УДК 547.789.11:547.789.14

СИНТЕЗ И РЕГИОСПЕЦИФИЧНОЕ БРОМИРОВАНИЕ (2*E*,4*E*)-5-АРИЛ-2-(4-АРИЛТИАЗОЛ-2-ИЛ)ПЕНТА-2,4-ДИЕННИТРИЛОВ

© 2021 г. Н. А. Пахолка^{*a*}, В. В. Доценко^{*b,c*}, Б. С. Кривоколыско^{*d*}, К. А. Фролов^{*a,d*}, Н. А. Аксенов^{*c*}, И. В. Аксенова^{*c*}, С. В. Щербаков^{*c*}, С. Н. Овчаров^{*c*}, С. Г. Кривоколыско^{*a,d,**}

^а Лаборатория «ХимЭкс», Луганский государственный университет имени В. Даля, кв. Молодёжный 20-А/7, Луганск, 91034 Украина

^b Кубанский государственный университет, Краснодар, 350040 Россия

^с Северо-Кавказский федеральный университет, Ставрополь, 355009 Россия

^d Луганский государственный медицинский университет имени Святителя Луки, Луганск, 91045 Украина

*e-mail: ksg-group-lugansk@mail.ru

Поступило в Редакцию 26 февраля 2021 г. После доработки 26 февраля 2021 г. Принято к печати 11 марта 2021 г.

Взаимодействием (2*E*,4*E*)-5-фенил-2-циано-2,4-пентадиентиоамида или (*E*)-3-(2-нитрофенил)акролеина и цианотиоацетамида с α -бромкетонами получены новые (2*E*,4*E*)-5-арил-2-(4-арилтиазол-2-ил)пента-2,4-диеннитрилы. Прямое бромирование последних действием брома в ДМФА протекает региоспецифично в положение С⁵ тиазольного цикла без затрагивания диеновой системы и приводит к образованию новых (2*E*,4*E*)-5-арил-2-(5-бром-4-арилтиазол-2-ил)пента-2,4-диеннитрилов.

Ключевые слова: цианотиоацетамид, конденсация Кнёвенагеля, (2*E*,4*E*)-5-арил-2-циано-2,4-пентадиентиоамиды, синтез тиазолов по Ганчу, бромирование, 5-бромтиазолы

DOI: 10.31857/S0044460X21040053

Тиазол и его функциональные производные зарекомендовали себя в качестве ценных реагентов для органического синтеза и имеют широкое биологическое применение [1-6]. Из литературных данных [7–21] следует, что функциональные производные тиазола – 3-R-2-(тиазол-2-ил)акрилонитрилы 1 – можно легко получить реакцией альдегидов с цианотиоацетамидом 2 и α-бром(хлор)кетонами (метод А, схема 1) или методом Ганча из (2E)-3-R-2-цианотиоакриламидов 3 и галогенкетонов (метод Б, схема 1). Соединения 1 успешно использовались как активированные электронодефицитные субстраты в реакциях [3+2]-диполярного циклоприсоединения [22], окисления по Радзишевскому с образованием оксиран-2-карбоксамидов [23-25], для получения функциональных 2-(βаминовинил)тиазолов [26] (схема 1).

Непредельные тиоакриламиды **3** обычно легко получить реакцией Кнёвенагеля цианотиоацетами-

да 2 с альдегидами [27–29]. Вместе с тем известно, что в реакциях с α , β -непредельными альдегидами тиоамид 2 ведет себя неоднозначно: возможно образование 2-тиоксопиридинов 4 [30, 31], пентадиентиоамидов 5 [32–37] или 2*H*-тиопиранов 6 [38] (схема 2). В литературе имеются единичные упоминания о получении тиазолов 7 по Ганчу с использованием тиоамидов 5 [39]; в то же время, такие продукты представляют интерес для получения более сложных систем ряда пирроло[1,2-*c*]тиазолия [40] или полигетероциклических гибридных молекул [23, 41]. Следует также отметить, что соединения 5 и 7 недостаточно полно охарактеризованы спектральными методами [32–37, 39].

Целью настоящего исследования являлось получение новых 2-(4-арилтиазол-2-ил)пента-2,4диеннитрилов 7, изучение их строения с привлечением методов двумерной спектроскопии ЯМР. Помимо этого, в развитие направления работы [42],

нами была изучена регионаправленность бромирования соединений 7.

При взаимодействии (2*E*,4*E*)-5-фенил-2-циано-2,4-пентадиентиоамида (5, R = Ph) с α-бромкетонами при кратковременном нагревании в ДМФА нами были получен ряд 2-(4-арилтиазол-2-ил)пента-2,4-диеннитрилов **7а**–д с выходами 79–91% (схема 3). Также было установлено, что многокомпонентная конденсация 3-(2-нитрофенил)акролеина с цианотиоацетамидом **2** и далее с 4-метоксифенацилбромидом в аналогичных условиях приводит к новому производному тиазола **7е** с выходом 78%.

Тиазолы 7а-е представляют собой мелкокристаллические порошкообразные вещества желтого или оранжевого цвета, хорошо растворимые

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 91 № 4 2021

в ацетоне, ДМФА, умеренно – в хлороформе или ДМСО, плохо растворимые в этаноле. Строение полученных соединений **7а–е** детально изучено с привлечением методов спектроскопии ЯМР на ядрах ¹H и ¹³C (DEPTQ), 2D ЯМР (¹H–¹³C HSQC, ¹H–¹³C HMBC, ¹H–¹⁵N HMBC) (рис. 1, 2), а также ИК спектроскопии. Характерной особенностью спектров ЯМР ¹H соединений **7а–е** является наличие сигналов протонов H⁴, H⁵, H³ пента-2,4-диенового фрагмента в областях 7.27–7.29 (д. д, *J* 11.2– 11.4, 14.8–15.3 Гц), 7.52–7.78 (д, *J* 14.8–15.3 Гц), 8.11–8.25 м. д. (д, *J* 11.2–11.4 Гц) соответственно. Узкий синглет протона H⁵ тиазола обнаруживается при 7.85–8.29 м. д. В спектрах ЯМР ¹³С сигналы углерода =С⁴Н проявляются в области 123.5–

R = Ph, Ar = 2,4-Me₂C₆H₃ (7a); R = Ph, Ar = 4-BrC₆H₄ (76); R = Ph, Ar = 4-MeC₆H₄ (7в); R = Ph, Ar = 4-MeC₆H₄ (7r); R = Ar = Ph (7π); R = 2-NO₂C₆H₄, Ar = 4-MeOC₆H₄ (7e).

124.7 м. д., фрагмента = $C^{5}H$ – 138.5–145.6 м. д., = $C^{3}H$ – 144.6–146.0 м. д., <u>С</u>С=N – 105.9–108.5 м. д., С=N – 115.0–115.4 м. д., атома C² тиазола – 160.5– 161.8 м. д., атома C⁴ тиазола – 154.2–155.9 м. д., атома C⁵ тиазола – 113.9–118.1 м. д. В ИК спектрах соединений **7а–е** наблюдается характерная полоса поглощения, соответствующая валентным колебаниям сопряженной нитрильной группы (2218– 2226 см⁻¹).

В литературе описаны [23, 41] единичные примеры, демонстрирующие реакционную способность тиазолов 7. Наличие активированных

Рис. 1. Основные корреляции в спектрах 2D ЯМР HSQC, HMBC ¹H-¹³C и ¹H-¹⁵N соединения 7в.

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 91 № 4 2021

Рис. 2. Основные корреляции в в спектрах 2D ЯМР HSQC и HMBC $^{1}H^{-13}C$ тиазола 7г.

циклов и сопряженной диеновой системы делает соединения 7 привлекательными объектами для изучения реакций галогенирования. Мы установили, что действие эквимолярного количества или избытка брома в ДМФА не затрагивает диеновый фрагмент соединений 7а, б. Бромирование протекает региоспецифично по положению C⁵ тиазольного цикла с образованием 5-бромтиазолов 8а, б с выходами 94 и 91% соответственно (схема 4).

В спектрах ЯМР ¹Н и ¹³С соединений **8а**, **б** большинство сигналов имеют близкие к тиазолам

7а, **б** значения химических сдвигов, однако сигнал C^5 тиазола смещается в сильное поле и проявляется в области 105.3–107.1 м. д. В ИК спектрах соединений **8а**, **б** также наблюдаются слабые полосы поглощения валентных колебаний сопряженной нитрильной группы при 2214–2216 см⁻¹. Данные рентгеноструктурного анализа 5-бромтиазола **8а** представлены на рис. 3.

Таким образом, получен ряд новых (2*E*,4*E*)-5-арил-2-(4-арилтиазол-2-ил)пента-2,4-диеннитрилов и изучено их строение. Показано, что

Схема 4.

 $Ar = 2,4-Me_2C_6H_3$ (a); $4-BrC_6H_4$ (6).

Рис. 3. Общий вид молекулы соединения **8***a*. Тепловые эллипсоиды неводородных атомов показаны на уровне 50%-ной вероятности нахождения атома.

бромирование синтезированных соединений носит региоспецифичный характер и приводит к (2E,4E)-5-арил-2-(5-бром-4-арилтиазол-2-ил)пента-2,4-диеннитрилам. Строение ключевых продуктов реакций установлено с привлечением методов 2D спектроскопии ЯМР и рентгеноструктурного анализа.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР записаны на спектрометре Bruker DPX-400 [400.40 (¹H), 100.63 (¹³C), 40.55 МГц (¹⁵N)] в ДМСО- d_6 или CDCl₃. Внутренний стандарт – ТМС или остаточные сигналы растворителя. ИК спектры регистрировали на ИК Фурье-спектрометре Bruker Vertex 70 с приставкой НПВО на кристалле алмаза, спектральное разрешение ±4 см⁻¹. Элементный анализ проводили на C,H,N-анализаторе Carlo Erba 1106. Контроль чистоты полученных соединений осуществляли методом TCX на пластинах Silufol UV254, элюент ацетон–гексан 1:1, проявитель – пары иода, УФ детектор. Температуры плавления определяли на столике Кофлера и не корректировали.

(2*E*,4*E*)-5-Фенил-2-циано-2,4-пентадиентиоамид **5** [33, 35] был получен реакцией Кнёвенагеля цианотиоацетамида с коричным альдегидом. Цианотиоацетамид **2** был синтезирован [43] пропусканием тока сероводорода через раствор малононитрила в EtOH в присутствии Et₃N. В остальных случаях использовали коммерчески доступные реагенты.

(2E,4E)-2-(4-Арилтиазол-2-ил)пента-2,4-диеннитрилы 7а-д (общая методика). Смесь 1.07 г (5 ммоль) (2E,4E)-5-фенил-2-циано-2,4-пентадиентиоамида 5, 5 ммоль соответствующего α-бромацетофенона в 10 мл ДМФА доводили до кипения. Смесь фильтровали через складчатый бумажный фильтр. Через 12 ч кристаллический осадок тиазолов 7 отфильтровывали, промывали этанолом и гексаном, сушили 3 ч при 60°С.

(2E,4E)-2-[4-(2,4-Диметилфенил)тиазол-2-ил]-5-фенилпента-2,4-диеннитрил (7a). Выход 85%, желто-оранжевый мелкокристаллический порошок, т. пл. 138-140°С. ИК спектр, v, см⁻¹: 2222 сл (С≡N). Спектр ЯМР ¹Н (ДМСО-*d*₆), δ, м. д.: 2.31 с, 2.42 с (6H, 2Me), 7.09 д (1H, H⁵ Ar, J 8.0 Гц), 7.13 с (1H, H³ Ar), 7.28 д. д (1H, H⁴, *J* 11.3, 15.3 Гц), 7.40–7.47 м (3H, H³, H⁴, H⁵ Ph), 7.53 д (1H, Н⁶ Аг, *J* 8.0 Гц), 7.54 д (1Н, Н⁵, *J* 15.3 Гц), 7.68 д. д (2H, H², H⁶ Ph, J 1.6, 8.0 Гц), 7.85 с (1H, H⁵ тиазол), 8.11 д (1Н, Н³, *J* 11.3 Гц). Спектр ЯМР ¹³С, δ_C, м. д.: 20.7, 20.9 (2Me), 106.2* (CC≡N), 115.3* (C≡N), 118.1 (С⁵Н тиазол), 123.6 (С⁴Н), 126.6 (СН Аг), 128.0 (C²H, C⁶H Ph), 129.1 (C³H, C⁵H Ph), 129.5 (CH Ar), 130.3 (C⁴H Ph), 130.7* (C Ar), 131.6 (CH Ar), 135.2* (C¹ Ph), 135.4*, 137.7* (2C Ar), 145.3

(C⁵H), 145.5 (C³H), 155.9* (C⁴ тиазол), 160.5* (C² тиазол). Здесь и далее *звездочкой* обозначены сигналы атомов углерода, находящиеся в противофазе в спектре ЯМР ¹³С DEPTQ. Найдено, %: С 77.02; H 5.45; N 7.97. C₂₂H₁₈N₂S. Вычислено, %: С 77.16; H 5.30; N 8.18. *M* 342.47.

(2E,4E)-2-[4-(4-Бромфенил)тиазол-2-ил]-5-фенилпента-2,4-диеннитрил (76). Выход 84%, ярко-желтый мелкокристаллический порошок, т. пл. 176–178°С. ИК спектр, v, см⁻¹: 2226 сл (С≡N). Спектр ЯМР ¹Н (ДМСО-*d*₆), б, м. д.: 7.28 д. д (1Н, H⁴, *J* 11.2, 15.3 Гц), 7.42–7.46 м (3H, H³, H⁴, H⁵ Ph), 7.54 д (1H, H⁵, J 15.3 Гц), 7.66 д (2H, H³, H⁵ Ar, J 8.0 Гц), 7.68 м (2H, H², H⁶ Ph), 7.95 д (2H, H², Н⁶ Аг, *J* 8.0 Гц), 8.13 д (1Н, Н³, *J* 11.2 Гц), 8.29 с (1H, H⁵ тиазол). Спектр ЯМР ¹³С, б_с, м. д.: 105.9* (CC≡N), 115.2* (C≡N), 116.6 (С⁵Н тиазол), 121.74* (C⁴ Ar), 123.5 (C⁴H), 128.1 (C²H, C⁶H Ph или Ar), 128.2 (C²H, C⁶H Ar или Ph), 129.1 (C³H, C⁵H Ph), 130.4 (C⁴H Ph), 131.8 (C³H, C⁵H Ar), 132.5* (C¹ Ar), 135.2* (C¹ Ph), 145.6 (C⁵H), 146.0 (C³H), 154.2* (C⁴ тиазол), 161.8* (С² тиазол). Найдено, %: С 61.19; Н 3.33; N 7.37. С₂₀Н₁₃BrN₂S. Вычислено, %: С 61.08; H 3.33; N 7.12. M 393.31.

(2E,4E)-2-[4-(4-Метилфенил)тиазол-2-ил]-5фенилпента-2,4-диеннитрил (7в). Выход 79%, ярко-желтый мелкокристаллический порошок, т. пл. 152–154°С. ИК спектр, v, см⁻¹: 2220 сл (С≡N). Спектр ЯМР ¹Н (ДМСО-*d*₆), δ_{C} , м. д.: 2.33 с (3Н, Me), 7.27** д (2H, H³, H⁵ Ar, J 8.1 Гц), 7.28** д. д (1H, H⁴, J 11.4, 15.2 Гц), 7.41–7.47 м (3H, H³, H⁴, H⁵ Ph), 7.53 д (1H, H⁵, J 15.2 Гц), 7.67 д. д (2H, H², H⁶ Ph, J 1.4, 7.8 Гц), 7.89 д (2H, H², H⁶ Ar, J 8.1 Гц), 8.12 д (1Н, Н³, *J* 11.4 Гц), 8.16 с (1Н, Н⁵ тиазол). **Частичное наложение сигналов. Спектр ЯМР ¹³С, δ_с, м. д.: 20.9 (Ме), 106.0* (СС≡N), 115.0 (С⁵Н тиазол), 115.3* (C=N), 123.6 (C⁴H), 126.1 (C²H, C⁶H Ar), 128.1 (C²H, C⁶H Ph), 129.2 (C³H, C⁵H Ph), 129.5 (C³H, C⁵H Ar), 130.4 (C⁴H Ph), 130.7* (C¹Ar), 135.2* (C¹ Ph), 138.0* (C⁴ Ar), 145.4 (C⁵H), 145.7 (C³H), 155.6* (С⁴ тиазол), 161.4* (С² тиазол). Найдено, %: С 76.64; Н 4.71; N 8.77. С₂₁Н₁₆N₂S. Вычислено, %: С 76.80; Н 4.91; N 8.53. М 328.44.

(2*E*,4*E*)-2-[4-(4-Метоксифенил)тиазол-2-ил]-5-фенилпента-2,4-диеннитрил (7г). Выход 85%, оранжевый мелкокристаллический порошок, т. пл. 160–162°С. ИК спектр, v, см⁻¹: 2221 сл (С≡N). Спектр ЯМР ¹Н (ДМСО-d₆), δ, м. д.: 3.79 с (3H,

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 91 № 4 2021

ОМе), 7.02 д (2H, H³, H⁵ Ar, *J* 8.7 Гц), 7.27 д. д (1H, H⁴, *J* 11.4, 15.3 Гц), 7.41–7.47 м (3H, H³, H⁴, H⁵ Ph), 7.53 д (1H, H⁵, *J* 15.3 Гц), 7.67 уш. д (2H, H², H⁶ Ph, *J* 7.8 Гц), 7.93 д (2H, H², H⁶ Ar, *J* 8.7 Гц), 8.08 с (1H, H⁵ тиазол), 8.12 д (1H, H³, *J* 11.4 Гц). Спектр ЯМР ¹³С, $\delta_{\rm C}$, м. д.: 55.2 (OMe), 106.1* ($\underline{\rm CC}\equiv\rm N$), 113.9 (C⁵H тиазол), 114.2 (C³H, C⁵H Ar), 115.4* (C $\equiv\rm N$), 123.6 (C⁴H), 126.2* (C¹ Ar), 127.6 (C²H, C⁶H Ar), 128.1 (C²H, C⁶H Ph), 129.2 (C³H, C⁵H Ph), 130.4 (C⁴H Ph), 135.3* (C¹ Ph), 145.3 (C⁵H), 145.6 (C³H), 155.5* (C⁴ тиазол), 159.6* (C⁴ Ar), 161.3* (C² тиазол). Найдено, %: C 73.49; H 4.78; N 7.90. C₂₁H₁₆N₂OS. Вычислено, %: C 73.23; H 4.68; N 8.13. *M* 344.44.

(2E,4E)-5-Фенил-2-(4-фенилтиазол-2-ил)пента-2,4-диеннитрил (7д). Выход 91%, желтый мелкокристаллический порошок, т. пл. 111-113°С. ИК спектр, v, см⁻¹: 2220 сл (С≡N). Спектр ЯМР ¹Н (ДМСО-*d*₆), б, м. д.: 7.27 д. д (1Н, Н⁴, *J* 11.4, 15.3 Гц), 7.37 т (1Н, Н⁴ Аг, *J* 7.2 Гц), 7.41–7.48 м (5H, H³, H⁴, H⁵ Ph; H³, H⁵ Ar), 7.52 д (1H, H⁵, J 15.3 Гц), 7.66 д. д (2H, H², H⁶ Ph, J 1.5, 7.8 Гц), 8.00 д (2H, H², H⁶ Ar, J7.6 Гц), 8.12 д (1H, H³, J11.4 Гц), 8.23 с (1H, H⁵ тиазол). Спектр ЯМР ¹³С, δ_C, м. д.: 106.0* (<u>С</u>С≡N), 115.3* (С≡N), 115.9 (С⁵Н тиазол), 123.5 (C⁴H), 126.2 (2CH Ar), 128.1 (C²H, C⁶H Ph), 128.6 (C⁴H Ar), 128.9 (2CH Ar), 129.2 (C³H, C⁵H Ph), 130.4 (C⁴H Ph), 133.4* (C¹ Ar), 135.2* (C¹ Ph), 145.5 (С⁵Н), 145.8 (С³Н), 155.5* (С⁴ тиазол), 161.6* (С² тиазол). Найдено, %: С 76.22; Н 4.62; N 9.07. С₂₀Н₁₄N₂S. Вычислено, %: С 76.40; Н 4.49; N 8.91. *M* 314.41.

(2E,4E)-2-[4-(4-Метоксифенил)тиазол-2-ил]-5-(2-нитрофенил)пента-2,4-диеннитрил (7e). Смесь 0.89 г (5 ммоль) (Е)-3-(2-нитрофенил)акролеина и 0.5 г (5 ммоль) цианотиоацетамида 2 перемешивали 30 мин в 10 мл ДМФА, затем добавляли 1.15 г (5 ммоль) α-бром-4-метоксиацетофенона. Смесь доводили до кипения, фильтровали через складчатый бумажный фильтр. Через 12 ч осадок отфильтровывали, промывали этанолом и гексаном, сушили 3 ч при 60°С. Выход 1.52 г (78%), оранжевый мелкокристаллический порошок, т. пл. 194–196°С. ИК спектр, v, см⁻¹: 2219 сл (С≡N). Спектр ЯМР ¹Н (ДМСО-*d*₆), б, м. д.: 3.79 с (3Н, ОМе), 7.02 д (2H, H³, H⁵ Ar, J 8.3 Гц), 7.29 д. д (1H, Н⁴, *J* 11.2, 14.8 Гц), 7.64 д. д (1Н, Н⁴ нитрофенил, J 7.6, 7.7 Гц), 7.78 д (1Н, Н⁵, J 14.8 Гц), 7.79 м (1Н, Н⁵ нитрофенил), 7.94 д (2Н, Н², Н⁶ Аг, *J* 8.3 Гц),

8.05 м (2H, H³, H⁶ нитрофенил), 8.13 с (1H, H⁵ тиазол), 8.25 д (1H, H³, *J* 11.2 Гц). Спектр ЯМР ¹³С, $\delta_{\rm C}$, м. д.: 55.2 (OMe), 108.5* (<u>C</u>C=N), 114.6 (C⁵H тиазол), 115.0* (C=N), 124.7 (C⁴H), 126.1* (C¹ Аг), 127.7 (C²H, C⁶H Аг), 127.9, 128.7 (2CH нитрофенил), 129.8* (C¹ нитрофенил), 130.7, 133.8 (2CH нитрофенил), 138.5 (C⁵H), 144.6 (C³H), 148.3* (C² нитрофенил), 155.6* (C⁴ тиазол), 159.6* (C⁴ Аг), 161.0* (C² тиазол). Найдено, %: С 64.96; H 3.63; N 11.06. С₂₁H₁₅N₃O₃S. Вычислено, %: С 64.77; H 3.88; N 10.79. *M* 389.44.

Замещенные 5-бромтиазолы 8а, б (общая методика). К раствору 5 ммоль тиазола 7а, б в 10 мл ДМФА медленно по каплям добавляли 0.31 мл (6 ммоль) брома, затем смесь незамедлительно фильтровали через складчатый бумажный фильтр. Через 12 ч осадок отфильтровывали, промывали этанолом и гексаном, сушили 3 ч при 60°С.

(2E,4E)-2-[5-Бром-4-(2,4-диметилфенил)тиазол-2-ил]-5-фенилпента-2,4-диеннитрил (8а). Выход 94%, желтые игольчатые кристаллы, т. пл. 145-147°С. ИК спектр, v, см⁻¹: 2214 сл (C≡N). Спектр ЯМР ¹Н (ДМСО-*d*₆), δ, м. д.: 2.17 с, 2.33 с (6H, 2Me), 7.10 д (1H, H⁵ Ar, J 7.3 Гц), 7.17 с (1H, H³ Ar), 7.23 д (1H, H⁶ Ar, J 7.3 Гц), 7.28 д. д (1H, H⁴, J 11.3, 15.3 Гц), 7.44 м (3H, H³, H⁴, H⁵ Ph), 7.53 д (1H, H⁵, J 15.3 Гц), 7.67 м (2H, H², H⁶ Ph), 8.07 д (1H, H³, J 11.3 Γц). Спектр ЯМР ¹³С, δ_C, м. д.: 19.5, 20.8 (2Ме), 105.6* (<u>С</u>С≡N), 107.1* (С⁵ тиазол), 114.7* (C≡N), 123.5 (C⁴H), 126.3 (CH Ar), 128.2 (C²H, C⁶H Ph), 129.1 (C³H, C⁵H Ph), 129.2* (C Ar), 129.9 (CH Ar), 130.5 (C⁴H Ph), 131.0 (CH Ar), 135.1* (C¹ Ph), 136.6*, 138.6* (2C Ar), 146.1 (C⁵H), 146.5 (С³Н), 155.2* (С⁴ тиазол), 161.1* (С² тиазол). Найдено, %: С 62.49; Н 4.22; N 6.44. С₂₂H₁₇BrN₂S. Вычислено, %: C 62.71; H 4.07; N 6.65. M 421.36.

(2*E*,4*E*)-2-[5-Бром-4-(4-бромфенил)тиазол-2-ил]-5-фенилпента-2,4-диеннитрил (8б). Выход 91%, светло-оранжевый мелкокристаллический порошок, т. пл. 201–203°С. ИК спектр, v, см⁻¹: 2216 сл (С \equiv N). Спектр ЯМР ¹Н (ДМСО-*d*₆), δ, м. д.: 7.27 д. д (1H, H⁴, *J* 11.3, 15.3 Гц), 7.45 м (3H, H³, H⁴, H⁵ Ph), 7.56 д (1H, H⁵, *J* 15.3 Гц), 7.45 м (3H, H², H⁶ Ph), 7.74 д (2H, H³, H⁵ Ar, *J* 8.4 Гц), 7.88 д (2H, H², H⁶ Ar, *J* 8.4 Гц), 8.10 д (1H, H³, *J* 11.3 Гц). Спектр ЯМР ¹³С, δ_{C} , м. д.: 105.3, 105.5 (<u>С</u>С \equiv N, C⁵H тиазол), 114.6 (С \equiv N), 122.5 (С⁴ Ar), 123.5* (С⁴H), 128.2* (С²H, C⁶H Ph), 129.2* (С³H, C⁵H Ph), 130.2* (C²H, C⁶H Ar), 130.6* (C⁴H Ph), 131.5 (C¹ Ar), 131.6* (C³H, C⁵H Ar), 135.1 (C¹ Ph), 146.5* (C⁵H), 147.1* (C³H), 151.5 (C⁴ тиазол), 161.7 (C² тиазол). Найдено, %: C 51.06; H 2.80; N 5.82. C₂₀H₁₂Br₂N₂S. Вычислено, %: C 50.87; H 2.56; N 5.93. *M* 472.20.

Рентгеноструктурный анализ. Экспериментальный материал для кристалла соединения 8а (C₂₂H₁₇BrN₂S) получен на автоматическом четырехкружном дифрактометре Agilent Super Nova, Dual, Cu at zero, Atlas S2 при 293(2) К. Структура расшифрована прямым методом в комплексе программ Olex2 [44] и ShelXD [45], и уточнена с помощью пакета SHELXL [46]. Структура уточнена полноматричным МНК в анизотропном приближении для неводородных атомов по F^2 . Основные характеристики эксперимента и параметры элементарной ячейки 8а: размер кристалла 0.475×0.155× 0.125 мм, кристаллическая система моноклинная, пространственная группа P2₁/c, M 421.34; параметры ячейки: а 6.63950(5), b 21.33495(19), c 14.15181(14)Å,β93.7471(8)°,V2000.37(3)Å³,Z4,d_{выч} 1.399 г/см³; μ (Си K_{α}) 3.820 мм⁻¹, F(000) 856.0, область углов съемки в 7.508-153.132°, интервалы индексов отражений $-5 \le h \le 8, -26 \le k \le 26, -17 \le l \le 100$ 17; число измеренных отражений - 21206, число независимых отражений – 4194 (R_{int} 0.0234, R_{sioma} 0.0197), число отражений с $I > 2\sigma(I) - 4194$, число уточняемых параметров – 237; *R*-факторы [I > 2 σ(I)]: R₁ 0.0335 (wR₂ 0.0961); R-факторы по всем отражениям: R_1 0.0355 (wR_2 0.0981), GOOF по F^2 1.051, $\Delta \rho_{\text{max}}$ и $\Delta \rho_{\text{min}}$ 0.35 и -0.65 *е*/Å³. Результаты РСА соединения 8а депонированы в Кембриджский банк структурных данных (ССDC 2052451).

ФОНДОВАЯ ПОДДЕРЖКА

Исследование выполнено при финансовой поддержке Кубанского научного фонда в рамках научного проекта МФИ-20.1-26/20 (заявка № МФИ-20.1/45) и Министерства образования и науки Российской Федерации (тема 0795-2020-0031) с использованием оборудования научно-образовательного центра «Диагностика структуры и свойств наноматериалов» Кубанского государственного университета.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Rouf A., Tanyeli C. // Eur. J. Med. Chem. 2015. Vol. 97. P. 911. doi 10.1016/j.ejmech.2014.10.058
- Tawfik S.S., Liu M., Farahat A.A. // Arkivoc. 2020. Pt i. P. 180. doi 10.24820/ark.5550190.p011.308
- Chhabria M.T., Patel S., Modi P., Brahmkshatriya P.S. // Curr. Top. Med. Chem. 2016. Vol. 16. N 26. P. 2841. doi 10.2174/1568026616666160506130731
- Ali S.H., Sayed A.R. // Synth. Commun. 2020. doi 10.1080/00397911.2020.1854787
- *de Souza M.V.N.* // J. Sulfur Chem. 2005. Vol. 26. N 4–5. P. 429. doi 10.1080/17415990500322792
- Mishra R., Sharma P.K., Verma P.K., Tomer I., Mathur G., Dhakad P.K. // J. Heterocycl. Chem. 2017. Vol. 54. N 4. P. 2103. doi 10.1002/jhet.2827
- *Abd El-Gilil Sh.M.* // J. Mol. Struct. 2019. Vol. 1194.
 P. 144. doi 10.1016/j.molstruc.2019.04.048
- Suntsova P.O., Eltyshev A.K., Pospelova T.A., Slepukhin P.A., Benassi E., Belskaya N.P. // Dyes Pigm. 2019. Vol. 166. P.60. doi 10.1016/j.dyepig.2019.02.051
- Bashandy M.S., Abd El-Gilil Sh.M. // Heterocycles. 2016. Vol. 92. N 3. P. 431. doi 10.3987/COM-15-13384
- Hussain S.M., El-Reedy A.M., El-Sharabasy S.A. // Tetrahedron. 1988. Vol. 44. N 1. P. 241. doi 10.1016/ S0040-4020(01)85113-9
- Дяченко В.Д. Литвинов В.П. // ХГС. 1998. № 2. C. 213; Dyachenko V.D., Litvinov V.P. // Chem. Heterocycl. Comp. 1998. Vol. 34. N 2. P. 188. doi 10.1007/BF02315182
- Кривоколыско С.Г., Дяченко В.Д., Нестеров В.Н., Литвинов В.П. // ХГС. 2001. № 7. С. 929; Krivokolysko S.G., Dyachenko V.D., Nesterov V.N., Litvinov V.P. // Chem. Heterocycl. Comp. 2001. Vol. 37. N 2. P. 855. doi 10.1023/A:1012499424379
- Дяченко В.Д., Литвинов В.П. // ЖОрХ. 1998. Т. 34.
 Вып. 4. С. 592; Dyachenko V.D., Litvinov V.P. // Russ.
 J. Org. Chem. 1998. Vol. 34. N 4. P. 557.
- Дяченко В.Д., Кашнер А.Ю., Самусенко Ю.В. // ЖОХ. 2014. Т. 84. № 2. С. 266; Dyachenko V.D., Kashner A.Yu., Samusenko Yu. V. // Russ. J. Gen. Chem. 2014. Vol. 84. N 2. P. 259. doi 10.1134/S1070363214020169
- Гончаренко М.П., Шаранин Ю.А., Туров А.В. // ЖОрХ. 1993. Т. 29. № 8. С. 1610; Goncharenko М.Р., Sharanin Yu.A., Turov A.V. // Russ. J. Org. Chem. 1993. Vol. 29. N. 8. P. 1341.
- Nesterov V.N., Montoya N.G., Antipin M.Yu., Sanghadasa M., Clark R.D., Timofeeva T.V. // Acta Crystallogr. (C). 2002. Vol. 58. P. o72. doi 10.1107/ S0108270101020170
- 17. Khafagy M.M., El-Maghraby A.A., Hassan S.M., Bashandy M.S. // Phosphorus, Sulfur, Silicon,

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 91 № 4 2021

Relat. Elem. 2004. Vol. 179. P. 2113. doi 10.1080/10426500490475049

- Hassan S.M., Abdel Aal M.M., El-Maghraby A.A., Bashandy M.S. // Phosphorus, Sulfur, Silicon, Relat. Elem. 2009. Vol. 184. P. 427. doi 10.1080/10426500802176523
- 19. Дяченко В.Д. // ЖОХ. 2015. Т. 85. № 4. С. 618; Dyachenko V.D. // Russ. J. Gen. Chem. 2015. Vol. 85. N. 4. P. 861. doi 10.1134/S1070363215040167
- Кривоколыско С.Г., Дяченко В.Д., Литвинов В.П. // XГС. 1999. № 10. С. 1370; Krivokolysko S.G., Dyachenko V.D., Litvinov V.P. // Chem. Heterocycl. Comp. 1999. Vol. 35. N 10. P. 1190. doi 10.1007/ BF02323378
- 21. Дяченко И.В., Рамазанова Е.Ю., Дяченко В.Д. // ЖОрХ. 2014. Т. 50. № 12. С. 1839; Dyachenko I.V., Ramazanova E.Yu., Dyachenko V.D. // Russ. J. Org. Chem. 2014. Vol. 50. N 12. P.1821. doi 10.1134/ S1070428014120185
- Pavlovska T.L., Lipson V.V., Shishkina S.V., Musatov V.I., Nichaenko J.A., Dotsenko V.V. // Chem. Heterocycl. Comp. 2017. Vol. 53. N 4. P.460. doi 10.1007/s10593-017-2075-z.
- Доценко В.В., Кривоколыско С.Г., Литвинов В.П. // Изв. АН. Сер. Хим. 2005. № 10. С. 2319; Dotsenko V.V., Krivokolysko S.G., Litvinov V.P. // Russ. Chem. Bull., Int. Ed. 2005. Vol. 54. N 10. P. 2394. doi 10.1007/ s11172-006-0128-z
- 24. Доценко В.В., Кривоколыско С.Г., Литвинов В.П., Гутов А.В. // Докл. АН. 2007. Т. 412. № 4. С. 494; Dotsenko V.V., Krivokolysko S.G., Litvinov V.P., Gutov A.V. // Doklady Chem. 2007. Vol. 412. Pt 2. P. 29. doi 10.1134/S0012500807020012
- Dotsenko V.V., Krivokolysko S.G., Litvinov V.P. // J. Heterocycl. Chem. 2011. Vol. 48. N 1. P. 162. doi 10.1002/jhet.493
- Фролов К.А., Доценко В.В., Кривоколыско С.Г., Чернега А.Н., Литвинов В.П. // Изв. АН. Сер. Хим. 2005.
 № 5. С. 1301; Frolov К.А., Dotsenko V.V., Krivokolysko S.G., Chernega A.N., Litvinov V.P. // Russ. Chem. Bull. 2005. Vol. 54. N 5. P. 1340. doi 10.1007/s11172-005-0406-1
- Литвинов В.П. // Усп. хим. 1999. Т. 68. № 9. С. 817; Litvinov V.P. // Russ. Chem. Rev. 1999. Vol. 68. N 9. P. 737. doi 10.1070/RC1999v068n09ABEH000533
- 28. Дяченко В.Д., Дяченко И.В., Ненайденко В.Г. // Усп. хим. 2018. Т. 87. № 1. С. 1; Dyachenko V.D., Dyachenko I.V., Nenajdenko V.G. // Russ. Chem. Rev. 2018. Vol. 87. N 1. P. 1. doi 10.1070/RCR4760
- Магерамов А.М., Шихалиев Н.Г., Дяченко В.Д., Дяченко И.В., Ненайденко В.Г. α-Цианотиоацетамид. М.: Техносфера, 2018. 224 с.

- Шелякин В.В., Дяченко В.Д., Шаранин Ю.А. // ХГС. 1995. Т. 31. № 2. С. 269; Shelyakin V.V., Dyachenko V.D., Sharanin Yu.A. // Chem. Heterocycl. Compd. 1995. Vol. 31. N 2. P. 239. doi 10.1007/BF01169689
- Attaby F.A., Elghandour A.H.H., Mustafa H.M., Ibrahem Y.M. // J. Chin. Chem. Soc. 2002. Vol. 49. N 4. P. 561. doi 10.1002/jccs.200200087
- 32. Гринитейн В.Я., Шеринь Л.А. // Изв. АН ЛатвССР. Сер. хим. 1963. № 4. С. 469; С. А. 1964. Vol. 60. 5392b.
- Ho Y.W., Wang I.J. // // J. Heterocycl. Chem. 1995. Vol. 32. N 3. P. 819. doi 10.1002/jhet.5570320323
- Nesterov V.N., Antipin M.Y., Timofeeva T.V., Clark R.D. // Acta Crystallogr. (C). 2000. Vol. 56. N 1. P. 88. doi 10.1107/S0108270199012998
- Фролов К.А., Доценко В.В., Кривоколыско С.Г. // ХГС. 2012. № 10. С. 1668; Frolov К.А., Dotsenko V.V., Krivokolysko S.G. // Chem. Heterocycl. Compd. 2013. Vol. 48. N 10. P. 1555. doi 10.1007/s10593-013-1173-9
- Al-Waleedy S.A., Bakhite E.A., Abbady M.S., Abdu-Allah H.H. // J. Heterocycl. Chem. 2020. Vol. 57. N 6. P. 2379. doi 10.1002/jhet.3954
- 37. Bandgar B.P., Zirange S.M., Wadgaonkar P.P. // Synth. Commun. 1997. Vol. 27. N 7. P. 1153. doi 10.1080/00397919708003351
- Gagarin A.A., Suntsova P.O., Minin A.S., Pozdina V.A., Slepukhin P.A., Benassi E., Belskaya N.P. // J. Org.

Chem. 2020. Vol. 85. N 21. P. 13837. doi 10.1021/acs. joc.0c01934

- З9. Дяченко В.Д. // Ж. орг. фарм. хім. 2012. Т. 10. № 2(38). С. 54.
- 40. Дяченко В.Д. // ЖОрХ. 2012. Т. 48. № 1. С. 147; *Dyachenko V.D.* // Russ. J. Org. Chem. 2012. Vol. 48. N 1. P. 143. doi 10.1134/S1070428012010241
- Дяченко И.В. // ЖОХ. 2019. Т. 89. № 5. С. 701; Dyachenko I.V. // Russ. J. Gen. Chem. 2019. Vol. 89. N 5. P. 896. doi 10.1134/S1070363219050062
- Пахолка Н.А., Абраменко В.Л., Доценко В.В., Аксенов Н.А., Аксенова И.В., Кривоколыско С.Г. // ЖОХ.
 2021. Т. 91. № 3. С. 386; Pakholka N.A., Abramenko V.L., Dotsenko V.V., Aksenov N.A., Aksenova I.V., Krivokolysko S.G. // Russ. J. Gen. Chem. 2021. Vol. 91.
 N 3. P. 357. doi 10.1134/S1070363221030038
- Доценко В.В., Кривоколыско С.Г., Половинко В.В., Литвинов В.П. // ХГС. 2012. № 2. С. 328; Dotsenko V.V., Krivokolysko S.G., Polovinko V.V., Litvinov V.P. // Chem. Heterocycl. Compds. 2012. Vol. 48. Р. 309. doi 10.1007/s10593-012-0991-5
- Dolomanov O.V., Bourhis L.J., Gildea R.J., Howard J.A.K., Puschmann H. // J. Appl. Cryst. 2009. Vol. 42. P. 339. doi 10.1107/S0021889808042726
- 45. *Sheldrick G.M.* // Acta Crystallogr. (A). 2008. Vol. 64. P. 112. doi 10.1107/S0108767307043930
- Sheldrick G.M. // Acta Crystallogr. (C). 2015. Vol. 71. P. 3. doi 10.1107/S2053229614024218

Synthesis and Regiospecific Bromination of (2*E*,4*E*)-5-Aryl-2-(4-arylthiazol-2-yl)penta-2,4-dienenitrile

N. A. Pakholka^{*a*}, V. V. Dotsenko^{*b,c*}, B. S. Krivokolysko^{*d*}, K. A. Frolov^{*a,d*}, N. A. Aksenov^{*c*}, I. V. Aksenova^{*c*}, S. V. Shcherbakov^{*c*}, S. N. Ovcharov^{*c*}, and S. G. Krivokolysko^{*a,d,**}

 ^a Laboratory "KhimEx", V. Dahl Lugansk State University, Lugansk, 91034 Ukraine ^b Kuban State University, Krasnodar, 350040 Russia ^c North Caucasus Federal University, Stavropol, 355009 Russia ^d St. Luke Lugansk State Medical University, Lugansk, 91045 Ukraine *e-mail: ksg-group-lugansk@mail.ru

Received February 26, 2021; revised February 26, 2021; accepted March 11, 2021

The reaction of (2E,4E)-5-phenyl-2-cyano-2,4-pentadientioamide or (E)-3-(2-nitrophenyl)acrolein and cyanothioacetamide with α -bromoketones afforded new (2E,4E)-5-aryl-2-(4-arylthiazol-2-yl) penta-2,4-dienenitriles. Direct bromination of the latter by the action of bromine in DMF proceeded regiospecifically at the C⁵ position of the thiazole ring without affecting the diene system and leads to the formation of new (2E,4E)-5-aryl-2-(5bromo-4-arylthiazol-2-yl)penta- 2,4-diennitriles.

Keywords: cyanothioacetamide, Knoevenagel condensation, (2*E*,4*E*)-5-aryl-2-cyano-2,4-pentadienetioamides, Hantzch thiazole synthesis, bromination, 5-bromothiazoles