УДК 549.456

КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ ЛАНТАНИДОВ С 3-ГИДРОКСИ-4-ОКСО-4*Н*-ПИРАН-2,6-ДИКАРБОНОВОЙ КИСЛОТОЙ. СИНТЕЗ, СТРУКТУРА И ФОТОЛЮМИНЕСЦЕНТНЫЕ СВОЙСТВА

© 2021 г. Н. Н. Буков, Л. И. Иващенко*, В. Т. Панюшкин

Кубанский государственный университет, ул. Ставропольская 149, Краснодар, 350040 Россия *e-mail: chemical000brains@gmail.com

> Поступило в Редакцию 1 февраля 2021 г. После доработки 1 февраля 2021 г. Принято к печати 16 февраля 2021 г.

Методом ионного обмена в водном растворе синтезированы комплексные соединения 3-гидрокси-4оксо-4*H*-пиран-2,6-дикарбоновой (меконовой) кислоты (H₃Mec) с ионами европия(III), гадолиния(III), тербия(III), диспрозия(III), эрбия(III), тулия(III) и иттербия(III). Гидраты комплексных соединений [Ln(HMec)(H₂O)]·*n*H₂O (n = 0–4) представляют собой твердые аморфные вещества (комплексы Sm³⁺, Eu³⁺, Gd³⁺ и Tm³⁺) и мелкокристаллические вещества (комплексы Tb³⁺, Dy³⁺, Er³⁺ и Yb³⁺) с окраской, характерной для иона лантанида. Методами TГ/ДТГ/ДСК установлена область термостабильности комплексов. Ионы Ln³⁺ координированы монодентатно с ионизированными карбоксильными группами и атомом кислорода O¹ пиронового кольца. Координация Ln³⁺ по группе C³–OH и кетогруппе C⁴=O второй молекулы лиганда приводит к образованию полимерной цепи. По спектру фосфоресценции комплексного соединения Gd³⁺(77 K) определен триплетный уровень лиганда (³T*). Изучены спектрально-люминесцентные свойства комплексов Sm³⁺, Eu³⁺, Tb³⁺, Dy³⁺ и Tm³⁺.

Ключевые слова: γ-пирон, меконовая кислота, хелатные комплексы, лантаниды, фотолюминесценция **DOI:** 10 31857/S0044460X21040168

Координационные соединения лантанидов (Ln^{3+}) представляют собой альтернативу органическим люминесцентным меткам в биологии, биотехнологии и медицине [1]. Свойства комплексных соединений Ln^{3+} позволяют спектральными и кинетическими методами различать узкие характерные полосы излучения, соответствующие переходам во внутренней оболочке 4f-4f', охватывающие как видимый $(Sm^{3+}, Eu^{3+}, Tb^{3+}, Dy^{3+} и Tm^{3+})$, так и ближний инфракрасный диапазон $(Nd^{3+}, Er^{3+} и Yb^{3+})$. Органические люминофоры обычно флуоресцируют, а не фосфоресцируют, обладают высокой эмиссией, но подвержены фотообесцвечиванию, и детектирование характерных полос

излучения затруднительно из-за больших скоростей излучения (10⁻⁷–10⁻⁹ с) и соответствующих времен жизни возбужденного состояния (от 100 до 1 нс) [2].

Для подавляющего большинства биологических исследований требуется специфическое сродство анализируемого вещества, и поэтому люминесцентные зонды на основе лантанидов должны быть оснащены соответствующими функциональными возможностями, позволяющими соединяться с биологическим материалом как *in vitro*, так и *in vivo* [1]. З-Гидрокси-4-оксо-4*H*-пиран-2,6-дикарбоновая (меконовая, H₃Mec) кислота относится к О-донорным биолигандам [3] с несколькими ти-

пами реакционных центров в своей молекулярной структуре (схема 1).

Меконовая кислота выделяется в виде моноили тригидрата и образует полимерную структуру с межмолекулярными водородными связями как между отдельными молекулами, так и с молекулами кристаллизационной воды [4]. По данным электронной и ИК спектроскопии, группа ОН при атоме C³ образует внутримолекулярную водородную связь с C=O карбоксильной группы при атоме C².

К особенностям подобного класса биолигандов относится образование металлохелатов при координировании иона M^{n+} не только с участием групп СОО⁻, но и групп ОН при атоме C³ и C=O при атоме C⁴ [5]. Нами синтезированы координационные соединения некоторых лантанидов с меконовой кислотой с целью выяснения их строения и определения люминесцентных характеристик (максимумов полос испускания, интегральной интенсивности, времени затухания люминесценции и квантовый выход).

Для создания люминесцентных меток необходимо получение термодинамически устойчивых и кинетически стабильных комплексных соединений с насыщенной координационной сферой иона Ln^{3+} . Образование устойчивых комплексов с ионами лантанидов, обладающими слабой комплексообразующей способностью, возможно для полидентатного хелатообразующего соединения H_3 Мес благодаря выигрышу в энтропии при дегидратации $Ln^{3+}_{(aq)}$ и хелатному эффекту. Комплексообразование протекает с вытеснением протонов карбоксильных групп из молекулы кислоты ионами Ln^{3+} (1), и синтез в водной среде не требует

Ta6J	ища 1. Данные количественног	о физико-химиче	ского анали	за комп.	лексных	к соединени	ій [Ln(HL)	$(H_2O)]$	<i>η</i> H ₂ O 1-	8		
				%	Η	Найдено Ln	, %	% "	Найдеі	но НL, %	% '	Найдено Н ₂ О, %
Š	Соединение	Формула	Выход, %	Вычислено Ln,	TT/ДТТ/ДСК	видтэмонопидт	весовой дотэм	Вычислено НГ	TT/ДТТ/ДСК	-одтяэпэ кидтэмотоф	О ₂ Н онэполинаВ	ТГ/ДТГ/ДСК
-	$[Sm(HMec)(H_2O)] \cdot 3H_2O$	$C_7H_{10}O_{11}Sm$	80.7±0.1	35.76	_a	35.3±0.2	35.5±0.1	47.11	a	56.90±0.05 4	.28/12.85	a_
7	$[Eu(HMec)(H_2O)] \cdot 2H_2O$	$C_7H_8O_{10}Eu$	81.3±0.1	37.60	39.80	36.6±0.2	37.2±0.1	49.02	45.94	48.83±0.05	1.45/5.40	5.52/2.84
e	$[Gd(HMec)(H_2O)] \cdot 4H_2O$	$C_7H_{12}O_{12}Gd$	72.0±0.1	35.30	I	34.5 ± 0.2	34.6 ± 0.1	44.50	I	50.22±0.05 4	.04/16.18	I
4	$[Tb(HMec)(H_2O)] \cdot H_2O$	$C_7H_6O_9Tb$	87.3±0.1	40.43	41.81	41.0 ± 0.2	40.9 ± 0.1	50.40	45.40	50.36±0.05	1.58/4.58	5.65/0.10
0	$[Dy(HMec)(H_2O)] \cdot H_2O$	$C_7H_6O_9Dy$	82.8±0.1	40.97	I	40.9 ± 0.2	40.5 ± 0.1	49.94	I	44.52±0.05	1.54/4.54	I
9	$[Er(HMec)(H_2O)] \cdot H_2O$	$C_7H_6O_9Er$	86.4±0.1	41.67	I	42.1±0.2	42.2 ± 0.1	49.35	I	55.93±0.05	1.49/4.49	Ι
r	$[Tm(HMec)(H_2O)] \cdot 3H_2O$	$C_7H_{10}O_{11}Tm$	81.8±0.1	38.47	I	37.7±0.2	$38.4{\pm}0.1$	55.11	I	49.94 ± 0.05	.10/12.31	Ι
%	$[Yb(HMec)(H_2O)] \cdot H_2O$	$C_7H_6O_9Yb$	89.9±0.1	42.50	I	42.8 ± 0.2	42.7±0.1	48.65	Ι	55.37±0.05	1.42/4.42	I
a ≪−≫	означает отсутствие данных ТГ/Д	ТГ/ДСК.										

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 91 № 4 2021

Соединение	v _{O-H} (H ₃ Mec)	$^{\mathrm{V}_{\mathrm{O}-\mathrm{H}}}_{\mathrm{(H}_{2}\mathrm{O})}$	^V С−Н (γ-пирон)	^{VC=0} (>C=0)	^{VC=0} (>COOH)	v _{as} (COO ⁻)	v _s (COO ⁻)	$\begin{array}{l} \Delta v = \\ v_{as}(COO^{-}) - \\ v_{s}(COO^{-}) \end{array}$	^V С-О-С (ү-пирон)	δ _{О-Н} (не- плоск.)	δ _{О-Н} (внеплоск.)	δ(COO ⁻)	p(COO ⁻)
H ₃ Mec	3508	3362	3092	1757	1622	_	-	-	1269	906	783	546	449
NH ₄ -соль H ₃ Mec	3441	3183	3063	_	—	1606	1405	201	1273	924	805	531	454
$[Sm(HMec)(H_2O)]$ ·3H ₂ O	_	3379	3105	_	—	1587	1350	237	1309	881	796	544	469
[Eu(HMec)(H ₂ O)]·2H ₂ O	_	3385	3095	_	_	1587	1352	235	1309	883	795	544	468
$[Gd(HMec)(H_2O)] \cdot 4H_2O$	_	3371	3095	_	_	1589	1350	239	1309	881	795	544	467
[Tb(HMec)(H ₂ O)]·H ₂ O	_	3277	3105	1730	_	1585	1344	241	1309	881	795	542	459
[Dy(HMec)(H ₂ O)]·H ₂ O	_	3275	3090	1732	_	1589	1344	245	1313	883	796	546	453
[Er(HMec)(H ₂ O)]·H ₂ O	_	3215	3064	_	_	1589	1354	235	1309	890	795	544	478
[Tm(HMec)(H ₂ O)]·3H ₂ O	_	3263	3074	_	_	1583	1350	233	1311	889	796	547	482
[Yb(HMec)(H ₂ O)]·H ₂ O	_	3172	3072	_	_	1581	1348	233	1311	891	798	547	484

Таблица 2. Отнесение характеристических полос (см⁻¹) в ИК спектрах H₃Mec и ее комплексных соединений с лантанидами методом групповых частот

смещения pH раствора в щелочную область при добавлении посторонних компонентов.

 $LnCl_3 \cdot nH_2O + H_3Mec$ $\rightarrow [Ln(HMec)(H_2O)] + 2H^+ + 3Cl^- + (n-1)H_2O. \quad (1)$

Хелатообразование приводит к смещению равновесия в сторону депротонированной формы лиганда, но группа С³ОН при данных значениях рН в реакции не участвует (K_a 7.94×10⁻¹¹) [6].

Выделенные с выходом 80–90% комплексные соединения нерастворимы в воде и большинстве органических растворителей, слабо растворимы в диметилсульфоксиде, поэтому определение констант устойчивости в водных и водно-органических средах затруднено. По данным количественного физико-химического анализа (табл. 1), полученные комплексные соединения 1–8 имеют состав [Ln(HMec)(H₂O)]·*n*H₂O, где n = 0–4, Ln = Sm³⁺ (1), Eu³⁺ (2), Gd³⁺ (3), Tb³⁺ (4), Dy³⁺ (5), Er³⁺ (6), Tm³⁺ (7), Yb³⁺ (8).

Термогравиметрия. На рис. S1 в Дополнительных материалах представлены кривые $T\Gamma/ДT\Gamma/$ ДСК комплексного соединения [Tb(HMec)(H₂O)] 4. Термическая эволюция комплекса 4 протекает ступенчато. До 134.0°С испаряются абсорбированные молекулы воды, потеря массы составляет $\Delta m = 0.10\%$. Из-за незначительного количества абсорбированной воды комплексное соединение можно считать не гигроскопичным. В интервале температур 134.0–290.0°С отмечается выражен-

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 91 № 4 2021

ный эндоэффект на кривой ДСК, который по потере массы соответствует дегидратации комплекса.

При изотермическом нагреве при 250°С происходит дегидратация внутрисферно-координированной молекулы воды, что подтверждено методом ИК спектроскопии. При 269.6°С комплексное соединение разлагается. При 290.0–559.0°С наблюдаются сильно выраженные экзоэффекты с почти изометрическими максимумами пиков при 427.8 и 483.6°С с суммарной потерей массы по кривой ТГ 43.69%, в интервалах 559.0–905.0 и 905.0–999.1°С суммарная потеря массы по кривой ТГ ($\Delta m =$ 1.71%) соответствует разложению органической части комплекса (чистая кислота H₃Mec разлагается полностью при 550.0°С). Твердый остаток с массой, составляющей 49.18%, соответствует Tb₄O₇, в пересчете на Tb – 41.81%.

ИК спектроскопия. В ИК спектрах (рис. S2, Дополнительные материалы) полученных комплексных соединений лантанидов закономерно расщепляется полоса поглощения валентных колебаний связи C=O карбоксильной группы лиганда при 1622 см⁻¹ на асимметричные (1581– 1587 см⁻¹) и симметричные (1344–1352 см⁻¹) колебания ионизированной карбоксильной группы. Это свидетельствует о полном вытеснении протонов карбоксильных групп ионами металлов. При этом pH в ходе синтеза уменьшается от 2.30 до 2.05–2.07 в зависимости от катиона лантанида. Для

определения дентатности лиганда часто используют разность $\Delta v(COO^-) = v_{as}(COO^-) - v_s(COO^-)$ [7]. В комплексах **1–8** она составляет 233–245 см⁻¹ (табл. 2), что свидетельствует о монодентатной координации карбоксильнаой группы. Для сравнения, в спектре двузамещенной аммонийной соли меконовой кислоты $\Delta v(COO^-) = 271 \text{ см}^{-1}$. Монодентатное связывание атомов кислорода карбоксильной группы с ионом NH₄⁺ относится преимущественно к ионному типу.

Сдвиг полосы $v_{C-O-C}(\gamma$ -пирон) при 1270 см⁻¹ в область 1309–1313 см⁻¹ подтверждает координацию металла через атом кислорода O¹ γ -пиронового кольца. Характерная полоса $v_{C=O}$ кетогруппы при 1757 см⁻¹ исчезает, за исключением комплексов тербия(III) и диспрозия(III), в спектрах которых ее интенсивность уменьшается. Полоса $v_{O-H}(H_3L)$ при 3500 см⁻¹ исчезает, интенсивность полос $\delta_{O-H(неплоск.)}$ и $\delta_{O-H(внеплоск.)}$ при 955–890 и 750–650 см⁻¹ уменьшается. Оба вышеупомянутых факта свидетельствуют о том, что в хелатировании принимают участие групп ОН при атоме C³ и C=O при атоме C⁴ второй молекулы лиганда и, таким образом, образуется полимерная цепь (схема 2).

Рис. 1. Спектр фосфоресценции комплексного соединения гадолиния(III) при 77 К.

Данные ИК спектров согласуются с данными термогравиметрии. При изотермическом нагреве при 250°С в течение нескольких часов происходит дегидратация комплексов с потерей внутрисферно-координированной молекулы воды; по данным ИК спектроскопии, исчезает уширенная полоса, соответствующая v_{O-H} (H₂O) в области 3600–2800 см⁻¹ и обнаруживаются полосы поглощения v_{C-H} (γ -пирон), а также v_{O-H} (H₃L). Кроме того, происходит эволюция формы линий из-за разрушения межмолекулярных водородных связей с молекулами воды (рис. S3, Дополнительные материалы).

Фотолюминесценция. Эффективность интенсивности люминесценции зависит от энергетического зазора между триплетным уровнем лиганда $E(^{3}T^{*})$ и резонансным уровнем иона лантанида(III) (эмпирическое правило Латва) [8]. Для иона гадолиния(III) ближайший (самый низкоэнергетический) излучательный уровень (терм ⁶Р_{7/2} при $32\ 000\ {\rm cm}^{-1}$) значительно выше, чем у иона европия(III) и триплетных уровней большинства лигандов. Поэтому спектры люминесценции комплексов Gd³⁺ обычно не наблюдаются, и перенос энергии с органической части комплексного соединения на ион металла невозможен. Полосы испускания энергии в спектре фосфоресценции относятся к переходу молекулы лиганда из возбужденного триплетного уровня (³T*) на основной синглетный уровень (S_0) .

Положение триплетного уровня лиганда в комплексах лантанидов может быть определено экспериментально путем регистрации спектра фосфоресценции комплекса Gd^{3+} с тем же лигандом. Ион Gd^{3+} , обладающий сильными парамагнитными свойствами, усиливает переход $S_0 \rightarrow {}^3T^*$ из-за смешивания триплетного и синглетного состояний, что объясняет нарушение правил отбора [9].

Для экспериментального определения положения терма ⁶Р_{7/2} был записан спектр фосфоресцен-

Ион	2	λ					Стандарты Cs ₃ [Ln(dpa) ₃]				
пантанила	л _{возб} , нм	мрег, нм	I _{интг.} , отн. ед.	$\Delta = {}^{3}\mathrm{T}^{*} - E(\mathrm{pes.repma})$	τ, мкс	$Q_{x}, \%$	λ _{возб} ,	$\Delta = {}^{3}\mathrm{T}^{*} -$	T MKO		
липтиппди	1101	11.01					HM	Е(рез.терма)	L, MKC		
Sm ³⁺	326	649	39.31	1889	2.99	-	_	_	-		
Eu ³⁺	310	615	114.30 ^a /106.13 ⁶	2420	2.72	2.85	271	9657	1650		
Tb ³⁺	273	544	68.50	Е(рез.терма)	2.48	_	275	6580	2250		
				выше ³ Т*							
Dy^{3+}	287	575	65.17	_//_	2.53	_	_	—	_		
Tm ³⁺	239	482	45.84	_//_	2.45	_	_	—	_		

Таблица 3. Спектрально-люминесцентные характеристики комплексов лантанидов с меконовой кислотой

^а Твердый образец.

⁶ 7.5×10⁻⁵ М. раствор комплексного соединения в 0.1 М. буферном растворе TRIS-HCl (с добавлением ДМСО) (рН 7.45).

ции (рис. 1) комплексного соединения Gd^{3+} с меконовой кислотой при 77 К (триплетное состояние может быть деактивировано безызлучательными процессами). Для уточнения длины волны возбуждения комплексного соединения Gd³⁺ был записан спектр возбуждения фосфоресценции, длина волны возбуждения составила 304 нм. Эта длина волны использовалась при записи спектра люминесценции меконата гадолиния(III). ³Т*-Уровень, вычисленный по максимуму пика с максимальной энергией при деконволюции полосы фосфоресценции (λ_{mar} 504.72 нм), составляет 19813 см⁻¹. ¹S*-Уровень вычислен по положению коротковолнового края полосы фосфоресценции (λ_{max} 352.56 нм), которое принимается за значение, соответствующее 0–0 переходу. Следовательно, величина $E(^{1}S^{*})$ составляет 28364 см⁻¹.

Эмисионные спектры комплексов и кинетика люминесценции. Согласно распределению резонансных уровней ионов лантанидов (рис. 2 [10]), только для меконатов самария(III) и европия(III) возможен процесс интеркомбинационной конверсии с переносом энергии с триплетного уровня меконовой кислоты на самый низкоэнергетический излучающий уровень указанных ионов Ln³⁺.

Для интенсивной люминесценции комплексных соединений лантанидов необходимо, чтобы триплетный уровень лиганда лежал выше излучающего уровня лантанида на 1800–3500 см⁻¹ [9]. Этому условию удовлетворяют только комплексные соединения самария(III) и европия(III), что подтверждено экспериментальными данными (рис. S4, Дополнительные материалы).

Для сравнения фотолюминесцентных свойств синтезированных комплексов Ln³⁺ были исполь-

зованы данные по комплексным соединениям $Cs_3[Eu(dpa)_3]$ и $Cs_3[Tb(dpa)_3]$ [8]; данные по стандартным образцам люминесцирующих трисдипиколинатов (dpa) самария(III), диспрозия(III) и тулия(III) отсутствуют. По кинетическим кривым затухания вычислено время высвечивания меконатов Ln^{3+} . В табл. 3 представлены спектрально-люминесцентные характеристики полученных меконатов лантанидов.

Для комплексного соединения европия(III) по методике [11] вычислен относительный квантовый выход (стандартный образец сравнения – $Cs_3[Eu(dpa)_3]$). 7.5×10^{-5} М. раствор меконата Eu^{3+} готовили из расчета 50 нл ДМСО на 25 мл ($V_{oбщ}$) 0.1 М. буферного раствора TRIS-HCl (pH = 7.45). Происходило полное растворение исследуемого образца.

Рис. 2. Фрагмент диаграммы Дике [10] и соотнесение с положением ³Т* (H₃Mec).

$$Q^{\mathrm{Eu,L}} = \frac{Q_x}{Q_{\mathrm{ct.}}} = \frac{E_x A_{\mathrm{ct.}}^{\lambda_{\mathrm{ct.}}} I_{\mathrm{ct.}}^{\lambda_{\mathrm{ct.}}} n_x^2}{E_{\mathrm{ct.}} A_x^{\lambda_x} I_x^{\lambda_x} n_{\mathrm{ct.}}^2}$$

Для Cs₃[Eu(dpa)₃] Q_{ct} 0.135±0.015, E_{ct} 519.70, A_{ct} ($\lambda_{310 \text{ HM}}$) 0.2000. Для [Eu(HMec)(H₂O)] E_x 106.13, A_x ($\lambda_{310 \text{ HM}}$) 0.2069.

Относительный квантовый выход рассчитывали по формуле:

$$Q^{\text{Eu,L}} = \frac{Q_x}{Q_{\text{cr.}}} = \frac{E_x A_{\text{cr.}}^{\lambda_{\text{cr.}}}}{E_{\text{cr.}} A_x^{\lambda_x}} \to Q_x = \frac{Q_{\text{cr.}} E_x A_{\text{cr.}}^{\lambda_{\text{cr.}}}}{E_{\text{cr.}} A_x^{\lambda_x}},$$
$$Q_x = \frac{0.135 \cdot 106.13 \cdot 0.2069}{519.7 \cdot 0.20} \times 100\% = 0.0285 \times 100\% (2.85\%).$$

В соответствии с вычисленным значением $Q^{Eu,L}$ и сравнительно низкой интегральной интенсивностью излучения люминесценции, меконат европия(III) не имеет перспективы для использования в качестве материала при изготовлении органических светоизлучающих диодов (OLED's), однако может использоваться как люминесцентный маркер.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры записывали на ИК Фурье-спектрометре VERTEX 70 Bruker в области 4000–400 см⁻¹. Отнесение частот в ИК спектрах проводили на основании литературных данных [8]. Спектры ЯМР регистрировали на спектрометре Agilent-NMR 400 модификации MR, DD, VNMRS, MRI. Спектры ЯМР ¹Н получены в диапазоне 0–14 м. д., спектры ЯМР ¹³С – в диапазоне 0–220 м. д. Электронные спектры фиксировали на двулучевом спектрофотометре HITACHI U-2900 в кварцевых кюветах (1 1 см) в спектральном диапазоне 190-1100 нм. Эмпирические спектры сглаживали при помощи быстрого Фурье-преобразования (FFT) с использованием программного комплекса OriginLab 2019. Спектры люминесценции, кинетические кривые люминесценции и спектры возбуждения люминесценции регистрировали на спектрометре Флюорат-02-Панорама при комнатной температуре и температуре жидкого азота с регистрацией в видимом диапазоне спектра.

Для синтеза комплексных соединений лантанидов с меконовой кислотой в водном растворе использовали хлориды лантанидов, предварительно полученные растворением соответствующих оксидов (ЧДА) в конц. HCl (ХЧ) и перекиси водорода (XЧ) с последующим удалением избытка кислоты и растворителя. TmCl_{3(aq)} получен при растворении карбоната тулия(III) в конц. HCl.

3-Гидрокси-4-оксо-4Н-пиран-2,6-дикарбоновая кислота (Н₃Мес). Методами ТСХ, ЯМР и по данным термогравиметрического анализа (ТГ/ДТГ/ДСК) установлено, что используемая для синтеза комплексов меконовая кислота (C₇H₄O₇·3H₂O), перекристаллизованная из водного этанола по стандартной методике [4], - химически чистое индивидуальное вещество. ИК спектр, v, см⁻¹: 3508 (О–Н), 3362 (О–Н_{связ}), 3092 (С-Н_{у-пирон}), 1752 (С⁴=О), 1676 (С=С_{у-пирон}), 1622 (С=О_{СООН}), 1269 v(С-О-С), 1232 v(С-О), 1196 ν(С–ОН), 1053 δ(СОН), 906 δ(О–Н)_{неплоск}, 783 δ (О–H)_{связ.}, 667 [δ (О–H_{внеплоск})]. УФ спектр (вода), λ, нм (ε, л·моль⁻¹·см⁻¹): 210 (14820), 234 (13610), 303 (8670). Спектр ЯМР ¹Н (ДМСО-*d*₆, 298 К), δ, м. д. (*J*, Гц): 6.96 с (1Н, Н⁵, ¹*J*_{HC} 167.9). Спектр ЯМР ¹³С (ДМСО-*d*₆, 298 К), б_с, м. д.: 115.60 (С⁵), 136.32 (C²), 150.99 (C⁶), 152.27 (C³), 161.09 (C⁶-COOH), 163.90 (C²-<u>C</u>OOH), 175.20 (C⁴=O).

Комплексы лантанидов с меконовой кислотой.¹Навеску тригидрата меконовой кислоты массой 0.2500 г (0.98 ммоль) растворяли в 10 мл бидистиллированной воды при перемешивании и нагревании до 50-60°С на водяной бане в течении 10 мин. К полученному светло-желтому раствору по каплям при перемешивании добавляли рассчитанный объем ~0.1 М. водного раствора хлорида редкоземельного элемента (0.98 ммоль). Комплекс мгновенно выпадал в виде аморфного осадка. Перемешивали 10-20 мин и оставляли раствор на 1 сут для протекания процесса оствальдовского созревания и формирования мелкокристаллического осадка. Осадок отфильтровывали при пониженном давлении, промывали горячей водой, водным раствором этанола, сушили сначала 1.5-2 ч при 80°С в сушильном шкафу, а затем 0.5 сут в вакуумной печи при 50°С. Полученные комплексные соединения представляли собой негигроскопичные твердые аморфные вещества (комплексы Sm³⁺, Eu³⁺, Gd³⁺, Tm³⁺) и мелкокристаллические веще-

¹ Описаны методики синтеза меконатов редкоземельных элементов [12] (в спиртовой среде при молярном соотношении хлоридов лантанидов и меконовой кислоты 1:3); получены соединения [Ln(Mec)(H₂O)₂]·3H₂O, где Ln = La³⁺, Ce³⁺, Pr³⁺, Nd³⁺, Sm³⁺, Ho³⁺ и Y³⁺.

ства (комплексы Tb³⁺, Dy³⁺, Er³⁺ и Yb³⁺), стабильные на воздухе, с окраской, характерной для иона лантанида.

Количество лантанидов в полученных меконатах определяли гравиметрическим методом (погрешность определения $\pm 0.1\%$), а также методом комплексонометрического титрования растворов по стандартной методике [13] (погрешность определения ± 0.2%). Долю лиганда определяли методом количественного абсорбционно-спектроскопического анализа. Методом Фаянса с адсорбционным индикатором (бромфеноловым синим) в кислой среде проб подтверждено отсутствие координированного хлора в составе комплексов. Методом термогравиметрии уточняли доли (мас%) лантанида, лиганда и воды (координированной, внутрисферной и адсорбированной) в синтезированных комплексных соединениях. Термогравиметрический анализ проводили на совмещенном ТГА/ДСК/ДТА анализаторе NETZSCH STA 409 РС/РС в атмосфере воздуха в интервале температур 25-1000°С (масса навески 30 мг, скорость нагрева 10 град/мин).

ДОПОЛНИТЕЛЬНЫЕ МАТЕРИАЛЫ

Дополнительные материалы для этой статьи доступны по doi 10.31857/S0044460X21040168 для авторизованных пользователей.

БЛАГОДАРНОСТЬ

Авторы выражают глубокую благодарность за содействие в исследовании биологической активности меконовой кислоты отделу биологически активных веществ Кубанского государственного университета в лице С.В. Козина и А.А. Кравцова.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Bünzli J.-C. G. // Chem. Rev. 2010. Vol. 110. N 5. P. 2729. doi 10.1021/cr900362e
- Spectroscopic Properties of Rare Earths in Optical Materials / Eds R. Hull, J. Parisi, R.M. Osgood, H. Warlimont, G. Liu, B. Jacquier. Amsterdam: Springer, 2005. Vol. 83. P. 462. doi 10.1007/3-540-28209-2_9
- 3. Рогачевский И.В., Плахова В.Б., Домнин И.Н., Подзорова С.А., Крылов Б.В. // Клиническая патофизиология. 2006. Т. 1. № 1. С. 15.
- Lovell S., Subramony P., Kahr B. // J. Am. Chem. Soc. 1999. Vol. 121. N 30. P. 7020. doi 10.1021/ja990402a
- Kandioller W., Kurzwernhart A., Hanif M., Meier S.M., Henke H., Keppler B.K., Hartinger C.G. // J. Organomet. Chem. 2011. Vol. 696. N 5. P 999. doi 10.1016/j. jorganchem.2010.11.010
- Miyamoto S., Brochmann-Hanssen E. // J. Pharm. Sci. 1962. Vol. 51. N 6. P. 552. doi 10.1002/jps.2600510613
- Накамото К. ИК-спектры и спектры КР неорганических и координационных соединений. М.: Мир, 1991. 536 с.
- Latva M., Takalo H., Mukkala V.-M., Matachescu C., Rodríguez-Ubis J.C., Kankare J. // J. Luminescence. 1997. Vol. 75. N 2. P. 149. doi 10.1016/s0022-2313(97)00113-0
- Уточникова В.В., Кузьмина Н.П. // Коорд. хим. 2016. T. 42. № 10. С. 679. doi 10.7868/S0132344X16090073; Utochnikova V.V., Kuzmina N.P. // Russ. J. Coord. Chem. 2016. Vol 42. N 10. P. 679. doi 10.1134/ s1070328416090074
- Carnall W.T., Fields P.R., Rajnak K. // J. Chem. Phys. 1968. Vol. 49. N 10. P. 4412. doi 10.1063/1.1669892
- Chauvin A., Gumy F., Imbert D., Bünzli J.G. // Spectrosc. Lett. 2004. Vol. 37. N 5. P. 517. doi 10.1081/ sl-120039700
- Koppikar D.K., Soundararajan S. // Monatsh. Chem. 1981. Bd 112. N 2. S. 167. doi 10.1007/bf00911083
- Умланд Ф., Янсен А., Тириг Д., Вюнш Г. Комплексные соединения в аналитической химии: Теория и практика применения. М.: Мир. 1975. 531 с.

Coordination Compounds of Lanthanides with 3-Hydroxy-4-oxo-4*H*-pyran-2,6-dicarboxylic Acid: Synthesis, Structure and Photoluminescent Properties

N. N. Bukov, L. I. Ivaschenko*, and V. T. Panyushkin

Kuban State University, Krasnodar, 350040 Russia *e-mail: chemical000brains@gmail.com

Received February 1, 2021; revised February 1, 2021; accepted February 16, 2021

Complex compounds of 3-hydroxy-4-oxo-4*H*-pyran-2,6-dicarboxylic (meconic) acid (H₃Mec) with europium(III), gadolinium(III), terbium(III), dysprosium(III), erbium(III), thulium(III) and ytterbium(III) were synthesized. Hydrates of complex compounds $[Ln(HMec)(H_2O)] \cdot nH_2O$ (n = 0–4) are colored solids. The TG/DTG/DSC methods were used to establish the range of thermal stability of the complexes. Ln³⁺ ions are coordinated monodentately with ionized carboxyl groups and the O¹ oxygen atom of the pyrone ring. The coordination of Ln at the C³–OH group and the C⁴=O keto group of the second ligand molecule leads to the formation of a polymer chain. The triplet level of the ligand (³T*) was determined from the phosphorescence spectrum of the Gd³⁺ complex compound (77 K). The spectral-luminescent properties of the complexes of Sm³⁺, Eu³⁺, Tb³⁺, Dy³⁺, and Tm³⁺ ions were studied.

Keywords: γ-pyrone, meconic acid, chelate complexes, lanthanides, photoluminescence