ДИГАЛОГЕНИДЫ ТРИС(3-ФТОРФЕНИЛ)СУРЬМЫ: СИНТЕЗ И СТРОЕНИЕ

© 2021 г. В. В. Шарутин*, О. К. Шарутина

Национальный исследовательский Южно-Уральский государственный университет, пр. Ленина 76, Челябинск, 454080 Россия *e-mail: vvsharutin@rambler.ru

> Поступило в Редакцию 5 марта 2021 г. После доработки 11 марта 2021 г. Принято к печати 15 марта 2021 г.

При взаимодействии трис(3-фторфенил)сурьмы с хлором, бромом и иодом в бензоле получены дихлорид, дибромид и дииодид трис(3-фторфенил)сурьмы. Дихлорид и дибромид были также получены в реакции трис(3-фторфенил)сурьмы с дигалогенидами меди в ацетоне. Дифторид трис(3-фторфенил)сурьмы получен в реакции обмена из дихлорида трис(3-фторфенил)сурьмы и фтористого натрия. По данным рентгеноструктурного анализа, центросимметричные молекулы дихлорида и дибромида и четыре типа кристаллографически независимых молекул дииодида имеют конфигурацию тригональной пирамиды с электроотрицательными лигандами в аксиальных положениях.

Ключевые слова: трис(3-фторфенил)сурьма, дигалогениды триорганилсурьмы, рентгеноструктурный анализ

DOI: 10.31857/S0044460X21050127

Наиболее изучены арилпроизводные сурьмы с фенильным и толильным лигандами [1]. В меньшей степени исследованы соединения сурьмы с такими потенциально координирующими центрами в фенильных заместителях, как атомы азота [2–9] или кислорода [10–15], а также производные сурьмы(V) с атомами галогена в арильных лигандах [16–18]. Дигалогениды триорганилсурьмы используются как прекурсоры других органических соединений сурьмы(V) [19–21]. К настоящему времени нет сведений о синтезе и строении дигалогенидов трис(3-фторфенил)сурьмы.

В продолжение исследования методов синтеза арилпроизводных пятивалентной сурьмы нами впервые были получены дигалогениды трис(3-фторфенил)сурьмы из триарилсурьмы 1 и галогенов в бензольном растворе (1). Дихлорид 2 и дибромид 3 трис(3-фторфенил)сурьмы получали также обработкой триарилсурьмы 1 дигалогенидом меди в ацетоне (2). Дифторид трис(3-фторфенил)сурьмы 5 получали обменной реакцией из дихлорида триарилсурьмы **2** и фторида натрия в водно-ацетоновом растворе (3).

$$(3-FC_6H_4)_3Sb + Hlg_2 \rightarrow (3-FC_6H_4)_3SbHlg_2, \qquad (1)$$

$$1 \qquad \qquad 2-4$$

$$(3-FC_6H_4)_3Sb + 2CuHlg_2 \rightarrow (3-FC_6H_4)_3SbHlg_2 + 2CuHlg,$$

$$1 \qquad 2, 3 \qquad (2)$$

$$(3-FC_6H_4)_3SbCl_2 + 2NaE \rightarrow (3-FC_6H_4)_3SbF_2 + 2NaCl$$

$$1 \xrightarrow{(3)} (3) \text{Hig} = \text{Cl}(2), \text{ Br}(3), \text{ I}(4), \text{ F}(5).$$

Дигалогениды трис(3-фторфенил)сурьмы – бесцветные кристаллические вещества, за исключением дииодида трис(3-фторфенил)сурьмы, кристаллы которого имеют светло-желтую окраску. Соединения 2–5 устойчивы к действию влаги и кислорода воздуха, хорошо растворимы в большинстве органических растворителей и нерастворимы в воде.

В ИК спектрах соединений **2–5** наблюдаются интенсивные полосы при 432, 436, 428,

Параметр	2	3	4
Формула	C ₁₈ H ₁₂ Cl ₂ F ₃ Sb	C ₁₈ H ₁₂ Br ₂ F ₃ Sb	C ₇₂ H ₄₈ F ₁₂ I ₈ Sb ₄
M	477.93	566.85	2643.30
Сингония	Моноклинная	Моноклинная	Триклинная
Пространственная группа	<i>C</i> 2/c	<i>C</i> 2/c	<i>P</i> -1
a, Å	15.716(8)	15.793(12)	9.327(4)
b, Å	10.856(6)	11.061(8)	18.174(8)
c, Å	10.607(8)	10.837(7)	23.887(10)
α, град	90	90	94.01(2)
β, град	106.45(3)	106.69(3)	95.147(18)
ү, град	90	90	99.735(18)
<i>V</i> , Å ³	1735.6(18)	1813(2)	3959(3)
Ζ	4	4	2
$d_{\rm выч}$, г/см ³	1.829	2.076	2.217
μ_{Mo} , mm ⁻¹	1.923	5.953	4.536
<i>F</i> (000)	928.0	1072.0	2432.0
Размер кристалла, мм	$0.65 \times 0.2 \times 0.15$	$0.44 \times 0.23 \times 0.13$	$0.56 \times 0.25 \times 0.12$
20, град	6.6-56.996	6.504-56.996	5.79–57
Интервалы индексов	$-21 \le h \le 21,$	$-21 \le h \le 21,$	$-12 \le h \le 12,$
	$-14 \le k \le 14,$	$-14 \le k \le 14,$	$-24 \le k \le 24,$
	$-14 \le l \le 14$	$-14 \le l \le 14$	$-32 \le l \le 32$
Всего отражений	17260	23225	196560
Независимых отражений	2198	2295	19914
R _{int}	0.0321	0.0377	0.0474
Число уточняемых параметров	115	116	837
GOOF	1.148	1.083	1.079
R -Факторы по $F^2 > 2\sigma(F^2)$	$R_1 0.0247,$	$R_1 0.0256,$	$R_1 0.0441,$
	$wR_2 0.0676$	$wR_2 0.0590$	$wR_2 0.0839$
<i>R</i> -Факторы по всем отражениям	$R_1 0.0298,$	$R_1 0.0326$,	$R_1 0.0633,$
	$wR_2 0.0731$	$wR_2 0.0649$	$wR_2 \ 0.0948$
Остаточная электронная плотность (max/min), $e/Å^3$	0.58/-0.51	0.77/-0.51	1.82/-1.67

Таблица 1. Кристаллографические данные, параметры эксперимента и уточнения структуры соединений 2-4

432 см⁻¹ (Sb–C) соответственно, полосы при ~780 и 3600 см⁻¹ [785 (5), 779 (2), 775 (3), 775 (4) и 3067 (5), 3055 (2), 3061 (3), 3055 (4)], относящиеся к деформационным и валентным колебаниям связи С–Н, а также полоса связи С–F при 1211 (5), 1223 (2), 1223 (3), 1221 см⁻¹ (4).

Кристаллы соединений 2–5 получены перекристаллизацией из смеси бензол–октан (5:1, по объему), однако пригодными для кристаллографических исследований оказались только образцы соединений 2–4. По данным РСА (табл. 1), в центросимметричных молекулах соединений 2 и 3 атомы сурьмы имеют тригонально-бипирамидальное окружение с электроотрицательными лигандами в аксиальных положениях (рис. 1). Такое же

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 91 № 5 2021

тригонально-бипирамидальное окружение атома металла с атомами иода в аксиальных положениях наблюдается и в четырех кристаллографически независимых молекулах соединения 4 (рис. 2).

Валентные углы при атоме сурьмы изменяются в небольших интервалах: аксиальные углы HlgSbHlg 175.88(2)–177.62(3)°, углы в экваториальной плоскости CSbC 114.2(2)–124.6(2)°, углы между аксиальными и экваториальными заместителями HlgSbC 86.74(14)–92.32(17)° (табл. 2). Суммы углов в экваториальной плоскости (359.98–360°) практически не отличаются от 360°. Длины связей Sb–Hlg 2.4598(17) (2), 2.6246(15) (3) и 2.8487(11)–2.8904(11) Å (4) несколько больше суммы ковалентных радиусов атомов Sb и

Рис. 1. Общий вид молекулы дихлорида трис(3-фторфенил)сурьмы **2** в кристалле.

Hlg (2.40, 2.55 и 2.74 Å [22]). Расстояния Sb–C 2.104(3)–2.124(4) (2), 2.107(3)–2.130(4) (3) и 2.096(3)–2.144(6) Å (4) близки к сумме ковалентных радиусов атомов сурьмы и углерода (2.19 Å [22]). Арильные циклы находятся в «пропеллер-

ной» конформации вследствие небольшого поворота в одном направлении вокруг связей Sb–C.

В кристаллах соединений **2** и **3** молекулы дигалогенидов триарилсурьмы образуют цепи за счет слабых межмолекулярных взаимодействий F…F (2.861, 2.869 Å) и H…F. В соединении **4** обнаружена сложная система межмолекулярных контактов I…I (3.901 Å) и водородных связей H…I (3.19 Å) и H…F (2.42–2.65 Å), в которых участвуют атомы H^o и H^n арильных заместителей.

Таким образом, впервые синтезированы дигалогениды трис(3-фторфенил)сурьмы (3-FC₆H₄)₃SbHlg₂ (Hlg = F, Cl, Br, I) и методом рентгеноструктурного анализа установлено строение дихлорида, дибромида и дииодида.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры записывали на ИК Фурье-спектрометре Shimadzu IRAffinity-1S; образцы готовили таблетированием с KBr (область поглощения 4000–400 см⁻¹).

Рентгеноструктурный анализ кристаллов соединений 2–4 проводили на автоматическом четырехкружном дифрактометре D8 QUEST Bruker (Мо K_{a} -излучение, λ 0.71073 Å, графитовый моно-

Рис. 2. Общий вид молекул дииодида трис(3-фторфенил)сурьмы 4 в кристалле.

ДИГАЛОГЕНИДЫ ТРИС(3-ФТОРФЕНИЛ)СУРЬМЫ

Связь	<i>d</i> , Å	Угол	ω, град	Связь	<i>d</i> , Å	Угол	ω, град		
2 ^a									
Sb ¹ –Cl ¹	2.4598(17)	Cl ¹ Sb ¹ Cl ^{1a}	177.62(3)	$C^7 - C^8$	1.382(3)	$C^1Sb^1C^7$	121.89(7)		
Sb ¹ -Cl ^{1a}	2.4598(17)	C ⁷ Sb ¹ Cl ¹	91.192(15)	$C^{8}-C^{9}$	1.378(5)	$C^{1a}Sb^1C^1$	116.21(15)		
Sb^1-C^7	2.124(4)	C ¹ Sb ¹ Cl ¹	89.59(8)	$C^{9}-F^{2}$	1.378(6)	$C^8C^7Sb^1$	119.82(19)		
Sb^1-C^1	2.104(3)	$C^{1a}Sb^1C^7$	121.89(7)	C^3-F^1	1.335(5)	$F^1C^3C^4$	118.5(3)		
36									
Sb ¹ –Br ¹	2.6246(15)	Br ^{1a} Sb ¹ Br1	177.455(18)	Sb ¹ –C ¹¹	2.130(4)	$C^{1a}Sb^1C1$	116.24(17)		
Sb ¹ –Br ^{1a}	2.6246(15)	C ¹ Sb ¹ Br1	89.17(9)	F^1-C^3	1.337(5)	C ¹ Sb ¹ C11	121.88(9)		
Sb1-C1	2.107(3)	C ^{1a} Sb ¹ Br1	89.49(9)	F^2-C^{13}	1.380(7)	C ¹¹ Sb ¹ Br1	91.273(9)		
Sb ¹ –C ^{1a}	2.107(3)	$C^1Sb^1Br1^1$	89.49(9)						
4									
Sb ⁴ –I ⁷	2.8630(11)	I ⁸ Sb ⁴ I ⁷	176.04(2)	$Sb^2 - C^{31}$	2.113(6)	I ³ Sb ² I ⁴	175.88(2)		
Sb ⁴ –I ⁸	2.8487(11)	C ¹¹¹ Sb ⁴ I ⁸	92.32(17)	$Sb^2 - C^{41}$	2.133(6)	$C^{31}Sb^2I^4$	88.13(17)		
Sb4-C ¹¹¹	2.124(6)	C ¹⁰¹ Sb ⁴ C ¹¹¹	114.2(2)	Sb ² –C ⁵¹	2.107(6)	$C^{31}Sb^2C^{41}$	118.9(2)		
Sb4-C ¹⁰¹	2.098(3)	C ⁹¹ Sb ⁴ I ⁷	86.74(14)	Sb ¹ –I ¹	2.8904(11)	$C^{41}Sb^2I^3$	92.08(18)		
Sb4-C91	2.097(3)	C ⁹¹ Sb ⁴ C ¹¹¹	122.7(2)	Sb ¹ –I ²	2.8613(11)	$C^{51}Sb^2C^{31}$	120.1(3)		
Sb ³ –I ⁵	2.8705(12)	C ⁹¹ Sb ⁴ C ¹⁰¹	123.08(17)	Sb ¹ –C ¹¹	2.144(6)	$C^{51}Sb^2C^{41}$	120.9(3)		
Sb ³ –I ⁶	2.8713(12)	I ⁵ Sb ³ I ⁶	176.60(2)	Sb ¹ –C ¹	2.096(3)	$I^2Sb^1I^1$	177.41(2)		
Sb ³ –C ⁸¹	2.124(6)	C ⁸¹ Sb ³ I ⁶	88.84(16)	Sb1-C21	2.120(3)	$C^{11}Sb^1I^2$	91.89(17)		
Sb ³ –C ⁷¹	2.125(7)	C ⁸¹ Sb ³ C ⁷¹	119.8(3)	$F^2 - C^{13}$	1.340(9)	$C^1Sb^1C^{11}$	117.38(19)		
Sb ³ –C ⁶¹	2.100(3)	C ⁷¹ Sb ³ I ⁵	91.94(19)	F ¹² -C ¹¹³	1.355(10)	$C^1Sb^1C^{21}$	118.03(18)		
Sb ² –I ³	2.8608(12)	C ⁶¹ Sb ³ C ⁸¹	122.0(2)	$F^7 - C^{63}$	1.323(8)	$C^{21}Sb^{1}C^{11}$	124.6(2)		
Sb ² –I ⁴	2.8775(12)	C ⁶¹ Sb ³ C ⁷¹	118.3(2)	F ¹⁰ -C ⁹³	1.275(8)	$C^{21}Sb^1I^1$	88.38(14)		

Таблица 2. Основные длины связей и валентных углов в молекулах соединений 2-4

Преобразования симметрии: ^{а 1}1-*x*, +*y*, 3/2-*z*. ⁶-*x*, +*y*, ¹/₂-*z*.

хроматор). Сбор, редактирование данных и уточнение параметров элементарной ячейки, а также учет поглощения проводили по программам SMART и SAINT-Plus [23]. Все расчеты по определению и уточнению структуры молекул выполнены по программам SHELXL/PC [24] и OLEX2 [25]. Структура соединений **2–4** определена прямым методом и уточнена методом наименьших квадратов в анизотропном приближении для не водородных атомов.

Основные кристаллографические данные и результаты уточнения структуры соединений 2–4 приведены в табл. 1, основные длины связей и валентные углы – в табл. 2. Полные таблицы координат атомов, длин связей и валентных углов депонированы в Кембриджском банке структурных данных [ССDC 2060275 (2), 2060199 (3), 2060277 (4)].

Дихлорид трис(3-фторфенил)сурьмы (2) синтезировали из трис(3-фторфенил)сурьмы и хлора или хлорида меди(II) [26]. В первом случае выход составил 78%, во втором – 89%. Бесцветные кристаллы, т. пл. 111°С. ИК спектр, v, см⁻¹: 3055, 1587, 1474, 1420, 1269, 1211, 1121, 1084, 997, 905, 880, 853, 779, 721, 698, 675, 658, 542, 521, 432. Найдено, %: С 45.09; Н 2.62. С₁₈Н₁₂Cl₂F₃Sb. Вычислено, %: С 45.19; Н 2.51.

Дибромид трис(3-фторфенил)сурьмы (3) синтезировали аналогично из трис(3-фторфенил) сурьмы и брома или бромида меди(II). В первом случае выход составил 83%, во втором – 91%. Бесцветные кристаллы, т. пл. 121°С. ИК спектр, v, см⁻¹: 3051, 1585, 1572, 1472, 1420, 1300, 1267, 1223, 1163, 1115, 1084, 1051, 995, 903, 876, 849, 775, 673, 540, 519, 436. Найдено, %: С 38.00; Н 2.23. С₁₈H₁₂Br₂F₃Sb. Вычислено, %: С 38.09; Н 2.12.

Дииодид трис(3-фторфенил)сурьмы (4) синтезировали из трис(3-фторфенил)сурьмы и иода [26]. Выход 88%, светло-желтые кристаллы, т. разл. 120°С. ИК спектр, v, см⁻¹: 3055, 1585, 1470,

1420, 1300, 1267, 1221, 1161, 1113, 1082, 1051, 995, 897, 866, 849, 775, 671, 538, 519, 428. Найдено, %: С 32.58; Н 1.98. С₇₂Н₄₈F₁₂I₈Sb₄. Вычислено, %: С 32.69; Н 1.82.

Дифторид трис(3-фторфенил)сурьмы (5) синтезировали из дихлорида трис(3-фторфенил)сурьмы и фтористого натрия [26]. Выход 90%, т. пл. 130°С. ИК спектр, v, см⁻¹: 3066, 1578, 1522, 1474, 1414, 1304, 1267, 1211, 1161, 1088, 1061, 999, 897, 856, 785, 679, 662, 544, 525, 505, 440, 405. Найдено, %: С 48.13; H 2.78. С₁₈H₁₂F₅Sb. Вычислено, %: С 48.54; H 2.70.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Шарутин В.В., Поддельский А.И., Шарутина О.К. // Коорд. хим. 2020. Т. 46. № 10. С. 579. doi 10.31857/ S0132344X20100011; Sharutin V.V., Poddel'sky A.I., Sharutina O.K. // Russ. J. Coord. Chem. 2020. Vol. 46. N 10. P. 663. doi 10.1134/S1070328420100012
- Onishi K., Douke M., Nakamura T., Ochiai Y., Kakusawa N., Yasuike S., Kurita J., Yamamoto C., Kawahata M., Yamaguchi K., Yagura T. // J. Inorg. Biochem. 2012. Vol. 117. P. 77. doi 10.1016/j. jinorgbio.2012.09.009
- Copolovici D., Isaia F., Breunig H.J., Rat C.I., Silvestru C. // RSC Adv. 2014. Vol. 4. P. 26569. doi 10.1039/ C4RA03482A
- 4. Chirca I., Soran A., Silvestru A., Silvestru C. // Rev. Roum. Chim. 2015. Vol. 60. P. 643.
- Copolovici D., Bojan V.R., Rat C.I., Silvestru A., Breunig H.J., Silvestru C. // Dalton Trans. 2010. Vol. 39. P. 6410. doi 10.1039/C003318A
- Okajima S., Yasuike S., Kakusawa N., Osada A., Yamaguchi K., Seki H., Kurita J. // J. Organomet. Chem. 2002. Vol. 656. P. 234. doi 10.1016/S0022-328X(02)01622-4
- Yamamichi H., Matsukawa S., Kojima S., Ando K., Yamamoto Y. // Heteroatom Chem. 2011. Vol. 22. P. 553. doi 10.1002/hc.20721
- Reznicek T., Dostal L., Ruzicka A., Vinklarek J., Rezacova M., Jambor R. // Appl. Organomet. Chem. 2012. Vol. 26. P. 237. doi 10.1002/aoc.2845
- Obata T., Matsumura M., Kawahata M., Hoshino S., Yamada M., Murata Y., Kakusawa N., Yamaguchi K., Tanaka M., Yasuike S. // J. Organomet. Chem. 2016. Vol. 807. P. 17. doi 10.1016/j.jorganchem.2016.02.008

- Matano Y., Nomura H., Hisanaga T., Nakano H., Shiro M., Imahori H. // Organometallics. 2004. Vol. 23. P. 5471. doi 10.1021/om0494115
- Шарутин В.В., Шарутина О.К. // ЖНХ. 2015. Т. 60. № 12. С. 1631. doi 10.7868/ S0044457X15120211; Sharutin V.V., Sharutina O.K. // Russ. J. Inorg. Chem. Vol. 60. N 12. P. 1631. doi 10.1134/S0036023615120219
- Hirai M., Gabbai F.P. // Angew. Chem. Int. Ed. 2015. Vol. 54. P. 1205. doi 10.1002/anie.201410085
- Matano Y., Nomura H., Suzuki H. // Inorg. Chem. 2000. Vol. 39. P. 1340. doi 10.1021/ic991120e
- Matano Y., Nomura H., Suzuki H. // Inorg. Chem. 2002. Vol. 41. P. 1940. doi 10.1021/ic0110575
- Шарутин В.В., Шарутина О.К., Сенчурин В.С., Чагарова О.В. // ЖОХ. 2012. Т. 82. Вып. 10. С. 1646; Sharutin V.V., Sharutina O.K., Senchurin V.S., Chagarova O.V. // Russ. J. Gen. Chem. 2012. Vol. 82. N 10. P. 1665. doi 10.1134/S1070363212100064
- Шарутин В.В., Шарутина О.К., Решетникова Р.В., Лобанова Е.В., Ефремов А.Н. // ЖНХ. 2017. Т. 62. № 11. С. 1457; Sharutin V.V., Sharutina O.K., Reshetnikova R.V., Lobanova E.V., Efremov A.N. // Russ. J. Inorg. Chem. 2017. Vol. 62. N 11. P. 1450. doi 10.1134/S003602361711016X
- Шарутин В.В., Шарутина О.К., Ефремов А.Н., Андреев П.В. // Коорд. хим. 2018. Т. 44. № 5. С. 333. doi 10.1134/S0132344X18050109; Sharutin V.V., Sharutina O.K., Efremov A.N., Andreev P.V.// Russ. J. Coord. Chem. 2018. Vol. 44. N 10. P. 635. doi 10.1134/ S107032841810010X
- Ефремов А.Н. // Вестн. ЮУрГУ. Сер. Химия. 2019. Т. 11. № 1. С. 34. doi 10.14529/chem190104
- Yin H., Quan L., Li L. // Inorg. Chem. Commun. 2008. Vol. 11. P. 1121. doi 10.1016/j.inoche.2008.06.017
- 20. *Shu W., Liu D., Huang K., Wang K., Li Y. //* Trans. Nonferrous Met. Soc. China. 1992. Vol. 2. N 2. P. 32.
- Domagala M., Huber F., Preut H. // Z. anorg. allg. Chem. 1989. Bd 574. S. 130. doi 10.1002/ zaac.655740114
- 22. Бацанов С.С. // ЖНХ. 1991. Т. 36. № 12. С. 3015.
- Bruker (1998). SMART and SAINT-Plus. Versions 5.0. Data Collection and Processing Software for the SMART System. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (1998). SHELXTL/PC. Versions 5.10. An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dolomanov O.V., Bourhis L.J., Gildea R.J., Howard J.A.K., Puschmann H. // J. Appl. Cryst. 2009. Vol. 42. P. 339. doi 10.1107/S0021889808042726
- Кочешков К.А., Сколдинов А.П., Землянский Н.Н. Методы элементоорганической химии. Сурьма, висмут. М.: Наука, 1976. 483 с.

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 91 № 5 2021

Tris(3-fluorophenyl)antimony Dihalides: Synthesis and Structure

V. V. Sharutin* and O. K. Sharutina

National Research South Ural State University, Chelyabinsk, 454080 Russia *e-mail: vvsharutin@rambler.ru

Received March 5, 2021; revised March 11, 2021; accepted March 15, 2021

The reaction of tris(3-fluorophenyl)antimony with chlorine, bromine and iodine in benzene afforded tris(3-fluorophenyl)antimony dichloride, dibromide and diiodide. Dichloride and dibromide were also obtained by reacting tris(3-fluorophenyl)antimony with copper dihalides in acetone. Tris(3-fluorophenyl)antimony difluoride was obtained in an exchange reaction from tris(3-fluorophenyl)antimony dichloride and sodium fluoride. According to single crystal X-ray diffraction analysis, centrosymmetric dichloride and dibromide molecules and four types of crystallographically independent diiodide molecules have a trigonal pyramid configuration with electronegative ligands in axial positions.

Keywords: tris(3-fluorophenyl)antimony, triorganylantimony dihalides, X-ray diffraction analysis