УДК 546.72:615.281.9

экзо- И эндо-КОМПЛЕКСЫ Fe(0) С АЛЛОТРОПНЫМИ МОДИФИКАЦИЯМИ УГЛЕРОДА НА ПРИМЕРЕ ФУЛЛЕРЕНА С₆₀: ИССЛЕДОВАНИЕ МЕТОДОМ ФУНКЦИОНАЛА ПЛОТНОСТИ

© 2021 г. К. В. Зайцев^{*a*,*}, А. Ю. Опруненко^{*a*}, И. П. Глориозов^{*a*}, М. С. Нечаев^{*a,b*}, Ю. Ф. Опруненко^{*a*}, А. Е. Кузнецов^{*c*}

^а Московский государственный университет имени М. В. Ломоносова, Ленинские горы 1/3, Москва, 119991 Россия ^b Институт нефтехимического синтеза имени А. В. Топчиева Российской академии наук, Москва, 119991 Россия ^c Технический университет Сантьяго, Санта Мария, 7660251 Чили *e-mail: zaitsev@org.chem.msu.ru

> Поступило в Редакцию 5 марта 2021 г. После доработки 31 марта 2021 г. Принято к печати 4 апреля 2021 г.

Структуры *экзо-* и *эндо-*комплексов С₆₀ с нульвалентным железом Fe⁰, в которых металл локализуется снаружи или внутри молекулы фуллерена С₆₀ соответственно, оптимизированы с использованием метода функционала плотности. Установлено, что для триплетов η⁶- и η²-комплексов, в которых атом железа локализован по двойной связи между пятичленным и шестичленным кольцами или между шестичленными кольцами, энергия ниже, чем для соответствующих синглетов и квинтетов. Определены геометрические и термодинамические параметры исследуемых комплексов.

Ключевые слова: фуллерены, фуллерен C₆₀, комплексы Fe⁰–C₆₀, комплексы с полиароматическими лигандами, триплет Fe⁰, метод функционала плотности

DOI: 10.31857/S0044460X21050115

Комплексы переходных металлов с полиароматическими лигандами различной гаптности привлекают значительное внимание благодаря широкому применению этих соединений в медицине [1] и катализе [2], что вызвано их структурными и динамическими особенностями. В качестве лигандов в подобных комплексах могут выступать как органические соединения (замещенные арены, нафталин, антрацен и др.), так и их замещенные аналоги, например, содержащие элементы 14-ой группы вместо атомов углерода [3]. В частности, мы показали принципиальную возможность осуществления динамической гаптотропной η⁶-перегруппировки не только в углеродных аналогах [4], но и в ароматических соединениях с участием атома германия [5].

На этом фоне перспективным для практического использования, кроме медицины и катализа, могут быть и другие сферы науки и промышленности. В их число входит материаловедение и электроника, сенсоры для идентификации газов, сорбция и хранение водорода и пр. Поэтому важными представляются исследования комплексов переходных металлов с аллотропными модификациями углерода, в частности с фуллеренами [6], в том числе с аналогами С₆₀, допированными тяжелыми элементами 14-ой группы ($C_{59}E$, E = Si [7], Ge [8], Sn [9]). Специальный интерес представляет и сравнительно малоизученная область - элементо- и металлоорганическая химия производных фуллеренов, полученных путем, например, гидросилилирования двойной связи [10], а также их σ- и π-комплексы с переходными металлами [11, 12]. Внутренняя полость сфероидального C_{60} составляет 7 Å, и в нее могут быть внедрены атомы большинства переходных и непереходных металлов. Следует отметить, что включение переходных металлов внутрь фуллеренов C_{59} Е или даже более мелких кластеров элементов 14-ой группы, например, E_{20} (E = Si, Ge, Sn) [13], приводит к стабилизации этих производных.

Железо, Fe⁰, было выбрано нами в качестве переходного металла для исследования потому, что оно играет огромную роль в «зеленой» химии, широко распространено и дешево [14]. Комплексы железа в достаточно больших количествах (гемы) входят в состав большинства организмов, в том числе и в организм человека, т. е. хорошо совместимы с биологическими тканями [15], что важно в медицинской химии и биологии. Соединения Fe⁰ часто имеют каталитическую активность сравнимую с комплексами благородных металлов [16]. Их основное преимущество состоит в том, что они являются более удобными в технологическом смысле и не наносящими вред окружающей среде реагентами.

Многим металлоорганическим производным фуллеренов, например, координированными с поверхностью С₆₀ различным металлоорганическим группам, а также атомам и ионам металлов, кластерами, карбидам и нитридам металлов M_nL_m (L = C, N), в которых металлоорганическая группа находится внутри или снаружи клетки фуллерена С₆₀ [17], присуще динамическое поведение. Такое поведение связано с перемещением металлоорганических групп по поверхности фуллерена, т. е. с металлотропных гаптотропных перегруппировок, когда металл со своим лигандным окружением внутримолекулярно перемещается из одного положения лиганда в другое. Это явление может быть изучено с использованием динамического ЯМР на различных магнитных ядрах, при этом можно определить активационные барьеры металлотропными гаптотропными перегруппировками. Таким соединениям и динамике в них посвящен ряд обзоров, вследствие их, как было указано выше, важности в медицине, биологии, материаловедении и промышленности [18]. При этом присущая этим комплексам высокая каталитическая активность часто связана с тем, что в ходе металлотропных

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 91 № 5 2021

гаптотропных перегруппировок у металла в молекуле катализатора освобождаются координационные места, и он может дополнительно локализовать в своей координационной сфере субстрат и реагент для их дальнейших каталитических превращений [19].

Теоретически, атом переходного металла, в частности нульвалентное железо Fe⁰, может многими способами ковалентно связываться с фуллереном С₆₀ с образованием о- и/или л-комплексов различной гаптности, координируясь при этом с одним или несколькими атомами углерода шестичленного или пятичленного колец, а также с изолированной двойной связью между шестичленными или между шестичленным и пятичленном кольцами с образованием, соответственно, комплексов с различной гаптностью от η^6 до η^1 . Дополнительной возможностью является образование двух пространственно различающихся типов координации: экзо- и эндо- комплексов, т. е. когда металл находится на внешней стороне фуллерена или внутри него, соответственно [20]. Современные методы электронной микроскопии (HREM) часто позволяют «видеть» локализацию металла, как внутри фуллерена, так и снаружи, т. е. на поверхности [21]. Для определения структуры и типа связывания эндо- и экзо-фуллеренов используют также различные методы спектрального анализа, в частности EXAFS [22], мёссбауеровскую спектроскопию [23] и спектроскопию ЯМР ¹³С [24]. К эндо-металлофуллеренам проявляет большой интерес современная медицина [25], что объясняется разнообразными возможностями использовать эти наночастицы, например, при разработке эффективных контрастных материалов для томографических методов диагностики: магнитно-резонансных, рентгеновских и пр. [26]. Эти системы используются также при внедрении радиоактивных меток и получении радиофармпрепаратов (радиоактивных изотопов) путем активации ядер тяжелых атомов внутри фуллереновых каркасов, препятствующих их выходу в ткани, при облучении последних нейтронами и/или протонами [27].

Следует отметить, что методы синтеза эндо- и экзо-комплексов при прямом взаимодействии паров углерода и железа разработаны все еще недостаточно хорошо и большинство комплексов представляют собой смеси различных соединений с недоказанной структурой (эндо- и экзо-комплексы, комплексы внедрения по связи С–С, эндо-комплексы, содержащие различные кластеры $Fe_n@C_{60}$, карбиды $Fe_nC_m@C_{60}$ и т. д.) [28]. Однако в целом, металлоорганическая химия фуллеренов, демонстрирующая в последнее десятилетие огромные успехи, все еще является крайне сложной и дорогостоящей областью науки.

Металлопроизводные фуллеренов достаточно трудно получить (необходимы высоковакуумное оборудование, лазерная техника для испарения металлов), очистить от примесей (ВЭЖХ на дорогостоящих носителях с использованием экзотических элюентов) и идентифицировать физико-химическими методами (масс-спектрометрия, ЯМР ¹³С, ИК, Раман, оптическая, мёссбауеровская и EXAFS спектроскопия). Все эти методы пока еще достаточно дороги, а соответствующая аппаратура может отсутствовать в обычных низкобюджетных академических и промышленных лабораториях.

В одной из немногих работ [29] описаны экзои эндо-комплексы железа с фуллереном С₆₀, хотя структура эндо-комплексов выяснена не до конца; они описываются как комплексы внедрения по связи С-С без проникновения атома металла внутрь клетки. Использование ВЭЖХ в связи с неустойчивостью комплексов не позволило выделить эти соединения в чистом виде и определить их структуру, например, методом рентгеноструктурного анализа, т. е. вывод об их строении был сделан лишь на основании масс-спектрометрии. В работе [30], тем не менее, авторам удалось провести синтез, выделение и изучение структуры комплекса, который был достаточно строго определен как эндо-комплекс Fe@C60. Для получения эндо-комплекса железа с фуллереном С₆₀ использовалась лазерная абляция паров углерода совместно с Fe(CO)₅, которая, как было показано, вследствие высокобарьерного формирования клетки фуллерена С₆₀ из паров углерода вокруг атома железа приводит к образованию комплекса внедрения эн*до*-Fe@C₆₀. Совместное использование ВЭЖХ и масс-спектрометрии, спектроскопии Мёссбауера и EXAFS позволяет утверждать, что образуется действительно эндо-комплекс с нульвалентным железом. Это подтверждается высокой измеренной энергией образования комплекса, а также фрагментацией комплекса в условиях масс-спектрометрии с отрывом карбида железа FeC_2 , т. е. с разрушением замкнутой структуры C_{60} и появлением пика от Fe. Устойчивость комплекса в условиях ВЭЖХ и спектры УФ свидетельствует также в пользу образования $Fe@C_{60}$. Рентгеноструктурный анализ или аналогичные методы прямого наблюдения структуры комплекса, например ЯМР ¹³С, в литературе найдены не были.

В связи с этим для определения координационного числа (гаптности) и структурных особенностей и различий, полученных ранее комплексов экзо-Fe-C₆₀ и эндо-Fe@C₆₀, нами был осуществлен расчет и оптимизация методом функционала плотности этих двух стереоизомеров для триплетного состояния железа 1 и 2 (см. рисунок). Эти соединения являются модельными не только для комплексов переходных металлов с фуллеренами, содержащими исключительно атомы углерода (С60, С70 и т. д.), но и фуллеренов, в которых один из атомов углерода заменен на элемент 14 группы, например $C_{59}E$ (E = Si, Ge, Sn) [7], что позволит в будущем эффективно исследовать такие важные в материаловедении производные. Проведение расчетов также для синглетов и квинтетов объясняется тем, что Fe⁰ имеет устойчивую тенденцию распаривать *d*-электроны при комплексообразовании с полиароматическими лигандами.

Энергия связывания металла с лигандом для триплетных комплексов 1 и 2 максимальная по сравнению с энергией связывания для синглета и квинтета. Триплетный комплекс обычно всегда ниже по энергии и реализуется предпочтительно [31]. Это и было показано в нашем случае для триплетного комплекса Fe@C₆₀ с помощью метода функционала плотности, что согласуется с доказанной экспериментально парамагнитностью Fe@C₆₀ [30], препятствующей регистрации спектров ЯМР ¹³С этих соединений. Структуры 1 и 2 никогда ранее прямыми методами не обнаруживались [28-30], т. е. строение эндо- и экзо-комплексов железа с С₆₀ не было подтверждено и было ранее установлено лишь косвенным образом на основании масс-спектрометрии и методов синтеза.

Метод функционала плотности показывает, что оба триплетных комплекса 1 и 2 при оптимизации имеют η^6 -структуру, т. е. железо образует гекса-гаптокоординированный π -комплекс либо с внутренней, либо с внешней поверхностью C₆₀.

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 91 № 5 2021

Энергии локализованных на поверхности потенциальной энергии комплексов для различных мультиплетностей приведены в табл. 1. Для экзо-структуры 2 минимум на поверхности потенциальной энергии для мультиплетности 5 не был определен при расчете с использованием программы Природа. При оптимизации этой структуры она переходит в уже описанную структуру 4. Соответствующая энергия была вычислена с использованием программы Gaussian и будет детально обсуждена в последующих работах с использованием этого пакета. Обычно энергия комплексов с η⁶-координацией ниже для триплета, по сравнению с квинтетом, что подтверждается данными для комплексов 1 и 2 (табл. 1), а также литературными данными [31].

Из литературных данных также следует, что для менее симметричного фуллерена C_{70} , как и для других высших фуллеренов, оптимизация уже не дает однозначной структуры (например, η^6 - или η^5 -) для эндо-комплексов, как и для экзо-комплексов, и гаптность связывания с поверхностью фуллерена в эндо-комплексе зависит от смещения металла от центра клетки. Это означает, что процедура как теоретического, так и экспериментального определения строения высших металлофуллеренов, начиная с эндо- и экзо-FeC₇₀, еще и с учетом вероятной динамики, связанной с перемещением атома железа по внутренней или внешней поверхности фуллерена C₇₀, является значительно более сложной задачей [32].

Методом функционала плотности нами были также обнаружены и оптимизированы еще два устойчивых экзо-комплекса 3 и 4, имеющих η²-структуру. В первом из них атом железа координирован с изолированной двойной связью между шестичленными и пятичленным кольцами (hexa-/penta-, HP). Комплекс 3 по энергии лежит значительно выше (на 4.4 ккал/мол) η⁶-комплексов 1 и 2; он, вероятно, представляет собой промежуточную структуру. Эта структура возникает при реализации возможных процессов миграции атома железа по поверхности лиганда при η^6, η^6 - и η²,η²-металлотропных гаптотропных перегруппировок между шестичленными и пятичленными кольцами [17]. Второй комплекс 4 также имеет η^2 -структуру, а атом металла в нем расположен

над двойной связью между двумя аннелированными шестичленными кольцами (hexa-/hexa-, HH). По энергии комплекс **4** сравним с комплексами **1** и **2**, имеющими η^6 -структуру, т. е. теоретически мо-

ЗАЙЦЕВ и др.

Мультиплетность	1	2	3	4
1	22.0 (21.0)	40.0 (39.6)	48.7 (47.8)	37.8 (38.3)
3	0 (0)	2.3 (1.5)	5.2 (4.4)	-0.3 (-0.3)
5	15.9 (13.7)	19.4 ⁶	-0.8 (-1.2)	-1.2 (-1.5)

Таблица 1. Относительные энергии (ккал/моль) структур 1–4 для мультиплетностей 1, 3, 5 (синглет, триплет, квинтет)^а

^а За нуль принята энергия структуры 1 для мультиплетности 3.

⁶ Данные расчетов получены с использованием пакета программ Gaussian.

Таблица 2. Расстояния, порядки связи, вычисленные методом функционала плотности (PBE/L1), и свободные энерє гии для комплексов 1–4 и лиганда 5 (С₆₀)

Комплекс/лиганд (координация атома Fe)	<i>r</i> (C–C), Å	$r(C-C)^{Fe}$, Å	<i>r</i> (Fe–C), Å	P(C–C) ^{Fe}	P(Fe–C)	ΔG , ккал/моль
5	1.397					
	1.452					
1 (η ⁶ -эндо)		1.439	2.063	1.26	0.22	0
		1.481		1.14		
2 (η ⁶ -экзо)		1.425	2.196	1.22	0.24	1.5
		1.456		1.13		
3 (η ² - между шести- и		1.571	1.953	0.93	0.50	4.4
пятичленными кольцами)						
4 (η ² - между шестичленными		1.516	1.939	1.01	0.54	-0.3
кольцами)						

жет реализовываться при синтезе или даже существовать как устойчивый комплекс при возможных металлотропных гаптотропных перегруппировок. Комплексов с координацией по пятичленному кольцу (η^5) ни в случае эндо-, ни в случае экзо-локализации атома металла обнаружить не удалось, поэтому пока мы не рассматриваем возможность η^6 , η^5 -металлотропных гаптотропных перегруппировок [4]. Процессы вероятных металлотропных миграций атома железа по поверхности фуллерена C₆₀, включая η^6 , η^6 -и η^2 , η^2 -перегруппировки детально будут изучены нами в последующих публикациях.

На поверхности потенциальной энергии существует только минимум для η^6 -структуры 1. Минимумы для эндо- η^2 -структур, аналогичных комплексам 3 и 4, отсутствуют, вследствие того, что последние при оптимизации переходят в структуру 1. Причины и динамика этих превращений, определяемых гаптотропными сдвигами переходного металла, будут исследованы в дальнейшем.

Совместный анализ данных табл. 2 и рисунка показывает, что наблюдается ожидаемое увели-

чение прочности связывания металла с лигандом в структуре 1 по сравнению с аналогичным связыванием в комплексе 2. Это объясняется благоприятным для образования связи направлением орбиталей в случае эндо-комплекса 1 (орбитали сближены и направлены друг к другу), по сравнению с экзо-комплексом 2 (орбитали разделены большим расстоянием и направлены друг от друга). Вследствие этих геометрических особенностей также наблюдается более низкая свободная энергия ΔG , большая энергия связывания E^b и меньшее расстояние r(Fe-C) до плоскости шестичленного кольца в структуре 1 по сравнению со структурой 2.

В структурах 1 и 2 также наблюдается обычное для π – η^6 -комплексов увеличение длин связей С–С координированного на металле шестичленного кольца по сравнению с некоординированным лигандом C_{60} и альтернирование этих длин при координировании шестичленного кольца на атоме Fe [4]. Наши данные по геометрическим параметрам самого фуллерена 5 также приведены в табл. 2. Они хорошо согласуются как с полученными экс-

Комплекс	S_{total} , ккал/(моль·К)	$H_{ m total}$, ккал/моль	$G_{ m total},$ ккал/моль
1	147.2725	244.1717	200.2624
2	149.8082	244.1574	199.4921
3	150.1286	244.2336	199.4727
4	148.9996	244.7493	200.3251

Таблица 3. Величины термодинамических параметров эндо- и экзо-комплексов железа с фуллереном C₆₀ (PBE/L1)

периментально для фуллерена C_{60} [33], так и с данными расчетов методом функционала плотности для этого лиганда [34]. Данные метода функционала плотности для экзо- и эндо-Fe⁰-комплексов фуллерена C_{60} **1** и **2** также хорошо соответствуют данным, полученным ранее другими авторами [35].

В табл. З приведены рассчитанные общие термодинамические параметры: свободная энергия G, энтальпия H и энтропия S (ккал/моль) соответствующих комплексов железа. Из данных, представленных в табл. З, можно сделать вывод о закономерном уменьшении энтропийного фактора для более компактного комплекса 1 по сравнению с комплексом 2 и для более симметричного комплекса 4 по сравнению с комплексом 3 (см. рисунок).

Таким образом, в данной работе с помощью метода функционала плотности исследовано строение синтезированных ранее, но структурно не изученных комплексов фуллерена С₆₀ с нульвалентным атомом железа Fe⁰ в виде триплета. Комплексы 1-4 имеют свойственную комплексам нульвалентного железа с полиароматическими лигандами η^6 - (1 и 2) или η^2 -структуру (в комплексе 3 атом железа локализован по двойной связи между пятичленным и шестичленным кольцами HP, а в комплексе 4 атом железа локализован по двойной связи между шестичленными кольцами НН) [31]. Связывание металла с лигандом осуществляется либо по внутренней, либо по внешней стороне поверхности фуллерена С₆₀ с образованием эндо- (1) и экзо-комплексов (2-4) соответственно. Возможность связывания Fe⁰ с пятичленным кольцом фуллерена С₆₀ не обнаружена. Связывание по двойной связи (η²-) приводит к более высокой общей энергии для комплекса 3 (выше на 4.4 ккал/моль, возможный интермедиат при металлотропных гаптотропных перегруппировках), однако второй η²-комплекс 4 имеет энергию близкую η^6 -комплексам и, вероятно, также может на-

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 91 № 5 2021

блюдаться при совместном испарении углерода и железа в реакционной смеси. Рассчитаны термодинамические параметры общих величин энергии Гиббса, энтальпии и энтропии для изученных комплексов фуллерена C_{60} с триплетом нульвалентного железа Fe⁰. Переходные состояния для возможных $\eta^6 - \eta^2$ -металлотропных гаптотропных перегруппировок и соответствующие им активационные барьеры в рассчитанных комплексах, а также в аналогах $C_{59}E$ (E = Si, Ge, Sn) будут изучены в последующих работах.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Геометрия молекул оптимизирована без каких-либо ограничений в рамках теории функционала плотности (DFT). Был использован функционал РВЕ [36] и скалярно-релятивистская теория. В последней используют четырехкомпонентный бесспиновый гамильтониан, полученный Дайаллом [37] и применяемый вариационным способом. Был использован электронный базисный набор L1, в котором число сжатых и примитивных функций Гаусса составляет, соответственно, {2,1}/{6,2} для Н, {3,2,1}/{10,7,3} для С, {6,5,3, 1}/{21,16,11,5} для Fe [38]. Функции включены в программный комплекс PRIRODA04 [39]. Стационарные точки на поверхности потенциальной энергии идентифицируются путем анализа гессианов. Энергии активации Гиббса при 298.15 К рассчитаны с использованием приближения ограниченного ротатора и гармонического осциллятора. Все расчеты выполнены с использованием кластера MBC100k Объединенном суперкомпьютерном центре в (Москва, Россия). Комплексы Fe⁰ были оптимизированы для триплета, для которого энергия была ниже, чем для синглета и квинтета соответственно.

БЛАГОДРНОСТЬ

Авторы выражают благодарность Фонду Александра Гумбольдта (Бонн, Германия) за приобретение рабочей станции, на которой частично были выполнены подготовительные расчеты методом функционала плотности.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Yufanyi D.M., Abbo H.S., Titinchi S.J., Neville T. // Coord. Chem. Rev. 2020. Vol. 414. P. 213285. doi 10.1016/j.ccr.2020.213285
- Yamamoto K., Higuchi K., Ogawa M., Sogawa H., Kuwata S., Hayashi Y., Kawauchi S., Takata T. // Chem. Asian J. 2020. Vol. 15. N 3. P. 356. doi 10.1002/ asia.201901561
- Zaitsev K.V., Gloriozov I.P., Oprunenko Yu.F., Churakov A.V. // Inorg. Chem. Commun. 2019. Vol. 109. P. 107571. doi 10.1016/j.inoche.2019.107571
- Опруненко Ю.Ф. // Усп. хим. 2000. Т. 69. № 8. С. 744; Оргипепко Yu.F. // Russ. Chem. Rev. 2000. Vol. 69. N 8. P. 683. doi 10.1070/RC2000v069n08ABEH000589
- Zaitsev K.V., Gloriozov I.P., Oprunenko Yu.F., Lermontova E.Kh., Churakov A.V. // J. Organomet. Chem. 2019. Vol. 897. P. 217. doi 10.1016/j. jorganchem.2019.07.012
- Ganji M.D. // Phys. (E). 2009. Vol. 41. N 8. P. 1406. doi 10.1016/j.physe.2009.04.006
- Mahdavifar Z., Nomresaz Z., Shakerzadech E. // Chem. Phys. 2020. Vol. 530. P. 110606. doi 10.1016/j. chemphys.2019.110606
- Simeon T.M., Yanov I., Leszczynski J. // Int. J. Quantum Chem. 2005. Vol. 105. N 4. P. 429. doi 10.1002/ qua.20718
- Miller M.L., West R. // Chem. Commun. 1999. N 18. P. 1797. doi 10.1039/A903477C
- Liu F., Spree L., Krylov D.S., Velkos G., Avdoshenko S.M., Popov A.A. // Acc. Chem. Res. 2019. Vol. 52. N 10. P. 2981. doi 10.1021/acs.accounts.9b00373
- Turakhia B., Chikkala S., Shah S. // Adv. Pharmacol. Sci. 2019. Vol. 2019. P. 1. doi 10.1155/2019/9825969
- Sun Q., Wang Q., Briere T.M., Kumar V., Kawazoe Y., Jena P. // Phys. Rev. (B). 2002. Vol. 65. N 23. P. 235417. doi 10.1103/PhysRevB.65.235417
- Polshettiwar V., Varma R.S. // Green Chem. 2010. Vol.
 N 5. P. 743. doi 10.1039/B921171C
- Douglas D.N., O'Reilly J., O'Connor C., Sharp B.L., Goenaga-Infante H. // J. Anal. At. Spectrom. 2016. Vol. 31. N 1. P. 270. doi 10.1039/C5JA00351B
- Espinal-Viguri M., King A.K., Lowe J.P., Mahon M.F., Webster R.L. // ACS Catal. 2016. Vol. 6. N 11. P. 7892. doi 10.1021/acscatal.6b02290

- Oprunenko Yu.F., Gloriozov I.P. // J. Organomet. Chem. 2013. Vol. 732. P. 116. doi 10.1016/j. jorganchem.2013.02.006
- Lu X., Lian Y., Beavers C. M., Mizorogi N., Slanina Z., Nagase S., Akasaka T. // J. Am. Chem. Soc. 2011. Vol. 133. N 28. P. 10772. doi: 10.1021/ja204653z
- Shinohara H. // Rep. Prog. Phys. 2000. Vol. 63. N 6. P. 843. doi 10.1088/0034-4885/63/6/201
- 19. Эльшенбройх К. Металлоорганическая химия. М.: БИНОМ, 2011. С. 587.
- Soto D., Salcedo R. // Molecules. 2012. Vol. 17. N 6. P. 7151. doi 10.3390/molecules17067151
- Zuo J.M., Spence J.C. In: Advanced Transmission Electron Microscopy. New York: Springer, 2017. P. 581. doi 10.1007/978-1-4939-6607-3 17
- Cherepanov V.M., Lebedev V.T., Borisenkova A.A., Fomin E.V., Artemiev, A.N., Belyaev A.D., Chuev M.A. // Crystallogr. Rep. 2020. Vol. 65. P. 404. doi 10.1134/ S1063774520030086
- Kozlov V.S., Semenov V.G., Panchuk V.V. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Techn. 2017. Vol. 11. N 5. P. 908. doi 10.1134/S1027451017050093
- Muñoz-Castro A., King R.B. // Phys. Chem. Chem. Phys. 2020. Vol. 22. N 41. P. 23920. doi 10.1039/ D0CP03784B
- Goodarzi S., Da Ros T., Conde J., Sefat F., Mozafari M. // Mater. Today. 2017. Vol. 20. N 8. P. 460. doi 10.1016/j. mattod.2017.03.017
- Castro E., Garcia A.H., Zavala G., Echegoyen L. // J. Mater. Chem. (B). 2017. Vol. 5. N 32. P. 6523. doi 10.1039/C7TB00855D.
- Chen G., Qiu H., Prasad P.N., Chen X. // Chem. Rev. 2014. Vol. 114. N 10. 5161. doi 10.1021/cr400425h
- 28. Grieves G.A., Buchanan J.W., Reddic J.E., Duncan M.A. // Int. J. Mass Spectrom. 2001. Vol. 204. N 1–3. P. 223. doi 10.1016/S1387-3806(00)00362-6
- Basir Y.J., Anderson S.L. // Int. J. Mass Spectrom. 1999. Vol. 185. P. 603. doi 10.1016/s1387-3806(98)14117-9
- Pradeep T., Kulkarni G.U., Kannan K.R., Row T.N.G., Rao C.N.R. // J. Am. Chem. Soc. 1992. Vol. 114. N 6. P. 2272. doi 10.1021/ja00032a059
- Wang Y., Szczepanski J., Vala M. // Chem. Phys. 2007. Vol. 342. N 1–3. P. 107. doi 10.1016/j. chemphys.2007.09.049
- Lu X., Feng L., Akasaka T., Nagase S. // Chem. Soc. Rev. 2012. Vol. 41. N 23. P. 7723. doi 10.1039/c2cs35214a
- Edberg K., Hedberg L., Bethune D.S., Brown C.A., Dorn H.C., Johnson R.D., de Vries M. // Science. 1991. Vol. 254. N 5030. P. 410. doi: 10.1126/ science.254.5030.410
- Rostami Z., Hosseinian A., Monfared A. // J. Mol. Graphics Modell. 2018. Vol. 81. P. 60. doi 10.1016/j. jmgm.2018.02.009

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 91 № 5 2021

- Tang C.M., Deng K.M., Yang J.L., Wang X. // Chin. J. Chem. 2006. Vol. 24. N 9. P. 1133. doi: 10.1002/ cjoc.200690213
- Ernzerhof M., Scuseria G.E. // J. Chem Phys. 1999.
 Vol. 110. N 11. P. 5029. doi 10.1063/1.478401
- Dyall K.G. // J. Chem. Phys. 1994. Vol. 100. N 3. P. 2118. doi 10.1063/1.466508
- Laikov D.N. // Chem. Phys. Lett. 1997. Vol. 281. N 1–3.
 P. 151. doi 10.1016/S0009-2614(97)01206-2
- Laikov D.N. // Chem. Phys. Lett. 2005. Vol. 416. N 1–3.
 P. 116. doi 10.1016/j.cplett.2005.09.046

exo- and *endo-*Complexes of Fe(0) with Carbon Allotropic Modifications on the Example of Fullerene C₆₀: Density Function Theory Study

K. V. Zaitsev^{*a*,*}, A. Yu. Oprunenko^{*a*}, I. P. Gloriozov^{*a*}, M. S. Nechaev^{*a*,*b*}, Yu. F. Oprunenko^{*a*}, and A. E. Kuznetsov^{*c*}

^a M.V. Lomonosov Moscow State University, Moscow, 119991 Russia ^b A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, 119991 Russia ^c Department of Chemistry, Universidad Técnica Federico, Santa Maria 6400, Santiago, 7660251 Chile *e-mail: zaitsev@org.chem.msu.ru

Received March 5, 2021; revised March 31, 2021; accepted April 4, 2021

Structures of *exo*- and *endo*-complexes of fullerene C_{60} with zero-valent Fe⁰, in which metal is localized inside and outside fullerene molecule, respectively, were strictly revealed with DFT method. Complexes structures (η^6 - and η^2 -) were optimized for triplet and their energy was lower than for corresponding singlet and quintet on this stage of consideration. Geometry and thermodynamic parameters of the complexes were established.

Keywords: fullerenes, fullerene C_{60} , Fe⁰ complexes with C_{60} , complexes with polyaromatic ligands, triplet Fe⁰, DFT