УДК 546.87;547.53.024;548.312.5

СИНТЕЗ И СТРОЕНИЕ ДИКАРБОКСИЛАТОВ ТРИФЕНИЛВИСМУТА $Ph_3Bi[OC(O)R]_2$ (R = $CH_2C_6H_4F$ -3, $C_6H_3F_2$ -2,3, C_6HF_4 -2,3,4,5)

© 2021 г. В. В. Шарутин*, О. К. Шарутина, Л. В. Кощеева

Национальный исследовательский Южно-Уральский государственный университет, пр. Ленина 76, Челябинск, 454080 Россия *e-mail: sharutin50@mail.ru

> Поступило в Редакцию 29 марта 2021 г. После доработки 9 апреля 2021 г. Принято к печати 15 апреля 2021 г.

Взаимодействием трифенилвисмута, карбоновой кислоты и гидропероксида третичного бутила (1:2:1 мольн.) в диэтиловом эфире синтезированы соединения висмута $Ph_3Bi[OC(O)R]_2$ (R = $CH_2C_6H_4F$ -3, $C_6H_3F_2$ -2,3, C_6HF_4 -2,3,4,5), особенности строения которых установлены методом рентгеноструктурного анализа. Атомы висмута в дикарбоксилатах трифенилвисмута имеют искаженную тригонально-бипирамидальную координацию с атомами кислорода в аксиальных положениях. Наличие внутримолекулярных контактов $Bi \cdots O(=C)$ [2.833(8)–3.136(9) Å] обусловливает увеличение одного валентного угла CBiC до 151.07(15), 142.0(3), 138.53(14)° соответственно за счет уменьшения двух других.

Ключевые слова: дикарбоксилаты трифенилвисмута, рентгеноструктурные исследования

DOI: 10.31857/S0044460X21050139

Известным классом органических соединений висмута(V) являются дикарбоксилаты триорганилвисмута, которые обладают высокой фотокаталитической [1] и биологической [2], в частности, антипаразитарной [3–7] активностью, поэтому исследования синтеза и строения подобных соединений весьма актуальны.

В основе одного из эффективных способов получения дикарбоксилатов триарилвисмута лежит реакция триарилвисмута с карбоновой кислотой в присутствии окислителя [8–16].

Мы продолжили изучение аналогичных реакций трифенилвисмута с 2-метоксибензойной, 3,5-динитробензойной и фенилпропиоловой кислотами, содержащими в органическом фрагменте различные по электроотрицательности заместители. Реакции проводили в диэтиловом эфире в присутствии гидропероксида третичного бутила. Несмотря на различную природу заместителей в органическом фрагменте карбоновой кислоты, реакции протекали с образованием дикарбоксилатов трифенилвисмута с выходом до 83% (схема 1).

Соединения **1–3** – бесцветные кристаллические вещества, устойчивые к действию влаги и кислорода воздуха, хорошо растворимые в ароматических углеводородах, хлороформе, тетрагидрофуране и нерастворимые в алифатических углеводородах.

В ИК спектрах соединений 1–3 наблюдаются интенсивные полосы поглощения в области 450 см⁻¹ (442, 440, 447 см⁻¹ соответственно), ко-

Схема 1.

$$Ph_3Bi + 2RC(O)OH + t-BuOOH \rightarrow Ph_3Bi[OC(O)R]_2 + H_2O + t-BuOH$$

 $R = CH_2C_6H_4F-3$ (1), $C_6H_4F_2-2,3$ (2), $C_6HF_4-2,3,4,5$ (3).

СИНТЕЗ И СТРОЕНИЕ ДИКАРБОКСИЛАТОВ

Параметр	Значение		
	1	2	3
M	746.53	754.47	826.43
Сингония	Моноклинная	Триклинная	Триклинная
Пространственная группа	C2/c	PĪ	PĪ
<i>a</i> , Å	22.920(10)	8.990(6)	11.852(9)
b, Å	10.188(5)	11.218(9)	12.163(12)
<i>c,</i> Å	17.517(7)	14.770(13)	12.801(10)
α, град	90.00	69.88(4)	107.20(3)
β, град	135.004(11)	86.56(3)	100.62(2)
ү, град	90.00	82.76(3)	116.62(3)
<i>V</i> , Å ³	2892(2)	1387.3(19)(2)	1463(2)
Ζ	4	2	2
$d_{\rm Bb14}, r/cm^3$	1.715	1.806	1.876
μ, мм	6.147	6.418	6.112
F(000)	1456.0	728.0	792.0
Размер кристалла, мм	0.32 imes 0.3 imes 0.2	0.65 imes 0.6 imes 0.45	0.51 imes 0.37 imes 0.25
Область сбора данных по 20, град	6.496-56.952	5.476-55.49	6.406-54.486
Интервалы индексов отражений	$-30 \le h \le 30,$	$-11 \le h \le 11,$	$-15 \le h \le 15,$
	$-13 \le k \le 13,$	$-14 \le k \le 14,$	$-15 \le k \le 15,$
	$-21 \le l \le 21$	$-19 \le l \le 19$	$-16 \le l \le 16$
Измерено отражений	22730	33979	35133
Независимых отражений	3369 (<i>R</i> _{int} 0.0242)	6433 (<i>R</i> _{int} 0.1075)	6457 (<i>R</i> _{int} 0.0269)
Отражений с $I > 2\sigma(I)$	3191	5343	6007
Переменных уточнения	188	371	415
GOOF	1.124	1.034	1.152
<i>R</i> -Факторы по	$R_1 0.0198,$	$R_1 0.0448,$	$R_1 0.0225,$
$F^2 > 2\sigma(F^2)$	$wR_2 \ 0.0458$	$wR_2 0.1051$	$wR_2 0.0540$
<i>R</i> -Факторы по всем отражениям	$R_1 0.0223,$	$R_1 0.0612,$	$R_1 0.0259,$
	$wR_2 0.0472$	$wR_2 0.1122$	$wR_2 0.0561$
Остаточная электронная плотность (min/max), <i>e</i> /Å ³	1.37/-0.95	2.20/-2.17	0.56/-0.62

Кристаллографические данные, параметры эксперимента и уточнения структур 1-3

торые характеризуют валентные колебания связи Bi–C [17]. Полосы поглощения, соответствующие колебаниям связей C=O (1641, 1616, 1622 см⁻¹ в соединениях **1–3** соответственно), сдвигаются в низкочастотную область спектра по сравнению с этими же полосами поглощения соответствующих карбоновых кислот (1701, 1694, 1688 см⁻¹). Наличие интенсивных полос при 1230 (1), 1227 (**2**) и 1260 (**3**) см⁻¹ определяет валентные колебания связи С–О. Полосы поглощения при 1558, 1470, 1435 см⁻¹ (**1**); 1588, 1479, 1436 см⁻¹ (**2**); 1580, 1479, 1437 см⁻¹ (**3**) характеризуют валентные колебания углеродного скелета арильных колец. Валентным колебаниям связей С_{Аг}–Н отвечают полосы погло-

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 91 № 5 2021

щения средней интенсивности при 3055 (1), 3069 (2), 3071 (3) см⁻¹, а внеплоскостным деформационным колебаниям этих же связей – высокоинтенсивные полосы при 789, 785, 764 см⁻¹. В ИК спектрах присутствуют полосы поглощения валентных колебаний метильных групп при 2972 (1), 29 (2), 2994 см⁻¹ (3).

По данным РСА, в кристаллах соединений **1–3** атомы висмута имеют искаженную тригонально-бипирамидальную координацию с карбоксилатными лигандами в аксиальных положениях (см. таблицу, рис. 1, 2). Молекулы дикарбоксилата трифенилвисмута **1** – центросимметричные (центр инверсии – атом металла).

Рис. 1. Общий вид молекулы бис(3-фторфенилацетато)трифенилвисмута 1.

Углы OBiO [171.39(9)-174.10(11)°] несколько отличаются от значения 180°, суммы валентных углов в экваториальной плоскости составляют 360°. Длины связей Ві-С в соединениях 1-3 изменяются в интервалах 2.168(3)-2.331(3) Å, расстояния Bi-O [2.162(2)-2.304(3) Å] приближаются по своему значению к сумме ковалентных радиусов атомов висмута и кислорода (2.31 Å [18]). В молекулах соединений 1-3 наблюдаются внутримолекулярные контакты Bi····O(=C), которые изменяются в интервале 2.833(8)-3.136(9) Å, поэтому можно говорить об увеличении координационного числа центрального атома до 7 (5+2). Двугранные углы между плоскостями карбоксильных групп в соединениях 1 и 3 составляют 9.07 и 7.27°. В кристалле дикарбоксилата трифенилвисмута 2 плоскости карбоксильных групп компланарны. Карбоксилатные лиганды в дикарбоксилатах трифенилвисмута 1-3 имеют относительно фрагмента ВіС₃ цис-ориентацию, что характерно для большинства дикарбоксилатов триорганилвисмута и расположены таким образом, что внутримолекулярные контакты Ві····O(=С) формируются внутри одного экваториального угла, значение которого возрастает до 151.07(15), 142.0(3), 138.53(14)° соответственно, при понижении значений двух других экваториальных углов.

Наличие различного количества электроотрицательных атомов фтора в карбоновой кислоте не оказывает влияния на схему протекания реакции окислительного присоединения с участием трифенилвисмута. Геометрические характеристики полученных дикарбоксилатов трифенилвисмута (длины связей Ві–С, Ві–О, внутримолекулярные контакты Ві····О и величины валентных углов) близки между собой при одинаковом координационном полиэдре атома висмута и его координационном числе (КЧ = 5+2).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры записывали на ИК Фурье спектрометре Shimadzu в таблетках КВг. Рентгенострук-

Рис. 2. Общий вид молекулы бис(2,3,4,5-тетрафторбензоато) трифенилвисмута 3.

турный анализ проводили на автоматическом четырехкружном дифрактометре D8 QUEST Bruker (графитовый монохроматор) при 293 К. Сбор, редактирование данных, уточнение параметров элементарной ячейки, учет поглощения, определение и уточнение структур проведены по программам [20–22]. Структуры соединений 1–3 определены прямым методом и уточнены методом наименыших квадратов в анизотропном приближении для неводородных атомов. Основные кристаллографические данные и результаты уточнения структур 1–3 приведены в таблице. Полные таблицы координат атомов, длин связей и валентных углов депонированы в Кембриджском банке структурных данных [ССDC 2048155 (1), 2051647 (2), 2041596 (3)].

Бис(3-фторфенилацетато)трифенилвисмут (1) получали по методике [11]. Выход 81%, бесцветные кристаллы, т. пл. 167°С. ИК спектр, v, см⁻¹: 3055, 2945, 1641, 1614, 1575, 1558, 1469, 1435, 1350, 1231, 1138, 1011, 984, 933, 789, 731, 679, 648, 615, 476, 442. Найдено, %: С 54.54; Н 3.70. С₃₄H₂₇O₄F₂Bi. Вычислено, %: С 54.62; Н 3.61.

Соединения 2 и 3 получали аналогично.

Бис(2,3-дифторбензоато)трифенилвисмут (2). Выход 83%, бесцветные кристаллы, т. пл. 211°С. ИК спектр, v, см⁻¹: 3065, 2935, 1616, 1585, 1574, 1558, 1479, 1437, 1352, 1327, 1271, 1227, 1096, 1042, 986, 955, 835, 785, 758, 731, 681, 627, 440. Найдено, %: С 50.85; Н 2.82. С₃₂H₂₁O₄F₄Bi. Вычислено, %: С 50.93; Н 2.79.

Бис (2,3,4,5-тетрафторбензоато) трифенилвисмут (3). Выход 82%, бесцветные кристаллы, т. пл. 180°С. ИК спектр, v, см⁻¹: 3071, 2993, 1649, 1623, 1560, 1522, 1479, 1437, 1368, 1310, 1259, 1192, 1097, 1034, 987, 914, 887, 764, 735, 711, 679, 650, 624, 521, 447. Найдено, %: С 46.40; H 2.17. С₃₂H₁₇O₄F₈Bi. Вычислено, %: С 46.49; H 2.06.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Zhang X.-Y., Wu R.-X., Bi C.-F., Zhang X., Fan Y.-H. // Inorg. Chim. Acta. 2018. Vol. 483. P. 129. doi 10.1016/j. ica.2018.07.02
- Oliveira L.G.D., Silva M.M., de Paula F.C.S., Pereira-Maia E.C., Donnici C.L., de Simone C.A., Frezard F., da Silva Junior E.N., Demicheli C. // Molecules. 2011. Vol. 16. P. 10314. doi 10.3390/molecules161210314

ШАРУТИН и др.

- Duffin R.N., Blair V.L., Kedzierski L., Andrews P.C. // Dalton Trans. 2018. Vol. 47. P. 971. doi 10.1039/ c7dt04171c
- Duffin R.N., Blair V.L., Kedzierski L., Andrews P.C. // J. Inorg. Biochem. 2018. Vol. 189. P. 151. doi 10.1016/j. jinorgbio.2018.08.015
- Ong Y.C., Blair V.L., Kedzierski L., Andrews P.C. // Dalton Trans. 2014. Vol. 43. P. 12904. doi 10.1039/ c4dt00957f
- Ong Y.C., Blair V.L., Kedzierski L., Tuck K.L., Andrews P.C. // Dalton Trans. 2015. Vol. 44. P. 18215. doi 10.1039/c5dt03335g
- Andleeb S., Imtiaz□ud□Din, Rauf K.M., Azam S.S, Haq I.-u. // Appl. Organomet. Chem. 2019. Vol. 33. P. e5061. doi 10.1002/aoc.5061
- 8. Додонов В.А., Гущин А.В., Брилкина Т.Г. // ЖОХ. 1985. Т. 55. № 1. С. 73.
- Verkhovykh V.A., Kalistratova O.S., Grishina A.I., Artemova V.G, Gushchin F.V // Bull. South Ural State University. Ser. Chemistry. 2015. Vol. 7. N 3. P. 61.
- Gushchin F.V., Kalistratova O.S., Maleeva A.I. Kuropatov V.A. // Bulletin of the South Ural State University. Ser. Chemistry. 2016. Vol. 8. N 1. P. 51. doi 10.14529/chem160108
- Гущин А.В., Шашкин Д.В., Прыткова Л.К., Сомов Н.В., Баранов Е.В., Шавырин А.С., Рыкалин В.И. // ЖОХ.
 2011. Т. 81. № 3. С. 397; Gushchin A.V., Shashkin D.V., Prytkova L.K., Somov N.V., Baranov E.V., Shavyrin A.S., Rykalin V.I. // Russ. J. Gen. Chem. 2011. Vol. 81. N 3. P. 493. doi 10.1134/S107036321103008X
- Гусаковская А.А., Калистратова О.С., Андреев П.В., Чупрунов Е.В., Калистратова О.С., Гусаковская А.А. // Кристаллография. 2018. Т. 63. № 2. С. 203. doi 10.7868/S0023476118020066

- Шарутин В.В., Мосунова Т.В. // Вестн. ЮУрГУ. Сер. Химия. 2020. Т. 12. № 3. С. 7. doi 10.14529/ chem200301
- Сенчурин В.С. // Вестн. ЮУрГУ. Сер. Химия. 2020. Т. 12. № 4. С. 72. doi 10.14529/chem200404
- Шарутин В.В., Шарутина О.К. // ЖОХ. 2021. Т. 91. № 4. С. 598; Sharutin V.V., Sharutina O.K. // Russ. J. Gen. Chem. Vol. 91. N. 4. In press. doi 10.31857/ S0044460X21040156
- Шарутин В.В., Поддельский А.И., Шарутина О.К. // Коорд. хим. 2020. Т. 46. № 10. С. 579; Sharutin V.V., Poddel'sky A.I., Sharutina O.K. // Russ. J. Coord. Chem. 2020. Vol. 46. N 10. P. 663. doi 10.1134/ S1070328420100012
- Da Silva J.G., Berbet F.M., Da Silva S.M., Rodrigues B.L., Beraldo H., Melo M.N., Frézard F., Demicheli C. // Molecules. 2014. Vol. 19. P. 6009. doi 10.3390/molecules19056009
- Бацанов С.С. // ЖНХ. 1991. Т. 36. № 12. С. 3015; Batsanov S.S. // Russ. J. Inorg. Chem. 1991. Vol. 36. N 12. P. 3015.
- SMART and SAINT-Plus. Version 5.0. Data Collection and Processing Software for the SMART System. Madison (WI, USA): Bruker AXS Inc., 1998.
- SHELXTL/PC. Version 5.10. An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data. Bruker AXS Inc., Madison, USA, 1998.
- Dolomanov O.V., Bourhis L.J., Gildea R.J., Howard K., Puschmann H. // J. Appl. Cryst. 2009. Vol. 42. P. 339. doi 10.1107/S0021889808042726

Synthesis and Structure of Triphenylbismuth Dicarboxylates Ph₃Bi[OC(O)R]₂ (R = CH₂C₆H₄F-3, C₆H₃F₂-2,3, C₆HF₄-2,3,4,5)

2021 V. V. Sharutin*, O. K. Sharutina, and L. V. Koscheeva

National Research South Ural State University, Chelyabinsk, 454080 Russia *e-mail: sharutin50@mail.ru

Received March 29, 2021; revised April 9, 2021; accepted April 15, 2021

The reaction of triphenylbismuth with carboxylic acid and *tert*-butyl hydroperoxide (1: 2:1 mol.) in diethyl ether afforded bismuth compounds $Ph_3Bi[OC(O)R]_2$ ($R = CH_2C_6H_4F$ -3, $C_6H_3F_2$ -2,3, C_6HF_4 -2,3,4,5), the structural features of which were established by the single crystal X-ray analysis method. Bismuth atoms in triphenylbismuth dicarboxylates have distorted trigonal-bipyramidal coordination with oxygen atoms in axial positions. The presence of intramolecular contacts $Bi\cdots O(=C)$ [2.833(8)–3.136(9) Å] causes an increase in one bond angle CBiC to 151.07(15), 142.0(3), 138.53(14)°, respectively, due to a decrease the other two.

Keywords: triphenylbismuth dicarboxylates, X-ray diffraction studies