМР 13 С DEPTQ (ДМСО- d_6), $\delta_{\rm C}$, м. д.: 20.9* (Me), 55.9* (MeO), 70.0 (OCH₂Ph), 101.0 ($\underline{C}C$ \equiv N), 103.7 (C^5 , тиазол-2-ил), 112.3* (Ar¹), 114.3* (Ar¹), 116.5 (C \equiv N), 124.9 (C¹, Ar²), 125.3*(Ar¹), 128.0* (2C, Ar²), 128.1* (C⁴, Ph),128.2* (2C, Ph), 128.6* (2C, Ar²), 129.2* (2C, Ph), 129.7 (C¹, Ar^{1}), 136.4 (C^{1} , Ph), 138.6 ($C^{4}Ar^{2}$), 146.0* (=CH), 147.7 (\mathbb{C}^3 , \mathbb{A}^1), 152.5, 152.8 (\mathbb{C} -OMe, \mathbb{C}^4 , тиазол-2-ил), 162.5 (С², тиазол-2-ил). Найдено, %: С 62.44; H 4.23; N 5.60. С₂₇H₂₁BrN₂O₂S. Вычислено, %: С 62.67; H 4.09; N 5.41. M 517.45.

(2*E*)-2-[5-Бром-4-(4-бромфенил)-1,3-тиазол-2-ил]-3-(4-бромфенил)акрилонитрил (6м). Выход 88% (метод a), светло-зеленый мелкокристаллический порошок, т. пл. 252–254°С. ИК спектр, v, см⁻¹: 2224 сл (С≡N). Информативные спектры ¹Н и ¹³С ЯМР в ДМСО- d_6 или CDCl₃ получить не удалось из-за очень плохой растворимости соединения в этих растворителях. Найдено, %: С 41.46; Н 1.88; N 5.59. С₁₈H₉Br₃N₂S. Вычислено, %: С 41.18; Н 1.73; N 5.34. M 525.06.

Рентгеноструктурный анализ. Экспериментальный материал для соединения **16** ($C_{16}H_9CIN_2S_2$) получен на автоматическом четырехкружном дифрактометре Agilent Super Nova, Dual, Cu at zero, Atlas S2 при 293(2) К. Структура расшифрована прямым методом в комплексе программ Olex2 [48] и ShelXD [49], и уточнена с помощью пакета SHELXL [50]. Структура уточнена полноматричным МНК в анизотропном приближении для неводородных атомов по F^2 . Основные характеристики эксперимента и параметры элементарной ячейки соединения **16**: размер $0.551 \times 0.138 \times 0.125$ мм, кристаллическая система моноклинная, пространственная группа $P2_1/c$, M 328.82; параметры ячейки: *a* 17.6811(2) Å, *b* 5.56070(10) Å, *c* 16.5165(2) Å, β 112.563(2)°, V 1499.59(4) Å³, Z 4, $d_{\text{выч}}$ 1.456 г/см³, $\mu(CuK_a)$ 4.793 мм⁻¹, F(000) 672.0, область углов съемки θ 5.412–152.79°; интервалы индексов отражений: $-22 \le h \le 22$, $-6 \le k \le 4$, $-20 \le l \le 20$; число измеренных отражений 16443, число независимых отражений 3123 (R_{int} 0.0226, R_{sigma} 0.0132), число отражений с $I > 2\sigma(I)$ 3123, число уточняемых параметров 191; R-факторы [I>2 $\sigma(I)$]: R_1 0.0301 (wR_2 0.0816), R-факторы по всем отражениям: R_1 0.0323 (wR_2 0.0838), GOOF по F^2 1.053, $\Delta\rho_{\rm max}$ и $\Delta\rho_{\rm min}$ 0.24 и $-0.30~e^{\cdot} {\rm Å}^{-3}$. Результаты РСА соединения **16** депонированы в Кембриджский банк структурных данных (ССDC 2047238).

Экспериментальный материал для соединения 63 (C₂₁H₁₇BrN₂OS) получен на автоматическом четырехкружном дифрактометре Agilent Super Nova, Dual, Cu at zero, Atlas S2 при 293(2) K. Структура расшифрована прямым методом в комплексе программ Olex2 [48] и ShelXD [49], и уточнена с помощью пакета SHELXL [50]. Структура уточнена полноматричным МНК в анизотропном приближении для неводородных атомов по F^2 . Основные характеристики эксперимента и параметры элементарной ячейки соединения 63: размер $0.38 \times 0.134 \times 0.067$ мм, кристаллическая система моноклинная, пространственная группа $P2_{1}/n$, M 425.33; параметры элементарной ячейки: a 6.1987(2) Å, b 20.4716(8) Å, c 15.1233(5) Å, β 95.974(3)°, V 1908.68(12) Å³, Z 4, d_{BHY} 1.480 Γ/cm^3 , $\mu(CuK_{\alpha})$ 4.049 мм⁻¹, F(000) 864.0, область углов съемки θ 7.294–152.73°; интервалы индексов отражений: $-7 \le h \le 7$, $-25 \le k \le 25$, $-19 \le l \le 18$; число измеренных отражений 37966, число независимых отражений 3982 ($R_{\rm int}$ 0.0974, $R_{\rm sigma}$ 0.0407), число отражений с $I > 2\sigma(I)$ 3982, число уточняемых параметров 237; R-факторы [I>2 $\sigma(I)$]: R_1 0.0478 (w R_2 0.1347), R-факторы по всем отражениям: R_1 0.0537 $(wR_2\ 0.1387)$, GOOF по $F^2\ 1.028$, $\Delta\rho_{\rm max}$ и $\Delta\rho_{\rm min}\ 0.38$ и $-1.01 \ e^{A^{-3}}$. Результаты РСА соединения **63** депонированы в Кембриджский банк структурных данных (СССС 2047245).

ФОНДОВАЯ ПОДДЕРЖКА

Исследование выполнено при финансовой поддержке Кубанского научного фонда в рамках научного проекта МФИ-20.1-26/20 (заявка № МФИ-20.1/45) и Министерства образования и науки Российской Федерации (тема 0795-2020-0031).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 91 № 3 2021

СПИСОК ЛИТЕРАТУРЫ

- 1. *Paladhi S., Jana B., Pathak S., Mannab S.K.* // Arkivoc. 2019. P. 256. doi 10.24820/ark.5550190.p010.911
- Alneyadi S.S. // Heterocycles. 2018. Vol. 96. N 5. P. 803. doi 10.3987/REV-17-878
- Metwally M.A., Farahat A.A., Abdel-Wahab B.F. // J. Sulfur Chem. 2010. Vol. 31. N 4. P. 315. doi 10.1080/17415993.2010.482155
- Song Y.X., Du D.M. // Org. Biomol. Chem. 2020.
 Vol. 18. N 31. P. 6018. doi 10.1039/D0OB01261K
- Rouf A., Tanyeli C. // Eur. J. Med. Chem. 2015. Vol. 97.
 P. 911. doi 10.1016/j.ejmech.2014.10.058
- Tawfik S.S., Liu M., Farahat A.A. // Arkivoc. 2020. P. 180. doi 10.24820/ark.5550190.p011.308
- Chhabria M.T., Patel S., Modi P., Brahmkshatriya P.S. // Curr. Top. Med. Chem. 2016. Vol. 16. N 26. P. 2841. doi 10.2174/1568026616666160506130731
- 8. *Ali S.H., Sayed A.R.* // Synth. Commun. 2020. doi 10.1080/00397911.2020.1854787
- de Souza M.V.N. // J. Sulfur Chem. 2005. Vol. 26. N 4–5.
 P. 429. doi 10.1080/17415990500322792
- Mishra R., Sharma P.K., Verma P.K., Tomer I., Mathur G., Dhakad P.K. // J. Heterocycl. Chem. 2017. Vol. 54. N 4. P. 2103. doi 10.1002/jhet.2827
- 11. *Zhong J.* // Nat. Prod. Rep. 2013. Vol. 30. P. 869. doi 10.1039/c3np70006b
- 12. Sundeep K.M., Ramandeep K., Rohit B., Kapil K., Virender S., Ravi S., Rupinder K., Ravindra K.R. // Bioorg. Chem. 2017. Vol. 75. P. 406. doi 10.1016/j. bioorg.2017.10.014
- Hui-Zhen Z., Lin-Ling G., Hui W., Cheng-He Z. // Mini Rev. Med. Chem. 2017. Vol. 17. N 2. P. 122. doi 10.21 74/1389557516666160630120725
- Preeti A., Rakesh N., Surendra K.N., Sachin K.S., Vikramjeet J. // Med. Chem. Res. 2016. Vol. 25. P.1717. doi 10.1007/s00044-016-1610-2
- 15. Дяченко В.Д., Дяченко И.В., Ненайденко В.Г. // Усп. хим. 2018. Т. 87. № 1. С. 1; Dyachenko V.D., Dyachenko I.V., Nenajdenko V.G. // Russ. Chem. Rev. 2018. Vol. 87. N 1. P. 1. doi 10.1070/RCR4760
- 16. *Магерамов А.М., Шихалиев Н.Г., Дяченко В.Д., Дяченко И.В., Ненайденко В.Г.* α-Цианотиоацетамид. М.: Техносфера, 2018. 224 с.
- Abd El-Gilil Sh.M. // J. Mol. Struct. 2019. Vol. 1194.
 P. 144. doi 10.1016/j.molstruc.2019.04.048
- 18. Suntsova P.O., Eltyshev A.K., Pospelova T.A., Slepukhin P.A., Benassi E., Belskaya N.P. // Dyes Pigm. 2019. Vol. 166. P. 60. doi 10.1016/j.dyepig.2019.02.051
- Bashandy M.S., Abd El-Gilil Sh.M. // Heterocycles. 2016. Vol. 92. N 3. P. 431. doi 10.3987/COM-15-13384
- Hussain S.M., El-Reedy A.M., El-Sharabasy S.A. // Tetrahedron. 1988. Vol. 44. N 1. P. 241. doi 10.1016/ S0040-4020(01)85113-9

- 21. Дяченко В.Д. Литвинов В.П. // ХГС. 1998. № 2. C. 213; *Dyachenko V.D., Litvinov V.P.* // Chem. Heterocycl. Compd. 1998. Vol. 34. N 2. P. 188. doi 10.1007/BF02315182
- 22. Кривоколыско С.Г., Дяченко В.Д., Нестеров В.Н., Литвинов В.П. // ХГС. 2001. № 7. С. 929; Krivokolysko S.G., Dyachenko V.D., Nesterov V.N., Litvinov V.P. // Chem. Heterocycl. Compd. 2001. Vol. 37. N 2. P. 855. doi 10.1023/A:1012499424379
- 23. Дяченко В.Д., Литвинов В.П. // ЖОрХ. 1998. Т. 34. Вып. 4. С. 592; *Dyachenko V.D., Litvinov V.P.* // Russ. J. Org. Chem. 1998. Vol. 34. N 4. P. 557.
- 24. Дяченко В.Д., Кашнер А.Ю., Самусенко Ю.В. // ЖОХ. 2014. Т. 84. № 2. С. 266.; Dyachenko V.D., Kashner A.Yu., Samusenko Yu. V. // Russ. J. Gen. Chem. 2014. Vol. 84. N 2. P. 259. doi 10.1134/S1070363214020169
- 25. Гончаренко М.П., Шаранин Ю.А., Туров А.В. // ЖОрХ. 1993. Т. 29. № 8. С. 1610; Goncharenko М.Р., Sharanin Yu.A., Turov A.V. // Russ. J. Org. Chem. 1993. Vol. 29. N. 8. P. 1341.
- Nesterov V.N., Montoya N.G., Antipin M.Yu., Sanghadasa M., Clark R.D., Timofeeva T.V. // Acta Crystallogr. (C). 2002. Vol. 58. P. 072. doi 10.1107/ S0108270101020170
- Khafagy M.M., El-Maghraby A.A., Hassan S.M., Bashandy M.S. // Phosphorus, Sulfur, Silicon, Relat. Elem. 2004. Vol. 179. P. 2113. doi 10.1080/10426500490475049
- Hassan S.M., Abdel Aal M.M., El-Maghraby A.A., Bashandy M.S. // Phosphorus, Sulfur, Silicon, Relat. Elem. 2009. Vol. 184. P. 427. doi 10.1080/10426500802176523
- 29. Дяченко В.Д. // ЖОХ. 2015. Т. 85. № 4. С. 618; Dyachenko V.D. // Russ. J. Gen. Chem. 2015. Vol. 85. N. 4. P. 861. doi 10.1134/S1070363215040167
- 30. Кривоколыско С.Г., Дяченко В.Д., Литвинов В.П. // XГС. 1999. № 10. С. 1370; Krivokolysko S.G., Dyachenko V.D., Litvinov V.P. // Chem. Heterocycl. Compd. 1999. Vol. 35. N 10. P. 1190. doi 10.1007/ BF02323378
- 31. Дяченко И.В., Рамазанова Е.Ю., Дяченко В.Д. // ЖОрХ. 2014. Т. 50. № 12. С. 1839; Dyachenko I.V., Ramazanova E.Yu., Dyachenko V.D. // Russ. J. Org. Chem. 2014. Vol. 50. N 12. P. 1821. doi 10.1134/ S1070428014120185
- 32. Дяченко В.Д., Чернега А.Н., Гарасевич С.Г. // ЖОХ. 2005. Т. 75. № 10. С. 1688; Dyachenko V.D., Chernega A.N, Garasevich S.G. // Russ. J. Gen. Chem. 2005. Vol. 75. N 10. P. 1610. doi 10.1007/s11176-005-0475-8
- 33. Дяченко В.Д. // ЖОрХ. 2006. Т. 42. № 5. С. 741; Dyachenko V.D. // Russ. J. Org. Chem. 2014. Vol. 42. N 5. P.724. doi 10.1134/S1070428006050137

- 34. Дяченко В.Д., Рыльская Т.А., Савчук С.В. // Вісн. Харків. нац. унів. 2006. № 731. Хімія. Вип. 14(37). С. 86
- 35. Ahmed A.A.M., Mekky A.E.M., Elwahy A.H.M., Sanad S.M.H. // Synth. Commun. 2020. Vol. 50. N 6. P. 796. doi 10.1080/00397911.2019.1689269
- 36. *Abdelhamid A.O., Zohdi H.F., Rateb N.M.* // J. Chem. Res. (S). 1995. P. 144.
- Abdelhamid A.O., Zohdi H.F., Rateb N.M., Abdelhamid A.O. // Phosphorus, Sulfur, Silicon, Relat. Elem. 1998. Vol. 133. N 1. P. 103. doi 10.1080/10426509808032458
- 38. Abdelbamid A.O., Al-Shehri S.M. // J. Chem. Res. Miniprint. 1997. N 7. P. 1681.
- 39. Шаранин Ю.А., Шестопалов А.М., Промоненков В.К., Родиновская Л.А. // ЖОрХ. 1984. Т. 20. Вып. 7. С. 1539; Sharanin Yu.A., Shestopalov A.M., Promonenkov V.K., Rodinovskaya L.A. // J. Org. Chem. USSR. 1984. Vol. 20. N 7. P. 1402.
- Schäfer V.H., Gewald K. // J. Prakt. Chem. 1974.
 Vol. 316. N 4. P. 684. doi 10.1002/prac.19743160421
- 41. Дяченко И.В., Дяченко В.Д., Дороватовский П.В., Хрусталев В.Н., Ненайденко В.Г. // ЖОрХ. 2019. Т. 55. № 2. С. 266; Dyachenko I.V., Dyachenko V.D., Dorovatovskii P.V., Khrustalev V.N., Nenaidenko V.G. // Russ. J. Org. Chem. 2019. Vol. 55. N 2. P. 215. doi 10.1134/S1070428019020131
- 42. Smith C.D., French K.J., Yun J.K. Pat. US 2004/0034075 A1 (2004).
- 43. Smith C.D., French K.J., Yun J.K. Pat. WO 03/105840 A2 (2003). USA.
- 44. Gambacorti Passerini C., Gunby R.H., Zambon A., Scapozza L., Ahmed S., Goekjian P.G., Gueyrard D., Popowycz F., Schneider C. Pat. EP 2 107 054 A1 (2009).
- Gambacorti Passerini C., Gunby R.H., Zambon A., Scapozza L., Ahmed S., Goekjian P.G., Gueyrard D., Popowycz F., Schneider C. Pat. WO 2009/121535 A2 (2009). USA.
- Brunskill J.S.A., De A., Ewing D.F. // J. Chem. Soc. Perkin Trans. 1. 1978. N 6. P. 629. doi 10.1039/ P19780000629
- 47. Доценко В.В., Кривоколыско С.Г., Половинко В.В., Литвинов В.П. // ХГС. 2012. № 2. С. 328; Dotsenko V.V., Krivokolysko S.G., Polovinko V.V., Litvinov V.P. // Chem. Heterocycl. Compd. 2012. Vol. 48. P. 309. doi 10.1007/s10593-012-0991-5
- 48. *Dolomanov O.V., Bourhis L.J., Gildea R.J., Howard J.A.K., Puschmann H. //* J. Appl. Cryst. 2009. Vol. 42. P. 339. doi 10.1107/S0021889808042726
- Sheldrick G.M. // Acta Crystallogr. (A). 2008. Vol. 64.
 P. 112. doi 10.1107/S0108767307043930
- Sheldrick G.M. // Acta Crystallogr. (C). 2015. Vol. 71.
 P. 3. doi 10.1107/S2053229614024218

Synthesis and Structure of (2*E*)-3-Aryl(hetaryl)-2-[5-bromo-4-aryl(hetaryl)-1,3-thiazol-2-yl]acrylonitriles

N. A. Pakholka^a, V. L. Abramenko^a, V. V. Dotsenko^{b,c}, N. A. Aksenov^c, I. V. Aksenova^c, and S. G. Krivokolysko^{a,d,*}

^a Laboratory KhimEx, V. Dal Lugansk State University, Lugansk, 91034 Ukraine
 ^b Kuban State University, Krasnodar, 350040 Russia
 ^c North Caucasus Federal University, Stavropol, 355009 Russia
 ^d St. Luke Lugansk State Medical University, Lugansk, 91045 Ukraine
 *e-mail: ksg-group-lugansk@mail.ru

Received December 28, 2020; revised December 28, 2020; accepted January 20, 2021

Bromination of (2E)-3-aryl(hetaryl)-2-[4-aryl(hetaryl)-1,3-thiazol-2-yl]acrylonitriles proceeds regioselectively at the C^5 atom of the thiazole ring with the formation of new (2E)-3-aryl(hetaryl)-2- [5-bromo-4-aryl(hetaryl)-1,3-thiazol-2-yl]acrylonitriles. The latter were alternatively obtained by the reaction of aldehydes, cyanothioacetamide, α -bromoketones and bromine in the presence of triethylamine in DMF. Structure of the key compounds was confirmed using 2D NMR spectroscopy and single crystal X-ray diffraction analysis.

Keywords: 1,3-thiazoles, 5-bromo-1,3-thiazoles, cyanothioacetamide, 2-cyanothioacrylamides, bromination