СИНТЕЗ, СТРОЕНИЕ И СВОЙСТВА ПОЛИУРАНАТА ЦЕЗИЯ [Cs₂(H₂O)₃][(UO₂)₆O₃(OH)₈]·2H₂O

© 2021 г. О. В. Нипрук*, К. А. Клиньшова, Г. Н. Черноруков, М. О. Бахметьев, М. Д. Назмутдинов

Нижегородский государственный университет имени Н. И. Лобачевского, пр. Гагарина 23а, Нижний Новгород, 603950 Россия *e-mail: nipruk@yandex.ru

> Поступило в Редакцию 29 октября 2020 г. После доработки 10 ноября 2020 г. Принято к печати 17 ноября 2020 г.

Уранат цезия [Cs₂(H₂O)₃][(UO₂)₆O₃(OH)₈]·2H₂O получен при взаимодействии гидратированного оксида урана(VI) UO₃·2.25H₂O с водным раствором нитрата цезия в гидротермальных условиях при 100°C в течение двух недель. Методом химического анализа, ИК спектроскопии, рентгенографии, дифференциально-термического анализа установлен состав и строение полученного соединения, исследованы его дегидратация и термораспад.

Ключевые слова: гексауранат цезия, рентгенография, ИК спектроскопия, термический анализ

DOI: 10.31857/S0044460X21020136

В природе цезий существует в виде единственного стабильного изотопа с массовым числом 133. Перечень искусственных радиоактивных изотопов цезия, напротив, весьма широк, их массовые числа находятся в диапазоне от 112 до 151. Среди искусственных изотопов радиационно наиболее опасен и практически значим изотоп ¹³⁷Cs с достаточно большим периодом полураспада ($T_{1/2}$ 30.167 лет), с высокой энергией β-частиц (E_{β} 1.1, 0.51 МэВ) и γ-квантов (E_{γ} 0.6614 МэВ). Основной источник получения ¹³⁷Cs – деление ядер урана (²³³U, ²³⁵U, ²³⁸U), поэтому цезий можно считать постоянным спутником урана, его доля изменяется от следовых количеств в природном уране до граммовых количеств в отработанном ядерном топливе.

Существуют различные схемы выделения ¹³⁷Cs из отработанного ядерного топлива. Их эффективность зависит от химической и структурной совместимости урана(VI) и цезия и от возможности их существования в химически связанном состоянии. Индивидуальные кристаллические соединения урана(VI) и цезия: CsUO₄ [1, 2], Cs₂U₂O₇ [2–5], Cs₂U₄O₁₃ [3, 4], Cs₄U₅O₁₇ [3, 7, 8], Cs₂U₇O₂₂

[1, 3, 7, 9] – получены методом твердофазного высокотемпературного синтеза в безводном состоянии.

Большинство технологических схем предполагает разделение урана и продуктов его распада в водных средах, в которых возможно образование соединений урана(VI) и цезия в виде кристаллогидратов, однако информация о кристаллогидратах уранатов цезия ограничена лишь соединением $Cs_3U_{12}O_{31}(OH)_{13}\cdot 3H_2O$ [10, 11].

В гидротермальных условиях нами получен неизвестный ранее уранат цезия $[Cs_{2}(H_{2}O)_{3}][(UO_{2})_{6}O_{3}(OH)_{8}] \cdot 2H_{2}O,$ изучен его химический и функциональный состав, установлена роль H₂O в формировании структуры, определены рентгенографические и ИК спектроскопические характеристики. Методом ДТА в сочетании с методом высокотемпературной рентгенографии исследованы дегидратация и термораспад ураната цезия, идентифицированы продукты его термораспада.

По результатам рентгенофлуоресцентного анализа (табл. 1), синтезированное соединение со-

Формула оксида	Вычислено, %	Найдено, %				
Cs ₂ O	13.05	12.88±0.21				
UO_3	79.45	79.16±0.83				
H ₂ O	7.51	7.49±0.08				

Таблица 1. Результаты рентгенофлуоресцентного анализа ураната цезия $Cs_2U_6O_{19}$ ·9H₂O (Cs_2O ·6UO₃·9H₂O)

ответствует брутто-формуле $Cs_2U_6O_{19}$ ·9H₂O. По соотношению урана и цезия и по содержанию молекул H₂O данное соединение отличается от известного ураната цезия $Cs_3U_{12}O_{31}(OH)_{13}$ ·3H₂O [10, 11]. По набору межплоскостных расстояний d_{hkl} , по элементному составу соединение $Cs_2U_6O_{19}$ ·9H₂O является формульным и кристаллографическим аналогом исследованных ранее уранатов $M_2^IU_6O_{19.5}$ ·10H₂O, где M^I = Na, K, Rb [12, 13]. В кристаллической фазе (табл. 2) уранат цезия $Cs_2U_6O_{19.5}$ ·9H₂O в области малых углов 20 содержит интенсивный максимум отражения, что в совокупности с полосами поглощения v_{as} и v_s уранильного фрагмента $UO_2^{\delta+}$ в ИК спектре и с ярко-желтой окраской кристаллической фазы указывает на слоистую структуру исследуемого соединения и на степень окисления урана +6.

Брутто-формула $Cs_2U_6O_{19} \cdot 9H_2O$ (табл. 1) не дает представления о функциональном составе и строении ураната цезия. Для его изучения было выполнено ИК-спектроскопическое исследование. В ИК спектре ураната цезия $Cs_2U_6O_{19} \cdot 9H_2O$ можно выделить несколько условно независимых групп колебаний: колебания уранильного фрагмента $UO_2^{\delta+}$, колебания молекул воды различной степени связанности и колебания гидроксигрупп ОН в составе кислородных полиэдров урана UOH.

Полоса валентных колебаний v_{as} уранильного фрагмента $UO_2^{\delta^+}$ при 925 см⁻¹ весьма интенсивна и, согласно известным корреляциям, соответствует семерной координации уран-кислородных полиэдров в структуре ураната цезия. Полоса $v_s(UO_2^{\delta^+})$ при 843 см⁻¹ указывает на нелинейную либо неравноплечную конфигурацию уранильного фрагмента. Правильность отнесения полос $v_{as}(UO_2^{\delta^+})$ и $v_s(UO_2^{\delta^+})$ подтверждается соотношением $v_s = 0.912v_{as} - 1.04$ [16].

Таблица 2. Рентгенографические характеристики ураната цезия $Cs_2U_6O_{19}$ ·9H₂O

	1 1 1	1 51	2 0 19	2	
hkl	d	Ι	hkl	d	Ι
002	7.505	73	045	2.126	3
101	6.529	4	153	2.087	13
004	3.731	43	323	2.044	32
200	3.597	86	060	2.027	12
130	3.526	30	216	2.009	11
201	3.493	5	244	1.971	29
211	3.359	4	046	1.923	3
104	3.288	4	137	1.820	5
202	3.239	100	401	1.793	18
132	3.188	62	047	1.744	13
220	3.114	3	070	1.739	5
005	2.976	4	350	1.711	5
133	2.875	3	208	1.650	6
213	2.835	3	218	1.635	4
141	2.766	4	336	1.589	5
034	2.739	3	048	1.583	4
204	2.586	34	317	1.577	8
134	2.558	11	360	1.550	3
006	2.482	8	441	1.542	4
026	2.295	4	083	1.454	6
215	2.259	4	076	1.424	3
320	2.234	4	513	1.376	4
242	2.219	5	461	1.342	3
303	2.160	7	284	1.311	6

Вода в ИК спектре представлена несколькими видами колебаний, среди которых наиболее характерны деформационные колебания $\delta(H_2O)$ при 1624 см⁻¹, относящиеся к молекулам воды, сохраняющим колебательную индивидуальность. Некоторое смещение этой полосы в коротковолновую область от значения 1595 см⁻¹, характерного для молекул H₂O в газовой фазе, указывает на участие молекулярной воды в образовании Н-связей. На это же указывает форма колебаний v_{as}(HO-H) и v_s(HO–H) в виде широкой интегральной полосы поглошения в диапазоне 3500-3650 см⁻¹ со слабовыраженными максимумами при 3504 и 3611 см⁻¹. Наряду с колебаниями молекулярной Н₂О в спектре присутствует полоса при 3299 см⁻¹, которая может быть отнесена к валентным колебаниям v(UO-H). К соответствующим деформационным колебаниям vpaн-кислородного фрагмента б(UOH) можно отнести полосу при 996 см⁻¹. Такое низкочастотное положение этой полосы обусловлено большой приведенной массой колебательного фрагмента UOH. Отнесение полос в области 400-680 см⁻¹ к валентным колебаниям уран-кислородных связей в экваториальной плоскости полиэдра урана нельзя считать однозначным, поскольку полосы в указанном диапазоне волновых чисел могут быть также обусловлены либрационными колебаниями молекул H₂O и колебаниями у(UOH) [15].

Схема 1.

$$\begin{bmatrix} Cs_{2}(H_{2}O)_{3} \end{bmatrix} \begin{bmatrix} (UO_{2})_{6}O_{3}(OH)_{8} \end{bmatrix} \cdot 2H_{2}O_{(kp.)} \\ 70^{\circ}C -H_{2}O \\ \hline -H_{2}O \\ \begin{bmatrix} Cs_{2}(H_{2}O)_{3} \end{bmatrix} \begin{bmatrix} (UO_{2})_{6}O_{3}(OH)_{8} \end{bmatrix} \cdot H_{2}O_{(kp.)} \\ 105^{\circ}C -H_{2}O \\ \begin{bmatrix} Cs_{2}(H_{2}O)_{3} \end{bmatrix} \begin{bmatrix} (UO_{2})_{6}O_{3}(OH)_{8} \end{bmatrix}_{(kp.)} \\ 150^{\circ}C -3H_{2}O \\ Cs_{2} \begin{bmatrix} (UO_{2})_{6}O_{3}(OH)_{8} \end{bmatrix}_{(amop\varphi.)} \\ 204^{\circ}C -H_{2}O \\ Cs_{2} \begin{bmatrix} (UO_{2})_{6}O_{4}(OH)_{6} \end{bmatrix}_{(amop\varphi.)} \\ 250^{\circ}C -3H_{2}O \\ \hline Cs_{2}O \cdot GUO_{3} \end{bmatrix}_{(amop\varphi.)}$$

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 91 № 3 2021

Рис. 1. Термограмма соединения $Cs_2U_6O_{19}$ ·9H₂O.

Для получения достоверной информации о состоянии H_2O и ее роли в формировании структуры ураната цезия, а также для оценки его термической устойчивости было проведено термографическое исследование в сочетании с методом ИК спектроскопии и рентгенографии. Термограмма ураната цезия $Cs_2U_6O_{19}$ ·9 H_2O приведена на рис. 1.

Термическое разложение $Cs_2U_6O_{19} \cdot 9H_2O$ протекает в несколько стадий (схема 1). Полученные экспериментальные результаты свидетельствуют о том, что молекулы воды в соединении $Cs_2U_6O_{19} \cdot 9H_2O$ не эквивалентны и выполняют различные функции в формировании его структуры. Первые две из девяти молекул воды удаляются последовательно при 70 и 105°C.

Это находит отражение в двух небольших эндоэффектах на кривой ДТА и подтверждается данными термогравиметрии. Низкая температура удаления этих молекул воды свидетельствует о том, что они сохраняют молекулярную индивидуальность, не занимают самостоятельных кристаллографических позиций и удерживаются в структуре соединения лишь слабыми водородными связями. Это хорошо согласуется с неизменностью рентгенографических характеристик и ИК спектров соединения $Cs_2U_6O_{19}$ ·9H₂O при нагревании до 105°C.

Рис. 2. Рентгенограммы ураната цезия и продуктов его дегидратации.

Следующие три молекулы воды удаляются при 150°С. Их удаление приводит к существенному уширению дифракционных максимумов на рентгенограмме и к уменьшению их интенсивности (рис. 2). Такое изменение рентгенографической картины при нагревании хорошо сформированного кристаллического соединения $Cs_2U_6O_{19}$ ·9H₂O указывает на то, что эти три молекулы H₂O входят в координационное окружение атомов цезия, сохраняя колебательную индивидуальность.

В ИК спектре образующейся при 150°С фазы $Cs_2U_6O_{19}$ ·4H₂O исчезают характеристичные для молекулярной H₂O полосы v(HO–H) при 3500–3650 см⁻¹ и δ (H₂O) при 1624 см⁻¹, но сохраняются полосы v(UO–H) при 3299 см⁻¹ и δ (UOH) при 996 см⁻¹. Наблюдаемая трансформация возможна, если в соединении $Cs_2U_6O_{19}$ ·4H₂O содержатся не индивидуальные молекулы H₂O, а эквивалентное им количество оксидных (–O–) и гидроксидных (OH) групп. В этом случае брут-

Схема 2.

то-формула $Cs_2U_6O_{19} \cdot 4H_2O$ должна соответствовать соединению $Cs_2[(UO_2)_6O_3(OH)_8]$, в котором слои $[(UO_2)_6O_3(OH)_8]^{\delta-}$ объединены в трехмерную решетку ионными формами атомов Cs и H-связями, образованными гидроксидными группами противолежащих слоев. Дальнейшее нагревание фазы $Cs_2[(UO_2)_6O_3(OH)_8]$ приводит к конденсации гидроксигрупп (схема 2).

Удаление гидроксигрупп, участвующих в связывании слоев, приводит к нарушению дальнего порядка и к полной аморфизации твердой фазы с образованием сложных оксидов $[Cs_2O \cdot 6UO_3]_{аморф.}$ (рис. 2, схема 1). Этому процессу соответствуют последние два эндоэффекта на кривой ДТА при 204 и 250°С. Они сопровождаются убылью массы, эквивалентной одной и трем молекулам воды соответственно (схема 1).

Таким образом, синтезированное нами соединение с учетом содержащихся в нем функциональных групп представляет собой уранат цезия Cs₂(H₂O)₃[(UO₂)₆O₃(OH)₈]·2H₂O, его кристаллическая решетка имеет слоистое строение. Катионные формы цезия и молекулы Н₂О расположены между слоями $[(UO_2)_6O_3(OH)_8]^{\delta-}$ и вместе с уран-гидроксидными группами осуществляют их связывание. Вода в уранате цезия Cs₂U₆O₁₉·9H₂O находится в трех различных состояниях. Наиболее легко удаляемая H₂O в молекулярной форме сохраняет колебательную индивидуальность и удерживается в структуре ураната $[Cs_2(H_2O)_3[(UO_2)_6O_3(OH)_8]$. 2H₂O] за счет Н-связей, выполняя функцию компенсатора заряда слоя. Другая разновидность молекул H₂O также сохраняет колебательную индивидуальность и удерживается в структуре ураната [Cs₂(H₂O)₃[(UO₂)₆O₃(OH)₈]·2H₂O] за счет координационных связей Сs←OH₂, выполняя функцию компенсатора координационной емкости катионных форм цезия. Удаление этих молекул воды происходит при более высокой температуре и приводит к разрушению кристаллической решетки исходного соединения с образованием аморфной фазы Cs₂[(UO₂)₆O₃(OH)₈]. Последние по температуре удаления 4 молекулы воды входят в состав ураната цезия в виде эквивалентного количества оксидных (-О-) и гидроксидных (ОН) групп, которые принимают участие в образовании сети водородных связей.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Элементный анализ исследуемого соединения проводили на рентгенофлуоресцентном спектрометре EDX-900 HS Shimadzu. Массовую долю воды определяли весовым методом, прокаливая исследуемые образцы при 600°С в течение 2 ч. Кристаллографическую индивидуальность и рентгенографические характеристики образцов определяли на дифрактометре XRD-6000 (Shimadzu). Функциональный состав соединений устанавливали по ИК спектрам, полученным на приборе FTIR-8400 (Shimadzu). Дегидратацию исследовали методом сканирующей калориметрии на приборе Labsys Seteram. Для синтеза использовали реактивы квалификации XЧ.

Полиуранат цезия гидрат [Cs₂(H₂O)₃][(UO₂)₆O₃(OH)₈] 2H₂O. Для синтеза использовали оксид урана(VI) в форме скупита UO₂·2.25H₂O [16]. Навеску скупита массой 0.5 г и 100 мл 0.5 М. водного раствора нитрата цезия при pH 10 (CsOH) помещали в тефлоновую ампулу, реакционную смесь нагревали в герметичном стальном автоклаве при 100°С две недели. Образовавшийся светло-желтый осадок отфильтровывали, промывали охлажденной дистиллированной водой и сушили в холодильной камере при 10°С до постоянной массы. Выход >90%. Понижение температуры синтеза ниже 100°С, уменьшение рН реакционной смеси до 6 и ниже, сокращение продолжительности синтеза приводит к уменьшению выхода продукта реакции. Результаты рентгенофлуоресцентного анализа, соответствующие брутто-формуле $Cs_2U_6O_{19}$ ·9H₂O, приведены в табл. 1.

ФОНДОВАЯ ПОДДЕРЖКА

Работа выполнена при финансовой поддержке Российского научного фонда (проект № 19-73-00096).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

 Van Egmond A.B. // J. Inorg. Nucl. Chem. 1976. Vol. 38. P. 1649. doi 10.1016/0022-1902(76)80653-7

- Kim J-G., Jang E., Park Y-S., Ha Y-K. and Song K. // Asian J. Chem. 2013. Vol. 25. P. 7034. doi 10.14233/ ajchem.2013.12
- Cordfunke E.H.P., Van Egmond A.B. // J. Inorg. Nucl. Chem. 1975. Vol. 37. P. 1433. doi 10.1016/0022-1902(75)80785-8
- Morrison G., Read C.M., Smith M.D., zur Loye H.C. // CrystEngComm. 2015. Vol. 17. N 9. P. 1968. doi 10.1039/c4ce02430c
- Van Egmond A.B. // J. Inorg. Nucl. Chem. 1976. Vol. 38. P. 2105. doi 10.1016/0022-1902(76)80477-0
- 6. Ковба Л.М., Ипполитова Е.А., Симанов Ю.П., Спицын В.И. // ЖФХ. 1961. Т. 35. № 4. С. 719.
- Van Egmond A.B. // J. Inorg. Nucl. Chem. 1976. Vol. 38. P. 1645. doi 10.1016/0022-1902(76)80652-5
- Van den Berghe S., Verwerft M., Laval J.P., Gaudreau B., Allen P.G. Van Wyngarden A. // J. Solid State Chem. 2002. Vol. 66. P. 320. doi 10.1006/jssc.2002.9594
- Van Egmond A.B., Cordfunke E.H.P. // J. Inorg. Nucl. Chem. 1976. Vol. 38. P. 2245. doi 10.1016/0022-1902(76)80203-5
- Hill F.C., Burns P.C. // Can. Mineral. 1999. Vol. 37. P. 1283.
- Черноруков Н.Г., Нипрук О.В., Кострова Е.Л. // ЖНХ. 2015. Т. 60. № 11. С. 1452. doi 10.7868/ S0044457X15110021; Chernorukov N.G., Nipruk O.V., Kostrova E.L. // Russ. J. Inorg. Chem. 2015. Vol. 60. N 11. P. 1369. doi 10.1134/S0036023615110029
- Нипрук О.В., Черноруков Н.Г., Абражеев Р.В., Кострова Е.Л. // Неорг. матер. 2017. Т. 53. № 8. С. 829. doi 10.7868/S0002337X17080073; Nipruk O.V., Chernorukov N.G., Abrazheev R.V., Kostrova E.L. // Inorg. Mater. 2017. Vol. 53. N 8. P. 816. doi 10.1134/ S0020168517080131
- Нипрук О.В., Черноруков Н.Г., Бахметьев М.О., Елипашева Е.В., Лелет М.И., Чаплиева К.А. // ЖОХ. 2019. Т. 89. Вып. 8. С. 1245. doi 10.1134/ S0044460X19080134; Nipruk O.V., Chernorukov N.G., Bakhmetiev M.O., Elipasheva E.V., Lelet M.I., Chaplieva K.A. // Russ. J. Gen. Chem. 2019. Vol. 89. N 8. P. 1630. doi 10.1134/S1070363219080139
- 14. *Bagnall K.W., Wakerley M.W.* // J. Inorg. Nucl. Chem. 1975. Vol. 37. P. 329.
- 15. Володько М.В., Комяк А.И., Умрейко Д.С. Ураниловые соединения. Минск: БГУ, 1981. Т. 1. 431 с.
- Нипрук О.В., Князев А.В., Черноруков Г.Н., Пыхова Ю.П. // Радиохимия. 2011. Т.53. №2. С.128; Nipruk O.V., Knyazev A.V., Chernorukov G.N., Pykhova Y.P. // Radiochemistry. 2011. Vol. 53. N 5. P. 146. doi 10.1134/S1066362211020044

НИПРУК и др.

Synthesis, Structure and Properties of Cesium Polyuranate [Cs₂(H₂O)₃][(UO₂)₆O₃(OH)₈]·2H₂O

O. V. Nipruk*, K. A. Klinshova, G. N. Chernorukov, M. O. Bakhmetev, and M. D. Nazmutdinov

Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, 603950 Russia *e-mail: nipruk@yandex.ru

Received October 29, 2020; revised November 10, 2020; accepted November 17, 2020

Cesium uranate $[Cs_2(H_2O)_3][(UO_2)_6O_3(OH)_8] \cdot 2H_2O$ was obtained by reacting hydrated uranium(VI) oxide $UO_3 \cdot 2.25HO$ with an aqueous solution of cesium nitrate under hydrothermal conditions at 100°C for two weeks. Composition and structure of the obtained compound was determined by the chemical analysis, IR spectroscopy, X-ray diffraction, and differential thermal analysis. Its dehydration and thermal decomposition were studied.

Keywords: cesium hexauranate, X-ray diffraction, IR spectroscopy, thermal analysis